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Spectral Features Selection and Classification for
Bimodal Optical Spectroscopy Applied to Bladder

Cancer in vivo Diagnosis
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Abstract—This paper describes an experimental study com-
bining spatially resolved AutoFluorescence (AF) and Diffuse
Reflectance (DR) fibred spectroscopies to discriminate in vivo
between healthy and pathological tissues in a preclinical model
of bladder cancer. Then, a detailed step-by-step analysis scheme
is presented for the extraction and the selection of discrimi-
native spectral features (correlation, Linear Discriminant and
Logistic Regression Analysis), and for the spectroscopic data
final classification algorithms (Regularized Discriminant Analysis
and Support Vector Machines). Significant differences between
healthy, inflammatory and tumoral tissues were obtained by
selecting a reasonable number of discriminant spectral features
from AF, DR and Intrinsic Fluorescence spectra, leading to
improved sensitivity (87%) and specificity (77%) compared to
monomodality (AF or DR alone).

Index Terms—autofluorescence, diffuse reflectance, bladder
cancer, feature selection, supervised classification
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CIS Carcinoma In Situ
DR Diffuse Reflectance
LDA Linear Discriminant Analysis
LOO Leave-One-Out
NADH Nicotinamide Adenine Dinucleotide
(N)UV (Near) Ultra-Violet
RDA Regularized Discriminant Analysis
SD Standard Deviation
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SVM Support Vector Machines

I. INTRODUCTION

MORE than 85% of cancers arise inside the tissue up-
per layers (or epithelium) of the human body organs,

among which 50% in hollow organs (aerial, digestive, urinary
and genital tracts) [1], [2]. The detection of cancerous tissular
lesions at their early stages of development is at stake in
increasing the chances for health recovery with help of less
aggressive treatments and reduced costs. Bladder cancer is the
7th most spread cancer in the world [3]. One of the main
problems concerning bladder tumors is their high recurrence
potential, especially in case of progression. Recurrence, with
an important progression risk is often associated to Carcinoma
In Situ (CIS) with multifocal and diffuse locations over the
bladder internal wall.

Cystoscopy is the reference clinical examination allowing
the physician to analyze visually the macroscopic aspect of
the bladder surface and to locate suspicious or identified
pathological lesions [4] [5]. Surgical biopsy followed by
histopathological analysis is performed on the latter in order
to identify and diagnose the exact nature and status of the
tissue. Even without significant abnormalities, a number of
biopsies is to be done, more or less randomly, or by following
a systematic “grid-protocol”. But the total number of biopsies
on the overall surface is of course limited and this traumatic
procedure has therefore a poor clinical sensitivity [6]. Fur-
thermore, due to intrinsic characteristics (flat, non-papillary
tumors, located at the mucous membrane), CIS may not be
detected by conventional cystoscopy and recurrence risk is
therefore increased.

In order to improve the efficiency of diagnostic procedures
(like biopsy guiding), the efficiency of surgical treatments (le-
sion targeting and spatial outlining) and the one of individual
patient follow-up, non invasive fibered optical spectroscopy
methods are developed and applied to identify and characterize
healthy and pathological tissue status in vivo. During the
carcinogenic process, pathological tissues differentiate from
healthy ones throughout a number of anatomical, biochemical
and physiological modifications at the cellular and tissular
levels with namely [7]–[11]: changes in the tissue structural
organization (higher cell proliferation, epithelium thickening,
infiltration in the surrounding tissues, neo-vascularization, cell
disorientation), hyperchromatism (thickening and densification
of chromatin), hyper-metabolism of the tumoral cells (in-
creased production of NADH), increase of the cell nucleus
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size, modifications of the interactions between cells. . . These
physico-chemical, morphological, structural and functional
modifications lead to changes in the optical properties of
absorption and diffusion of light in the tissues, that can be
detected at the early stages of hyperplastic (or cell abnormal
proliferation) development.
Tissue optical spectroscopy for in vivo diagnosis (also some-
times called optical biopsy) consists in bringing a fiber optics
probe at the contact with the tissue and in measuring the
intensity spectra backscattered by the tissue under specific
light excitation. Being fibered, the method can be applied
through the operating channel of standard cystoscopes. The
tissular volume in which the light propagates depends on
the geometry of the probe, on the type of excitation and
on the wavelength band of interest. In the UV-Visible wave-
length range (typically 350-750 nm), these techniques are
well adapted to the characterization of biological tissues of
limited thicknesses such as bladder mucosa and the detection
of epithelial or sub-epithelial lesions. The principle of spa-
tially resolved spectroscopy (AutoFluorescence AF or Diffuse
Reflectance DR) is based on the use of a multiple fiber probe
with several CEFS (Collecting to Exciting Fiber Separation) to
probe different tissue depths. In this way, tissue modifications
due to pathology and located at various depths can be probed.
Three main phenomena of light-tissue interaction can be
more specifically exploited in the UV-Visible range of interest
[12], [13]. Elastic scattering (due to changes of the refractive
indices in the medium) is the major phenomenon in terms
of light intensity magnitude and light-tissue interaction event
probability. It allows the light to travel inside the tissue in
all directions and to be partially back-collected at different
points at the surface of the tissue after multiple scattering.
The second one is a non-radiative process due to absorption
by intrinsic chromophores (haemoglobin, melanin, water) i.e.
without photon re-emission. The third process is due to the
absorption by intrinsic fluorophores (collagen, elastin, NADH,
flavins, porphyrins, etc.) followed by a radiative emission of
fluorescence new photons.

The AF intensity spectra emitted by a biological tissue
carries information linked to the biochemical nature and
metabolic activity of the latter [14]. Exploiting and interpret-
ing the results of AF measurements requires statistical and
empirical analysis of the AF intensity spectra, because their
spectral features are modified by the cross-contribution of ab-
sorption and diffusion that limits the extraction of quantitative
biochemical data [15]. In order to exploit the complementary
information linked to the localization and concentration of
various intrinsic fluorophores, a few research teams have
developed spectroscopic systems of multiple autofluorescence
excitations applied namely to cervix, bladder and skin [16]–
[19]. In the case of cancer diagnosis and tissue classification,
optimal combinations of excitation wavelengths improving the
classification performances are investigated. The few AF spec-
troscopy studies on human bladder cancerous lesion detection
indicate that highest sensitivity and specificity values are ob-
tained when low-UVA excitation wavelengths (below 340 nm)
are used [20]. The main drawbacks of using these excitation
low wavelengths are mutagenic risks for the irradiated tissues

and the need of specific endoscopic imaging systems allowing
for low-UVA and UVA light transmissions. Schmidbauer et
al. described the efficiency of flexible fluorescent cystoscopy
in a study on 389 human bladder lesions. Fluorescent flexible
cystoscopy had a 21% higher detection rate of CIS (82%) than
standard flexible (61%) or standard rigid (67%) cystoscopy
[21]. Wu and Qu found that the AF excited at 405 nm is
sensitive to the cellular metabolism and can be used to sense
the metabolic status of epithelial tissue [22].

The multiple scattering of photons carries information
linked to morphological and structural characteristics of the
tissue constituents. The shape and amplitude of the back-
scattered intensity spectra are modified by the corresponding
wavelength-dependent optical properties of absorption and
diffusion. Statistical and empirical analysis of spectral features
extracted from the DR spectra can be performed for finding out
their correlations with some pathological states of the tissue.
DR spectroscopy has already been applied to in vivo diagnosis
in clinics, especially in cancerology for classifying healthy
and pre-cancerous or cancerous tissues on oesophagus, breast,
bladder and skin [13], [23]–[25]. Main DR spectroscopy
studies on human bladder carcinomas indicate that very high
sensitivity and specificity values may be obtained by exploiting
the DR spectra slopes in the UVA region (between 330 and 370
nm) [26]. Much lower values are reported when considering
only the visible wavelength band of the spectrum (400 to 700
nm) [27].

The interest in combining AF and DR spectroscopies to
increase the efficiency of in vivo diagnosis (increased sensi-
tivity and specificity) has been demonstrated in a number of
clinical studies on cervix, oral cavity, breast and skin [12],
[18], [28], [29]. For instance, spatially colocalized AF and
DR measurements can be exploited to correct the measured
AF spectra from absorption and diffusion by using the in-
formation brought by DR data. Various modeling approaches
are currently developed to compensate these distortions and
extract intrinsic fluorescence spectra of the tissue [30], [31].
These colocalized bi-modalities (AF and DR) measurements
may also allow us to extract further spectral characteristics
for selecting the most discriminant data combination with
reference to the classification problem of the tissue under
investigation. In the present study, we are interested in how im-
proving the efficiency of in vivo bladder cancer discrimination
when restraining the analysis to the NUV-Visible wavelength
bandwidth. Therefore, we propose to combine AF excitation
at 410 nm and DR excitation in the wavelength range 400-
700 nm. Finally, the analysis of the spectral characteristics
of the corresponding spectra and of the spatially resolved
measurements requires three main steps of feature extraction,
selection and classification successively.

The application of methods of in vivo optical spectroscopy
implies to exploit some amplitude and shape features of the
intensity spectra collected at various probing points on the
tissue, so as to identify, non invasively, some pathological
status of the tissue. The objective is usually to determine the
belonging of the latter to a specific diagnostic category defined
with reference to the gold standard histological expertise.
In spatially resolved bimodal spectroscopy, the measurement
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data set collected on one point of the tissue consists in n1

intensity spectra measured at n2 inter-fiber distances (CEFS).
These n1×n2 spectra acquired at n points on the tissue form
a raw data matrix X of independent variables containing the
numerical values of intensities observed for the p quantitative
variables (with hundreds wavelengths per spectra). In the same
time, the histopathological analysis of the n tissue samples
(called individuals in the rest of the present paper) provides the
reference values of class belonging. These discrete values form
a class label vector Y (constituting the qualitative dependant
variables). Consequently, the complexity of the data processing
comes from very large size of the raw data matrix (thousands
of variables p) compared to the small number of samples n
intrinsically limited by the experiment potential. A rigorous
selection of relevant data (significant or explicative variables)
is needed to reduce the size of the spectral data set and to
improve the performance and robustness of the models.

The present study aims at evaluating the efficiency of cou-
pling AF and DR spectroscopies for bladder cancer diagnosis
using excitations in a limited NUV-Visible wavelength range.
The evaluation consists in finding the best diagnostic accuracy,
i.e. the optimum [sensitivity, specificity] couple. This paper
describes a bimodal instrumentation developed and applied in
the frame of an experimental protocol performed on a pre-
clinical model of cancer in rat bladder. Then, we present
a detailed step-by-step analysis for the extraction and the
selection of spectral features, and for the spectroscopic data
final supervised classification.

II. MATERIALS AND METHODS

A. Instrumentation development and calibration

1) Description of the system: A spatially resolved bimodal
optical spectroscopy instrumentation was developed for
acquiring colocalized mono-excited autofluorescence (AF)
and diffuse reflectance (DR) intensity spectra on biological
tissues in vivo (Fig. 1). The Continuous-Wave bimodal light
source consists of a laser diode source (λexc = 410 ± 5
nm, Laser 2000, France) for AF excitation and a Deuterium-
Tungsten Halogen light source (DH2000, Ocean Optics,
France) for DR measurements in the wavelength range from
440 to 800 nm. Spatial resolution was obtained through the
use of a multiple fiber probe whose distal tip was put in
gentle contact with the surface of the tissue (rat bladder
inner wall). Our probe contains 37-optical fibers (Si/Si fibers
with 200 µm-core diameter and 0.22 numerical aperture,
SEDI, France) arranged in concentric circles within the
2 mm diameter probe end. One fiber was chosen at the
tip probe border for excitation and 13 other fibers were
chosen for collecting backscattered light at different CEFS
with the following center-to-center distances: 271, 340, 528,
599, 785, 834, 1002, 1036, 1076, 1187, 1296, 1442 and
1542 µm (Fig. 1). Indeed, this maximum number of 13
CEFS is due to a technical constraint of the multichannel
imaging spectrograph (iHR 320, Horiba Jobin Yvon, France)
whose entrance slit-to-fiber bundle adapter is limited to
thirteen fibers in line, i.e. the simultaneous acquisition of 13
spectra. The latter spectrograph is based on a Czerny-Turner

Fig. 1. Schematic representation of the bimodal spectroscopy device with
a zoom on the multiple fiber probe (hatched gray fiber corresponds to the
excitation fiber and white fibers to the emission fibers).

configuration (320 mm focal length) and equipped with
a UV back-illuminated Charge Coupled Device detector
(CCD-2048x512-BIUVSTE, Thermoelectric cooling (-70◦C)
E2V UV-treated Back Illuminated detector, Symphony
controller, Horiba JY, France) and an emission filter-wheel
with various filters used to reject the backscattered excitation
light. Integration times were 2000 ms and 50 ms, respectively
for AF and DR measurements. Spectra were all acquired
using a diffraction grating with 150 gr/mm (blaze wavelength:
500 nm).

2) Calibration and Normalization procedures: The light
intensity calibration required a light power adjustment using a
power meter (841PE, power sensor UV 818-UV, Newport). To
account for the wavelength dependence of the light source as
well as for the fiber transmission and spectrometer spectral re-
sponses, a reference measurement of reflectance was regularly
performed on a spectrally flat reflectance standard (Spectralon,
WS-1 Diffuse Reflectance Standard, Ocean Optics, France)
[13]. DR spectra were obtained by dividing each backscattered
light intensity spectrum acquired on tissue by the backscattered
light intensity spectrum obtained on this Lambertian surface
diffusion standard. In order to improve signal to noise ratio,
three acquisitions in a row were performed for each AF or DR
spectrum before being averaged. All experimental spectra were
pre-processed to correct the spectral distortions (wavelength
and intensity) induced by the instrumentation. In order to
improve reproducibility, a tripod was used for maintaining the
tip of the optical fiber bundle in gentle contact to the bladder
surface and perpendicular to it.

Optical resolution of the acquisition system was 2 nm. The
calibration procedure was reiterated for each new biological
tissue sample.

B. Biological materials and experimental protocol

1) Tumor cell culture and in vivo bladder instillation:
Carcinomas were induced in rat bladder with cultured tumor
cells from line AY-27. The rat bladder transitional cell car-
cinoma cell line AY-27 was established as a primary bladder
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tumor in Fisher F344 rats by feeding FANFT (N-[4-(5-Nitro-2-
furyl)-2-thiazolyl]- formamide), and was generously provided
by Drs S. Selman and J. Hampton from the Medical College
of Ohio (Toledo, OH). The culture medium used was RPMI-
1640 (Gibco, Invitrogen, UK), supplemented with 5% L-
glutamine, 5% penicillin-streptomycin and 10% fetal bovine
serum (Biotech, GmbH). Cells were passaged when nearly
confluent by standard, limited trypsinization procedures [32].

Tumor cell suspensions were prepared by mincing the tumor
under sterile conditions and plating in sterile plastic T-175
flasks (175 cm2) with 0.2 µm vented cap (BD Biosciences)
and maintained in a humidified incubator with 5% CO2

environment. When the cultured cells neared confluence, the
medium was removed, and the cells were dissociated with
2 mL trypsin-EDTA for 10 min at 37◦C, then centrifuged,
and re-suspended in complemented RPMI-1640 medium. Cells
viability was determined by standard trypan blue (0.4%)
exclusion test. Cells suspension directly from cell culture was
used for bladder instillation. For orthotopic implantation, 4.106

cells in 1 mL were instilled intravesically [32].
42 female Fisher (F344) rats, weighing 115-150 g, were

used for the experimental protocol (Harlan Laboratories,
France). All animal procedures were performed according to
institutional and national guidelines. Rodents were maintained
in our animal care facility and housed four per cage at room
temperature (22◦C ± 2◦C) with food and water ad libidum.

Three groups of 14 rats each were established, with refer-
ence to three different incubation durations between the tumor
cell administration day and the spectroscopic measurements
day i.e. at 3, 7 and 14 days after tumor cell implantation. In
each group, 10 rats were instilled with tumor cells, 3 rats were
instilled only with HCl/NaOH and PBS and one healthy rat
served as negative reference.

For tumor instillation, rats were anesthetized with an
intraperitoneal injection of 45 mg.kg−1 sodium pentobarbital
(Sanofi, France) and body temperature was maintained during
experiments thanks to a thermostatic blanket. The rat bladder
was catheterized with 16G intravenous cannula (Terumo,
Surflo). Bladder epithelial desquamation was obtained through
an intravesical instillation of 0.5 mL of HCl (0.1N) during 15
s, and neutralized with 0.5 mL of NaOH (0.1N) solution for
15 s, followed by PBS rinsing. Finally, a bladder tumor cell
suspension was instilled intravesically for one hour. Sterile
technique was used for tumor cells implantation. Finally, the
catheter was removed and the rats were returned to their cage
as soon as they were awoken.

2) Surgical protocol, spectroscopic measurements and his-
tology: Spectroscopic measurements inside bladders were
carried out on living rats. Each animal was anesthetized with
pentobarbital at 45 mg.kg−1 (Sanofi, France) and a laparotomy
was performed in order to access the bladder. The latter was
incised for inserting the fiber optic probe end and performing
spectroscopic measurements at distinct anatomical sites inside
the bladder.
Intensity spectra were acquired on three different spots near
urethra and ureters of each bladder. These places were marked
with different colors of indelible Indian ink (blue, green, and

black). Three spectra were acquired on each site in order to
avoid any handling error and to collect enough data without
having to include a larger number of animals to be sacrificed.
Each animal was euthanized just after measurements and the
bladder was excised for histological analysis and classification.
Excised bladders were fixed in formaldehyde(CH2O) solution
before imbedding in paraffin. Tissue samples were serially
sliced (5 µm thickness) with a microtome (Microm Heidelberg
HM350, Germany), and stained with standard HE staining
(Hematoxylin-Eosin) for histological examination. Histolog-
ical slice images were realized with an optical transmission
microscope (Olympus AX70, France).

C. Spectroscopic data preprocessing and feature extraction

At each anatomical point of measurement, three intensity
spectra (in both AF and DR modalities) were systematically
acquired then averaged in order to improve the signal to noise
ratio. Residual high frequency noise was removed using a
polynomial smooth filtering (Savitzky-Golay) applied overall
each spectral curve between 440 and 800 nm. The window
size and order of the filter were determined for each type
of spectra (AF or DR) with reference to their specific shape
characteristics. A 15 nm width window (2nd order) was
applied to all AF spectra and 10 to 20 nm width windows (2nd

order) were used for DR spectra. All spectra were analyzed
(statistical tests, correlation with histological slides) in order
to define, with greater precision, typical spectral features
of normal and cancerous tissues, and to determine optimal
measurement distances between excitation and illumination
fibers.

Based on previous works by Mourant et al. [26], Koenig
et al. [20], De Veld et al. [33] and on our own observations
performed on the intensity peaks of interest and on the shapes
of the spectral curves in specific bandwidths of wavelengths,
we came to define a number of parameters with the following
notation convention:

• Pλi stands for intensity Peak at λi,
• Aλi−λj for Areas under the curve between λi and λj ,
• RP,A/A,P for Ratios between intensity peaks and/or ar-

eas,
• Sλi−λj for curve Slopes between λi and λj .

From AF and DR spectra, we calculated a first order approx-
imation of intrinsic autofluorescence spectra (i.e. corrected
from haemoglobin absorption) based on the approach of De
Veld et al. [31] [33]. As stated by the equation below, it
consists in dividing the AF spectra by the DR one (recorded
at the same location) to some power to be determined.

Fi(λ) =
Fa(λ)

exp(−µa(λ)lf )
=

Fa(λ)

Rd(λ)kf (λ)
(1)

with Fi(λ) the Intrinsic Fluorescence (IF) emission spectra
of endogenous fluorophores, Fa(λ) the bulk autofluorescence
spectrum (measured), µa the absorption coefficient, lf the
mean free-path of autofluorescence in tissue, Rd(λ) the diffuse
reflectance spectra and kf the ratio between the pathlengths for
AF and DR light. The numerical value of this proportionality
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parameter was obtained through a fitting procedure imple-
menting a second order optimization procedure (non-linear
least-squares Levenberg-Marquardt algorithm) and aiming at
minimizing the area of a triangle formed by the Fi points at
wavelengths 563, 582 and 604 nm (around the second blood
absorption dip at 575 nm).

III. RESULTS AND DISCUSSION

A. Histological results and classification

We observed that tumor sizes obtained were not directly
proportional to the delay following tumor cell implantation
i.e. the instillation group. Variations were found in tumor
size, degree of malignity and epithelium desquamation within
and between groups. Actually, tumor growth is inevitably
modulated by the tumor implantation location in the bladder
and the proximity to blood vessels. The global conditioning
and a global instillation lead to 100% tumors but randomly
located. Due to practical constraints, it was not possible to
have the histological classification available for each of the 126
excised samples (14 animals x 3 groups x 3 sites) at all steps of
our spectral data classification algorithm described in the next
sections. Thus, two complementary histological analysis were
successively performed first on 98 excised samples then on the
28 remaining samples added to the 98 ones. Therefore, both
histological analysis allowed us to classify the corresponding
two data sets (98 then 126 sites) into three main classes of
healthy (71 then 94 sites), inflammatory (9 then 9 sites), and
tumoral tissue states (18 then 23 sites).

B. Spectroscopic results and spectral feature extraction

(a)

(b)

Fig. 2. Examples of 2(a) AF and 2(b) DR spectra measured at the shortest
CEFS (271 µm) for tumoral (grey line), inflammatory (dotted line) and healthy
(solid black line) tissue sites.

1) Autofluorescence results: Figure 2(a) gives an example
of the pre-processed (spectrally corrected, smooth filtered)
AF intensity spectra for healthy, inflammatory and tumoral

tissues measured at the shortest CEFS (271 µm). For sake
of figure clarity, spectra measured at other CEFS are not
displayed but similar observations are noticed for all 13
other CEFS. We may observe a rather remarkable shape for
the autofluorescence spectra whose amplitude is modulated
by haemoglobin absorption between 490 and 690 nm (for
example, peak at 565 nm, hollows at 540 and 575 nm).
Furthermore, the overall amplitude of the AF intensity
spectra vary as a function of the tissue status considered with
higher amplitude for tumoral tissues and lower amplitude for
healthy ones. In our case, the results obtained are opposite
to those referenced on human bladder tissue in vivo for
which tumoral tissues generally produce a lower level of
autofluorescence intensity than healthy ones [34]. This may
be due to the nature of our experimental model used and
more exactly to the experimental procedure which implies
surgery and consequently bleeding at the inner surface where
measurements are performed. In our laboratory, previous
work on the same animal model of bladder tumor rat have
shown similar results [35].
Looking more precisely at curves on Fig. 2(a), it can be
noticed a fluorescence decrease attributed to the haemoglobin
absorption in the 525-575 nm range. When we observe the
hollows at 540 and 575 nm corresponding to the absorption
peaks of oxyhaemoglobin HbO2, we may notice that the
bumps in the spectral curves of tumoral tissues between 490
and 590 nm have a lower amplitude than those of healthy
tissues. This result may also be explained by the nature of the
tumoral model used and the thickness of the bladder wall. The
mean wall thickness of a normal bladder in the conditions
of experimentation (after filling with physiological water) is
100 to 300 µm. This thickness is of the order of about 500
to 800 µm for a two-weeks tumor. Indeed, in the case of
healthy bladders, much of the incident light is scattered and
transmitted throughout the wall, whereas a larger amount of
light is scattered and absorbed in thicker tumor tissues thus
generating an increased level of resulting AF intensity.
To statistically verify the observation made that the spectrum
bump’s amplitudes at 520 and 565 nm are lower for the
tumoral tissues than for healthy ones, we calculated the
ratio between autofluorescence intensities at 615 and 520
nm RP615/P520

and the ratio between the autofluorescence
intensities at 615 and 565 nm RP615/P565

. Statistically
significant differences were noted between healthy and
tumoral tissues.

2) Diffuse reflectance results: Figure 2(b) represents an
example of the diffuse reflectance spectra for tumoral, inflam-
matory and healthy tissues acquired at the shortest CEFS (271
µm).
The overall shapes of these spectra appear identical whatever
the tissue considered. The diffuse reflectance intensity is
generally weaker for healthy samples than for inflammatory
ones, and the latter also weaker than tumoral tissues. We
also noticed that the absorption peaks in DR curves are less
pronounced in tumoral than in healthy tissue samples.
From the observations made on these DR spectra, we propose
to calculate further simple spectral indices of potential interest
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for differentiating between the three histological classes of
interest. The notation convention applied is the one already
mentioned in section II-C. The subscript will denote the
wavelengths concerned with the measure, and the superscript
indicates the number of the measurement fiber involved. With
these conventions in mind, our extracted variables were (with
the fiber’s number nf ∈ {1..13}):

• Anf
440−560 and Anf

440−800 respectively the partial area un-
der the curve between 440 and 560 nm and the total area
under the curve between 440 and 800 nm, at every CEFS,

• Rnf
P480/A440−800

the ratio between the peak value at 480
nm and area under the curve,

• Rnf
P740/A440−800

the ratio between the peak value at 740
nm (haemoglobin hollow) and area under the curve,

• Snf
440−470, Snf

590−615 and Snf
650−750 the slopes calculated

on DR spectra respectively between 440 and 470 nm,
between 590 and 615 nm and between 650 and 750 nm.

The slopes calculated between 440 and 470 nm appear to be
the most representative feature for the tissues considered (Fig.
3) confirming what was initially shown by Mourant et al. [26]
on human bladders. In the present study, a slope value below
2.5 a.u./nm corresponds to healthy tissues while a higher value
is related to tumoral ones.

(a)

(b)

Fig. 3. 3(a) Slope values between 440-470 nm for tissue samples of all
histological classes, 3(b) Box and Whiskers Plots also representing slopes.

The visual observation of the histological slides did
not allow us to distinguish precisely between intermediate
stages of the inflammatory tissues: most of the inflammatory
sites correspond to the rat group for which measures were
conducted three days after instillation. Thus, the bladder
epithelium did not have enough time to “heal”, hence the
difficulty of histological finest expertise.

3) Intrinsic Fluorescence: Figure 4 represents intrinsic
fluorescence mean spectra at the shortest CEFS (271 µm)

for healthy, inflammatory and tumoral rat bladder tissues and
their corresponding optimized mean values of kf ±SD. These
spectra are normalized with reference to the maximum peak
value of the healthy tissue spectra.

Fig. 4. Intrinsic fluorescence mean spectra and corresponding mean values
±SD of kf for healthy (solid black line), inflammatory (dotted line) and
tumoral tissues (grey line).

By this way of minimizing the influence of blood ab-
sorption on raw AF spectra, a difference can be seen when
comparing the intrinsic fluorescence spectra (Fig. 4) and non-
normalized autofluorescence spectra (Fig. 2(a)). Moreover, the
residual peaks are more pronounced on healthy tissues (solid
black line) than on tumoral tissues (grey line), because of
a higher influence of haemoglobin. The intensity level of
intrinsic fluorescence is lower for tumoral tissue than for
inflammatory tissue, which is lower than for healthy tissues.
This is probably associated with a weaker concentration of
fluorophores and/or the presence of a thickened surface layer,
possibly more absorbing. These results are consistent with in
vivo measurements on patients because the relative amplitude
of the intrinsic fluorescence spectra of our model are therefore
well correlated with the ones of the autofluorescence spectra
of the human bladder [34].

We then calculated and compared different parameters by
means of statistical tests: coefficient kf , maximum values
of peaks (wavelength and amplitude) and areas under curve
between 500 and 700 nm. As noted previously, we have
statistically significant differences between healthy and tu-
moral tissues, between inflammatory and tumoral tissues, and
between healthy and inflammatory tissues. We can put forward
that the increasing values of kf with inflammation and tumor
is coherent with a corresponding thickening of the bladder
wall. At the inter-fiber distance of 271 µm, the mean value
of kf is 0.86 for healthy tissues and 0.97 for tumoral tissues,
which indicates that the fluorescence photons seem to travel a
relatively longer path in tumor tissues.

C. Spectral feature statistical analysis, selection and classifi-
cation

This section is devoted to the statistical analysis of the
spectral data extracted as described above, and we shall
first say a few words about the way statistics enter into
the study for other articles dealing with cancer detection
by spectral methods. Most of them [12], [16], [17], [25],
[28], use first Principal Component Analysis (PCA) in order
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to reduce the huge dimension of each data. Then, with
the principal components in hand, a Logistic Regression
Analysis (LRA) is applied in order to separate classes in
[12], [16], [17] while univariate tests (Wilcoxon test to be
specific) were used in [25] in order to discriminate variables
and [28] relies on PCA-based classification. While these
procedures are perfectly reasonable, they all raise at least
two problems from a statistical point of view: (i) PCA might
not be the optimal dimension reduction technique in this
context, and Linear Discriminant Analysis (LDA) methods
are arguably better fitted for dimension reduction when one
has a variable selection procedure in mind. Moreover, PCA
produces intricate combinations of variables, which are hard
to interpret a posteriori from a biological point of view.
(ii) No real multivariate variable selection techniques are
considered in the aforementioned references, and one goes
directly from PCA dimension reduction to classification
methods, mainly based on logistic regression. Based on these
considerations, we shall try to see if a sharper statistical
treatment of our data can lead to a better classification of the
tissues at hand.
Our aim here is thus twofold: we shall first select a reasonable
number of discriminating variables among the characters
extracted from the AF, DR and IF spectra. This step will only
rely on classical classification methods such as LDA or LRA
(as in the references quoted above), which are arguably robust
enough for variable selections. At the end of this procedure,
we will be able to identify 16 discriminating variables. Then,
in a second step of the study, we shall use some sharper
classification techniques (Regularized Discriminant Analysis
RDA and Support Vector Machines SVM to be specific)
in order to get an accurate classification boundary between
cancer and healthy tissues, on the basis of our 16 selected
variables. In the end, a Leave-One-Out (LOO) scheme using
SVMs with a Gaussian kernel will lead to a sensitivity of
87% and a specificity of 77%.
It should also be mentioned at this point that all our
computational procedures were performed by means of the R
program. We will specify in some cases the exact R function
which was used.

1) Presentation of the data for the supervised classification:
According to Section II-C, the data we have to handle can be
described as follows: on a set of tissue samples or individ-
uals I = {1, . . . , n}, we measured p quantitative variables
x1, . . . , xp, where n represents the number of bladder sites
under consideration, and where p stands for the number of
area, peak, ratio and slope variables measured on the spectra.
More specifically, 8 variables were pre-selected for the AF
spectra, 6 for the DR spectra, and 2 for the IF spectra, so
that 16 variables are considered for each CEFS. Taking into
account that we have 13 collecting fibers at our disposal, we
end up with p1 = 208 characters for each individual at the
beginning of the study.
Let us say a word about the number n of individuals: as
mentioned in Section III-B, a simple Mann-Whitney test
reveals that it is hard to distinguish inflammatory from cancer
tissues on the basis of the variables we are considering.

This impression is also easily confirmed by a plot of the
data with dimension reduction (not included here for sake of
conciseness). We have thus decided, for the variable selection
procedure, to separate the inflammatory tissues from the other
ones. This means that only the 71 healthy and 18 tumoral
tissues are considered for the first step of our study, and hence
n = 89. In particular, notice that p ≫ n, so that a dimension
reduction is certainly necessary.
Our experience also includes the measurement, on each in-
dividual, of a qualitative character y taking values in {1, 2},
where 1 indicates that the tissue is considered as healthy and
2 that it is cancerous. These values define a partition I1, I2 of
the set I . In this context, the two steps of our study can be
summarized as: (i) Select a small number of variables out of
x1, . . . , xp, still allowing a good separation between I1 and I2
(ii) Find the best possible relation between y and the selected
variables according to the available data.
Here are some additional notations for our study: for k = 1, 2,
we set nk = |Ik| the cardinality of a finite set Ik. Recall
that for the first step of our analysis, we have n1 = 71 and
n2 = 18. For k = 1, 2, i ≤ nk, j ≤ p, we also set xj

ki for the
value of the jth character for the ith individual of the kth class.
The total covariance matrix T will also appear in the sequel.
Considering each character vector xki in Rp, and denoting by
x∗
ki the transposed of this vector, it is defined by:

T =
1

n

∑
k=1,2

nk∑
i=1

(xki −m) (xki −m)∗ (2)

where m stands for the mean of all our data.

2) Elimination of characters: As mentioned in Section
III-C1, due to the small size of our individuals sample, it is
necessary to reduce drastically the number of characters to
consider for classification purposes. This dimension reduction
will be performed in three steps: (i) We first analyze the
discrimination power of each character individually, and keep
only the most discriminating ones. (ii) It is also important
to recall that 13 collecting fibers i.e. 13 different inter-fiber
distances (CEFS) are involved in our experiment. Therefore,
we expect to observe many correlated characters. We decided
to group those very correlated characters, and to keep only
the most discriminating one among each group. Notice that
the first elementary steps (i) and (ii) allow to drop the number
of characters from 208 to 51. (iii) Starting from those 51
characters, we performed some stepwise selection procedures,
which allowed us to end up with 16 characters only.

We now proceed to detail the three steps alluded to above.

Testing equality of distributions

The first natural step for a good dimension reduction is to
consider each character x1, . . . , xp individually, and to test
its discrimination power between I1 (healthy individuals) and
I2 (cancer individuals). Let us then x ∈ R be a character
chosen among x1, . . . , xp. The first idea a statistician may
have in mind in order to test the discriminating power of
x is to use the Student t-test. However, in order to select
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variables with a t-test, it is important to verify that they can be
assumed to be normally distributed. For small or medium sized
samples like ours, the standard normality test is Shapiro-Wilk’s
one [36]; this test, performed on all the variables, asserts that
most of our characters can not be considered as Gaussian.
More specifically, taking class 2 as an example, we found 119
variables with a p-value lower than 0.02 for the Shapiro-Wilk
test, and 133 with a p-value lower than 0.05.

We thus decided to select variables according to Mann-
Whitney’s test only, since this test does not depend on the
particular shape of the underlying probability distribution and
is well adapted to medium sized samples. By doing so, and
keeping only the characters yielding a p-value lower than 0.02,
we retained 26 variables for the AF spectra, 59 for the DR
ones, and 7 for the IF ones, that is p2 = 92 variables in total.

Correlation analysis

Another elementary step consists in grouping all the highly
correlated characters, and choose only the best discriminating
character among those groups. This step is important, since
it permits to reduce dimension, avoid redundancy, and also
prevents us from manipulating almost degenerate matrices in
our future computations.

We thus go back to the total covariance matrix T given
by (2), and define the correlation coefficient ρjj′ between
characters j and j′ as ρjj′ = Tjj′/σjσj′ , where Tjj′ is
the covariance matrix between characters xj and xj′ , and σj

stands for the standard deviation of xj . Then we gather all
the pairs (j, j′) of characters having a correlation coefficient
ρjj′ satisfying |ρjj′ | ≥ 0.95. For those groups, we only select
the character i0 exhibiting the lowest p-value for the Mann-
Whitney test performed above.

This simple correlation analysis allows for reducing the
number of variables to 15 variables for the AF spectra, 29 for
the DR ones, and 7 for the IF ones, that is p3 = 51 variables
in total.

Interestingly enough, we have not found any pair of charac-
ters (j, j′) coming from different kind of spectra and exhibiting
a correlation coefficient ρjj′ satisfying |ρjj′ | ≥ 0.95. This
seems to indicate that the combination of the three methods
of spectral analysis may lead to an improvement in our
supervised classification.
Once the first selection steps of Sections III-C2 have been
performed, it can be useful to settle a LDA representation,
in order to verify that the p3 = 51 variables we are dealing
with can serve to separate our data accurately. Let us recall
that LDA is a geometrical method which allows for reducing
the data dimension, with a criterion ensuring the best possible
separation between classes. As a preliminary study, it helps to
visualize if our data have a chance to be sufficiently separated
according to our labels y (see [37], [38] for a complete account
on the topic).

Notice that for 2 classes, the discriminant analysis projection
is necessarily one-dimensional, and the two projected distribu-
tions are visualized in Figure 5. The good separation exhibited
on this picture can be corroborated numerically. Indeed, the

Fig. 5. Discriminant analysis for the p3 = 51 selected variables (vertical
axis: normalized number of individuals; horizontal axis: group 1 = healthy,
group 2 = tumoral).

discriminant analysis also induces the computation of a linear
separation boundary (see [37], [38] again for further details),
and thus a linear prediction function. This procedure, applied
to our data, leads to a sensitivity of 77.8% and a specificity
equal to 98.6%. These encouraging results seem to indicate
that it is reasonable to go on with our study with the p3 = 51
variables selected up to now.

Stepwise selection

The last step in our variable selection is to start from the
p3 = 51 variables selected above, and apply them a more
systematical variable reduction treatment, called (forward or
backward) stepwise selection. This method is an iterative
scheme, allowing at each step to aggregate (in the forward
case) or drop (in the backward case) a character according to
its discriminating power in the presence of the other selected
characters. The discriminating power is always measured
through a statistical criterion, and we have chosen here to
work with three criterions which are computationally adapted
to our data, based respectively on LDA, analysis of variance
(Wilk’s test to be specific) and Logistic Regression models
(LRA). In the end, the accuracy of the stepwise selection is
measured by a confusion matrix assessing the proportion of
well-classified individuals in each group.

It happens that the method (among those we have tested)
which gives the best results in terms of confusion matrices
is a backward selection based on logistic regression models.
For sake of conciseness, we will thus only give an account on
this specific procedure. Indeed, the backward selection based
on logistic regression models is implemented in R through a
function called glm. Running this function on our data, we
obtain p4 = 16 selected variables, with a confusion matrix
given in table I hereafter.

In our context, it seems reasonable to work with p4 =
16 variables for classification purposes, this number being
consistent with the size of our sample. Since the logistic
classifier performs better than the ones based on LDA or Wilks
methods, we have chosen to keep all those p4 variables for
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TABLE I
CONFUSION MATRIX OBTAINED FROM BACKWARD SELECTION

PROCEDURE BASED ON LRA (LOGISTIC REGRESSION ANALYSIS) WITH
LINES/COLUMNS 1 AND 2 CORRESPONDING RESPECTIVELY TO HEALTHY

AND CANCEROUS TISSUE CLASSES.

Real\Predicted 1 2
1 70 (98.6%) 1 (1.4%)
2 6 (33.3%) 12 (66.7%)

the end of our study. For sake of completeness, our selected
variables are (with the notation convention already mentioned
in Section II-C):

AF: P 8
520, A

8
440−740, P

13
520.

DR: A1
440−740, P

1
560, P

1
740, R

1
740−480, A

2
440−740, P

2
740, P

4
480,

S4
440−470, P

5
480, P

7
480, P

7
560, S

7
440−470, S

8
440−470.

It is worth mentioning at this point that most of the 13
fibers contribute to the selected variables, which means that a
restriction to one fiber only would lead to a dramatic loss of
information. We should also stress the following consistence
between the selection methods we have chosen: indeed 7
characters, out of the 8 we have selected according to the
LDA criterion, are also selected by the logistic procedure.
However, the variables chosen according to Wilks’ criterion
are rather different, and we believe that it is due to the fact
that the latter methods heavily rely on Gaussian assumptions
for the variables involved in the study.

3) Classification: Our variable selection has been per-
formed according to some reasonable classification criterions
(recall that we have used LDA, Wilks’ criterion and logistic re-
gression). However, with the p4 = 16 discriminant characters
we have exhibited, one can try to improve our classification
results, by resorting to some more sophisticated tools. We have
implemented this strategy in the following way:

(i) We go back to our initial data (as referred in Section III-A),
consisting in 126 sites, with a final global sample consisting
in 94 healthy sites, 23 cancerous sites, and 9 inflammatory
sites. The number of inflammatory sites being once again too
small with respect to the other ones, we discard them from the
remainder of the study, and we focus on the 94 healthy and
23 cancerous tissues. For the classification procedure, we thus
consider a sample of size n = 117, with n1 = 94 and n2 =
23. We then try to construct an accurate boundary separating
these samples. Notice that, due to the important rate of healthy
tissues, it is expected that the sensitivity of our test will behave
worse than its specificity.

(ii) Our classification scheme relies on two modern (yet
already classical) methods, respectively RDA and SVM, allow-
ing for constructing separation boundaries in a wide number
of situations. We measured their performance on our data by
a crossed-validation procedure of LOO type.

Let us describe now the results obtained through RDA
type methods. Introduced by Friedman in [39], this technique
allows to interpolate between LDA, quadratic discriminant
analysis and geometric classification. For RDA classification,

the function which can be used in the software R is called rda,
and this procedure also optimizes interpolation coefficients. It
should be noticed however that, for our particular data, the
RDA method seems to be quite inefficient. Indeed, the optimal
coefficients found by the algorithm induce a classification
method very close to LDA. And for those optimal coefficients,
the LOO procedure yields a specificity of 94.41%, but a
sensitivity equal to 17.39% only. These bad results shouldn’t
be too alarming though. They simply indicate that the accurate
separation boundary between cancerous and healthy tissues is
more complex than a linear or quadratic one.

This impression is confirmed by an analysis using SVMs.
The support vector machines method, developed initially by
Vapnik [40] and nicely introduced in [41], gives another way
to construct a boundary separating our data {xi; i ≤ n}
in Rp4 , according to the labels yi. This boundary is given
by a hyperplane maximizing the minimal distance between
each class and any separating hyperplane. Furthermore, one
of the great advantages of the method is that it can easily be
generalized to some highly non linear situations, by means
of some implicit change of variables given by kernels. For
our data, we have resorted to a Gaussian kernel given by
K(x, y) = exp(−γ∥x−y∥2), that is one of the typical example
of kernels used in non linear situations. Tuning the value of
γ to γ = 1.55 (which seems to be a good balance between
precision and over-fitting), we run the svm function on R on
our set of data. The cross-validation procedure gave then the
following confusion matrix (table II):

TABLE II
CONFUSION MATRIX OBTAINED FROM LOO (LEAVE-ONE-OUT)

CROSS-VALIDATION PROCEDURE BASED ON SVM (SUPPORT VECTOR
MACHINE) WITH LINES/COLUMNS 1 AND 2 CORRESPONDING

RESPECTIVELY TO HEALTHY AND CANCEROUS TISSUE CLASSES.

Real\Predicted 1 2
1 72 (76.6%) 22 (23.4%)
2 3 (13%) 20 (87%)

This result is, from our point of view, a good compromise
between sensitivity and specificity. We can conclude that
combining AF (410 nm-excitation), DR, and IF parameters
gives superior results to AF alone, or DR alone. With the
combination of two modalities, we obtain a lower sensitivity
than Koenig et al. (respectively 77% vs 91%) and a higher
specificity (87% vs 60%). Koenig et al. work in human bladder
(26 bladders) with diffuse reflectance (400-700 nm) [27]. In
elastic scattering, Mourant et al. [26] obtained a sensitivity
equal to 100% and a specificity equal to 96% for detection of
human bladder carcinoma (10 patients), based on the values
of the slopes over the wavelength range 330-370 nm.

IV. CONCLUSION

A simple fibered spectroscopy instrumentation was devel-
oped to acquire both AutoFluorescence (AF) and Diffuse
Reflectance (DR) spectra in a bimodal approach at several
CEFS and applied in vivo to monitor healthy to cancerous
evolution of rat bladders. Bimodal spectroscopy’s accuracy
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in discriminating three classes of bladder histological stages
was evaluated: healthy, inflammatory and tumoral stages.
Various sets of spectral characteristics (extracted from the
spectral intensity curves) were selected based on statistical
discrimination. At a technical level, the SVM method is
known to be very flexible. It shows here to be really adapted
to the data set we had to handle, for which the boundary
seemed more intricate than a simple quadratic function. More
interestingly, it is satisfying to see that the combination of AF
and DR spectroscopies allows us to discriminate accurately
between cancerous and non cancerous tissues, with a reason-
able number of parameters (recall that we took p4 = 16).
In spite of the small size of our sample, we were able to
reach a high sensitivity (87%) and a good specificity (77%)
for a Leave-One-Out procedure. The method presented here
exploits bimodal spectroscopic measures in the harmless (non
mutagenic) near UV-Visible wavelength band, combined to
a dedicated spectral data selection and classification scheme.
Hence, significant differences between healthy, inflammatory
and tumoral tissues were obtained from the combination of
particular features from AF, DR and Intrinsic Fluorescence
spectra, with improved sensitivity and specificity compared
to monomodality (AF or DR alone). This method could be
applied in clinics as a complementary decision-making help
tool for non invasive in vivo cancer diagnosis.
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