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Signatures for images (ongoing CAS project)

Figure: Fragmented glass
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A basic classification task

Data:

Points X = {xi ; i = 1, . . . , n} with xi ∈ Rd

Labels {yi ; i = 1, . . . , n} with yi ∈ {0, 1}
When labels are known, the learning is supervised

Aim:

Find a proper separation between labels 0 and labels 1
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Linear separation

Separation using hyperplanes:

We use a classification
ŷ = sign(v · x)
v optimized
↪→ According to our data:

v = min
w∈Rd

n∑
i=1

∥sign (w · xi)− yi∥2

Figure: Separation of 2 subgroups according to
H1,H2,H3
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Separation using neural networks
Definition of the multilayer neural network:

Recursion xk+1 = S(wkxk + dk) for k = 0, . . . , nlayer

wk matrix-valued, dk vector-valued

S defined componentwise by σ below

wk and dk to be optimized

Figure: Sigmoid σ(x) = 2
π
tanh(x) and ReLU σ(x) = max{x , 0}
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Feature extraction problem

Objection to previous situation:

In classification problem, X was supposed to be fixed

If X is high-dimensional, this might be a problem
↪→ feature extraction needed
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Feature extraction (2)

Main goal of feature extraction: Given input X

extract information to be fed as additional input to the
machine learning algorithm

Be sparse in the additional input:
▶ more information given

=⇒ more computationally expensive learning task
▶ Unnecessary noise added with more information

Wishlist for good features:

Computationally efficient

Accurate description of the data distribution

If possible: interpretable.
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Notation for 1-d parameter signature

Signal: We first consider a Rd -valued

x =
{
x is ; s ∈ [0,T ], i = 1 . . . , d

}
Second order 1-d signature: For our signal x

x1,i1st = x i1t − x i1s =

∫
s<r1<t

dx i1r1

x2,i1,i2st =

∫
s<r1<r2<t

dx i1r1 dx
i2
r2
.
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Signature as a feature

Claim:

Signature is a good feature for the signal x

Some properties to review:

1 Natural feature

2 Algebraic properties

3 Analytic properties

4 Accurate description of the path

5 Computationally efficient

6 Possibility of interpretation
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The founding fathers

Kuo Tsai Chen Kyosi Itô Terry Lyons

Brief history survey:

K. T. Chen, 50s: Structure of iterated-integrals signatures

K. Itô, 50s: Itô stochastic calculus

T. Lyons, 90s: Theory of rough paths.
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Signatures are natural features (1)

Notation: For a function z : [0,T ]→ Rd ,

δzst = zt − zs

Change of variable formula: Consider smooth functions

x : [0,T ]→ Rd

f : Rd → R

Then we have

δf (x)st =

∫
s≤r1≤t

∂i1f (xr1) dx
i1
r1
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Signatures are natural features (2)

Iterating change of variable: Write

δf (x)st =

∫
s≤r1≤t

∂i1f (xr1) dx
i1
r1

= ∂i1f (xs)

∫
s≤r1≤t

dx i1r1 +

∫
s≤r1≤t

δ [∂i1f (x)]sr1 dx
i1
r1

= ∂i1f (xs)

∫
s≤r1≤t

dx i1r1 +

∫
s≤r2≤r1≤t

∂i1i2f (xr2) dx
i2
r2
dx i1r1

= ∂i1f (xs)

∫
s≤r1≤t

dx i1r1 + ∂i1i2f (xs)

∫
s≤r2≤r1≤t

dx i2r2dx
i1
r1

+

∫
s≤r2≤r1≤t

δ [∂i1i2f (x)]sr2 dx
i2
r2
dx i1r1
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Signatures are natural features (3)

Approximations in change of variable: For a smooth enough f ,

f (xt)− f (xs) ≃
∑
i1

∂i1f (xs) x
1,i1
st +

∑
i1,i2

∂2
i1,i2

f (xs) x
2,i1,i2
st

This is one of the reasons why signatures are natural features

Full signature: For higher order approximations one can recur to

[S(x)]st = 1 +
∞∑
n=1

∫
s<r1<r2<···<rn<t

dxr1 ⊗ dxr2 ⊗ · · · ⊗ dxrn (1)

Next aim: Give a proper meaning to (1)

Samy T. (Purdue) 2-d signatures methods Oslo 2023 18 / 77



Where do signatures live (1)?
Words: Define a set of words W = ∪n≥0Wn with

Wn =
{
w = (i1, . . . , in) ;

n ≥ 0 and ij ∈ {1, . . . , d} for all j = 1, . . . , n
}

Notation for simplexes: For a < b we set

∆n
a,b =

{
r ∈ [0,T ]n ; a ≤ r 1 ≤ · · · ≤ rn ≤ b

}
.

Evaluation on words: For w = (i1, . . . , in) ∈ W we set

⟨Sst(x), w⟩ =
∫
∆n

[s,t]

dx i1r1 · · · dx
in
rn .
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Where do signatures live (2)?

Tensor algebra: We set

T (Rd) =
∞⊕
n=0

(Rd)⊗n,

Canonical basis for Rd :
(e1, . . . , ed)

Canonical basis for T (Rd):

{ew = ei1 ⊗ · · · ⊗ ein ; w = (i1, . . . , in) ∈ W} .
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Where do signatures live (3)?

Signature as evaluation: We see Sst(x) as a linear map,

Sst(x) : T (Rd) −→ R, ew 7−→ ⟨S(x), w⟩st

Tensor series: We also write

S(x) =
∑
w∈W

⟨S(x),w⟩ ew , and Sst(x) ∈ T ((Rd))
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Chen’s algebraic relation (1)

Notation for products: For g , h ∈ T ((Rd)),

[g ⊗ h]n =
n∑

k=0

gn−k ⊗ hk

Notation for simplexes: For a < b we set

∆n
a,b =

{
r ∈ [0,T ]n ; a ≤ r 1 ≤ · · · ≤ rn ≤ b

}
.
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Chen’s algebraic relation (2)

Consider

x : [0,T ]→ Rd differentiable path

S(x) its signature seen as an element of T ((Rd))

(s, u, t) ∈ ∆3

Then
Ssu(x)⊗ Sut(x) = Sst(x)

Theorem 1.
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Shuffle algebraic identity (1)

Shuffle of permutations: Consider

σ ∈ Σ{1,...,n}, and τ ∈ Σ{n+1,...,n+k} .

Then we set

Sh(σ, τ) =
{
ρ ∈ Σ{1,...,n+k} ; ρ does not change the order of σ and τ

}
Example: Take

σ = {1, 3, 2} ∈ Σ{1,2,3}, τ = {5, 4} ∈ Σ{4,5}

Then
ρ = {1, 5, 3, 2, 4} ∈ Sh(σ, τ)
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Shuffle algebraic identity (2)

Consider

x : [0,T ]→ Rd differentiable path

S(x) its signature seen as an element of T ((Rd))

(s, t) ∈ ∆2

w ,w ′ two words in W
Then

⟨Sst(x),w⟩ ⟨Sst(x),w
′⟩ =

∑
ϕ∈Sh(w ,w ′)

∫
∆n+n′

st

n+n′∏
i=1

dx
ŵϕ(i)
ri

Theorem 2.
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Two basic analytic relations

Consider

x : [0,T ]→ Rd differentiable path

S(x) its signature seen as an element of T ((Rd))

(s, t) ∈ ∆2 and w ,w ′ two words in W
Then

1 Denoting xϕ = x ◦ ϕ, we have an invariance,

[S(x)]ϕ(s)ϕ(t) = S(xϕ)st

2 The following analytic estimate holds true,

||Sn(x)|| ≤
(Cσ,x)

n

n!

Theorem 3.
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Computational efficiency

Example of discretization of : Consider

The element ⟨S0,T (x), (1, 2)⟩ in the signature

{ti = tni ; 0 ≤ i ≤ n} uniform partition of [0,T ]

Then

1 We have

⟨S0,T (x), (1, 2)⟩ ≃
n−1∑
i=0

(
δx10ti−1

+ δx1ti−1ti

)
δx2ti ti+1

2 This requires O(n) operations
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Interpretation of double iterated integral

Illustration:

Figure: Left: ⟨S(x), (1, 2)⟩ and Right: ⟨S(x), (2, 1)⟩

Interpretation:

If ⟨S0,T (x), (1, 2)⟩ is large, then x2 goes faster than x1

If ⟨S0,T (x), (2, 1)⟩ is large, then x1 goes faster than x2
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Characterization of paths

Basic characterization: For two bounded variation paths,

S(x)01 = S(y)01 iff x ∼ y ,

where x ∼ y means that x , y only differs by a tree-like path

Some references:

Characterization: Lyons-Hambly ’10

Characterization, rough paths setting:
Boedihardjo, Geng, Lyons, Yang ’16

Reconstruction in the C1 case: Lyons-Xu ’18

Reconstruction in the Hölder case: Xi Geng ’17
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1-d signatures and data analysis

Bottomline: 1-d signatures are successful features
↪→ for numerous data analysis procedures

Classical examples (Lyons and collaborators):

Chinese character recognition

Finance time series

Topological data analysis

Diagnosis prediction
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A study on Alzheimer disease

Illustration:

Figure: Comparison of ⟨S(x), (1, 2)⟩, where 1 = Hippocampus, 2 = Whole brain
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Notation for calculus in the plane

Basic notation for points in the plane:

Axis 1

Axis 2

s1 t1

s2

t2

s = (s1, s2)

t = (t1, t2)

Rectangles: We set

R = [s, t] := [s1, t1]× [s2, t2], and [0,T] = [0,T ]2
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Notation for 2d-signatures

Field: We first consider a Rd -valued

X =
{
X i
s = X i

s1;s2
; s ∈ [0,T], i = 1 . . . , d

}
,

where i ≡ color (rgb) for an image

Differentials: We set

diXr = d12X
i
s;t = ∂12X

i
r dr1dr2

d̂ijXr = d1̂2̂X
ij
s;t = ∂1X

i
r ∂2X

j
r dr1dr2.
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How do 2d-signatures show up?

Rectangular increment: For a field X we set

□s,tX := Xt1;t2 − Xs1;t2 − Xt1;s2 + Xs1;s2

Change of variable in the plane:

□s,tf (X ) =

∫
[s,t]

∂i f (Xr) d
iXr +

∫
[s,t]

∂ij f (Xr) d̂
ijXr.

Problem:
Proper iteration of this formula for approximations
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Part of a second order signature

Some elements of the signature:

Increment Interpretation Regularity Increment Interpretation

x1;2
∫
1

∫
2
d12x (γ1, γ2) x1̂;2̂

∫
1

∫
2
d1̂2̂x

x11;02
∫
1
d1x

∫
2
d12x (2γ1, γ2) x11̂;02̂

∫
1
d1x

∫
2
d1̂2̂x

x01;22
∫
2
d2x

∫
1
d12x (γ1, 2γ2) x01̂;22̂

∫
2
d2x

∫
1
d1̂2̂x

x11;22
∫
1

∫
2
d12xd12x (2γ1, 2γ2) x11̂;22̂

∫
1

∫
2
d12xd1̂2̂x

x1̂1;2̂2
∫
1

∫
2
d1̂2̂xd12x (2γ1, 2γ2) x1̂1̂;2̂2̂

∫
1

∫
2
d1̂2̂xd1̂2̂x

References on rough sheets:

Chouk-Gubinelli, unpublished

Chouk-T, EJP ’15, Skorohod-Stratonovich corrections
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Other properties of 2-d signatures

Algebraic and analytic properties:

Not clear, since the notion of signature is not clear

Coordinate-wise reparametrization invariance

Signatures generated by Jacobian minor operators
↪→ in Giusti, Lee, Nanda, Oberhauser

Signatures generated by line integrals
↪→ in Diehl, Ebrahimi-Farad, Tapia

Non-commutative Stokes point of view
↪→ in Lee-Oberhauser

Overall, still a lot to be done
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A modest goal

Our aim:

Explore data analysis properties of 2d-signatures

Simple numerical experiment on texture classification
↪→ in order to see if this makes sense empirically

Try to find a signature for 2d-objects which has
1 Simple enough structure
2 Good algebraic-analytic properties
3 Good discriminating properties
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Texture dataset

42 textures

Dataset: CuRRET

Supervised class.
procedure
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Supervised learning

Procedure:

We randomly sample (100× 100)-sized images from each texture

10 samples from every texture used for training

100 images from every texture sampled for testing

Figure: Ten samples from the texture “21-Lettuce Leaf”
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2d-simplexes

Points in the plane: Consider

s = (s1, s2) in [0,T ]2

t = (t1, t2) in [0,T ]2

s1 ≤ t1 and s2 ≤ t2

2d-simplexes:

∆n
[s,t] := ∆n

s1,t1
×∆n

s2,t2
=
{
(r1, . . . , rn) ∈

(
[0,T ]2

)n
;

s1 ≤ r 11 ≤ · · · ≤ rn1 ≤ t1 and s2 ≤ r 12 ≤ · · · ≤ rn2 ≤ t2
}
. (2)
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Features
A list of features: We include discretized versions of

X(1,2);i
s,t =

∫
[s,t]

dix ir1

X(1̂,2̂);i
s,t =

∫
[s,t]

d̂iix ir1

X(11,22);ii
s,t =

∫
∆2

s,t

dix ir1d
ix ir2

X(1̂1̂,2̂2̂);ii
s,t =

∫
∆2

s,t

d̂iix ir1 d̂
iix ir2

X(11̂,22̂);ii
s,t =

∫
∆2

s,t

dix ir1 d̂
iix ir2

X(1̂1,2̂2);ii
s,t =

∫
∆2

s,t

d̂iix ir1d
ix ir2
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More about the procedure

Rotations:

We average our features (See Mallat-Sifre)
↪→ over π

2
rotations

Dimension of feature space:

For X(1,2);i
s,t , i.e rectangular increments

↪→ PCA on all small increments

Number of PCA components ≤ 40

Overall, feature dimension ≤ 52
↪→ Considered as small

Classification method:

Random forests
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Outcome 1: visualization
Projection using t-distributed stochastic neighbor embedding:
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Outcome 2: accuracy

Samy T. (Purdue) 2-d signatures methods Oslo 2023 50 / 77



Outline

1 1-d signatures as features
A motivation for feature extraction
Basic properties of 1-d signatures

2 Introducing 2d-signatures
Basic properties of 2d-signatures
Numerical experiment

3 Extended signature in the plane
A very simple signature
The extended signature

4 A PDE perspective on 2d-signatures

Samy T. (Purdue) 2-d signatures methods Oslo 2023 51 / 77



Brief summary

Conclusion 1:

Signatures based on 2-d increments are worth exploring

Conclusion 2:

We should look for simple enough structures

At least simpler than structure from calculus in the plane
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2d-simplexes (repeated)

Points in the plane: Consider

s = (s1, s2) in [0,T ]2

t = (t1, t2) in [0,T ]2

s1 ≤ t1 and s2 ≤ t2

2d-simplexes:

∆n
[s,t] := ∆n

s1,t1
×∆n

s2,t2
=
{
(r1, . . . , rn) ∈

(
[0,T ]2

)n
;

s1 ≤ r 11 ≤ · · · ≤ rn1 ≤ t1 and s2 ≤ r 12 ≤ · · · ≤ rn2 ≤ t2
}
. (3)
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Definition of the simple signature

Consider

s, t in [0,T ]2

w = (i1, . . . , in) ∈ W
Then we set 〈

SId
s,t(X ), w

〉
=

∫
∆n

[s,t]

di1Xr1 · · · dinXrn

Definition 4.

Recursive definition: We also have〈
SId
s,t(X ), w

〉
=

∫
[s,t]

〈
SId
s,r(X ), (i1, . . . , in−1)

〉
dinXr
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How does the simple signature show up?

Equation: Let

X : [0,T ]2 → Rd

v ∈ Rd and {Ai ; i = 1, . . . , d} matrices in Rd ,d

Then let Y be the solution to

Yt = v +
d∑

i=1

∫
[s,t]

AiYr d
iXr

Expansion: Y can be formally expanded as

□s,tY =
∑
w∈W

A◦wv
〈
SId
s,t(X ),w

〉
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Lack of shuffle property (1)

Desirable property: Take〈
SId
s,t(X ), w1

〉
and

〈
SId
s,t(X ), w2

〉
in the signature

We wish to have〈
SId
s,t(X ), w1

〉 〈
SId
s,t(X ), w2

〉
=
∑

Elements of the signature

Simple example: Consider X : [0,T ]2 → R and〈
SId
s,t(X ), w1

〉
=
∫
[s,t]

dXr〈
SId
s,t(X ), w2

〉
=
∫
[s,t]

dXv

Then define

Πs,t =

∫
[s,t]

dXr

∫
[s,t]

dXv
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Lack of shuffle property (2)

Relation for Π: Recall that

Πs,t =

∫
[s,t]

dXr

∫
[s,t]

dXv

Then

Πs,t =

∫
∆2

[s,t]

dXr11 ;r
1
2
dXr21 ;r

2
2︸ ︷︷ ︸

Π1
s,t

+

∫
∆2

[s,t]

dXr11 ;r
2
2
dXr21 ;r

1
2︸ ︷︷ ︸

Π2
s,t

Identifying Π1: One can easily see that

Π1
s,t = ⟨S(X ), (1, 1)⟩s,t
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Lack of shuffle property (3)

Problem with Π2: Recall that

Π2
s,t =

∫
∆2

[s,t]

dXr11 ;r
2
2
dXr21 ;r

1
2

Then

This object is not in the signature

This is due to the permutation r 22 ←→ r 12
Remark:

This problem with permutations pops up at many places

We thus introduce a new signature involving permutations
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Definition of extended words

For n ≥ 1 we set

Ŵn = {(w , ν)|w ∈ Wn, and ν ∈ Σ{1,...,n}}

Then the set of extended words is given by

Ŵ =
∞⋃
n=0

Ŵn

Definition 5.

Samy T. (Purdue) 2-d signatures methods Oslo 2023 62 / 77



2d-simplexes (repeated)

Points in the plane: Consider

s = (s1, s2) in [0,T ]2

t = (t1, t2) in [0,T ]2

s1 ≤ t1 and s2 ≤ t2

2d-simplexes:

∆n
[s,t] := ∆n

s1,t1
×∆n

s2,t2
=
{
(r1, . . . , rn) ∈

(
[0,T ]2

)n
;

s1 ≤ r 11 ≤ · · · ≤ rn1 ≤ t1 and s2 ≤ r 12 ≤ · · · ≤ rn2 ≤ t2
}
. (4)
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Definition of the extended signature

Consider

s, t in [0,T ]2

(w , ν) ∈ Ŵn with
▶ w = (i1, . . . , in)
▶ ν ∈ Σ{1,...,n}

Then we set

⟨Ss,t(X ), (w , ν)⟩ =
∫
∆n

[s,t]

n∏
i=1

dXwi (r i1, r
νi
2 )

Definition 6.

Claim:
This extended signature has good algebraic properties
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Shuffle of words

Let

n ≥ 1, k ≥ 1

Word w = (i1, . . . , in)

Word v = (j1, . . . , jk)

[w , v ] = (i1, . . . , in, j1, . . . , jk)

Then the shuffle of v and w is given by

Sh(w , v) =
{
Permutations of [w , v ];

orders of w and v are not changed
}

Definition 7.
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Shuffle of permutations

Let

n ≥ 1, k ≥ 1

Permutation σ ∈ Σ{1,...,n}

Permutation τ ∈ Σ{n+1,...,n+k}

[w , v ] = (i1, . . . , in, j1, . . . , jk)

Then the shuffle of σ and τ is given by

Sh(σ, τ) =
{
ρ ∈ Σ{1,...,n+k} ;

ρ does not change the order of σ and τ
}

Definition 8.
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Shuffle relation

Let

X : [0,T ]2 → Rd smooth path

s, t in [0,T ]2

(w , ν) and (w ′, ν ′) elements of Ŵ

Then we have

⟨Ss,t(X ), (w , ν)⟩⟨Ss,t(X ), (w ′, ν ′)⟩

=
∑

ϕ∈Sh(w ,w ′)

∑
ρ∈Sh(ν,ν′)

⟨Ss,t(X ), (ϕ([w ,w ′]), ρ ◦ ϕ([ν, ν ′]))⟩

Theorem 9.
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Other results and perspectives

Other results:
1 Partial versions of Chen’s relations

▶ Splits in direction 1 and 2
▶ Symmetrized signature

2 Invariances by change of variables

Perspectives:

1 Full algebraic setting for Chen

2 Relation with stochastic calculus in the plane

3 Relation with non-commutative Stokes theorem
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Brief summary

Examples of natural notions of 2d-signatures: Based on

Calculus in the plane

Jacobian minors

Noncommutative Stokes

Another natural notion: Based on

PDEs for image processing
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Smoothing an image

Setting: We consider

u0 : Ω ≡ [0,T ]2 → R (original noisy image)

Gσ Gaussian kernel

Smoothed version: For σ to be calibrated,

uσ = Gσ ∗ u0

PDE version: uσ can also be computed through{
∂tu = div (∇u) , in Ω
∂u
∂n

= 0, on ∂Ω ,
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Modulating the diffusion

Problem with diffusion equation:

Images become very blurry

Main problem: respect the corners and edges

Solution: smaller diffusion when gradient is large

New equation: For g decaying at ∞,{
∂tu = div (g(|∇u|)∇u) , in Ω
∂u
∂n

= 0, on ∂Ω ,

Samy T. (Purdue) 2-d signatures methods Oslo 2023 72 / 77



A class of PDEs for image processing

Basic model: By Rudin-Osher-Fatemi, > 18, 000 citations

∂tu = div

(
∇u
|∇u|

)
− λ (u − u0)

Remarks about the model:

Numerous extensions (4th order, anisotropic)

Model justified by optimization considerations

Generic smoothed model: With λ regularization parameter

∂tu = div (φ(∇u)∇u)︸ ︷︷ ︸
smoothing + edges

− λ (u − u0)︸ ︷︷ ︸
stay close to original u0
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An implementation from Osher-Solé-Vese (2003)
Corrupted image:

Restored image:
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Features from PDEs

Basic idea:

Use regularity structures methods to expand the PDE
↪→ Produces a hierarchy of linear PDEs

Use the solutions to this family of PDEs as features

Justification:

Smoothing methods already been used for representation

Regularity structures −→ algebraic/analytic machinery

Approach already used by Chevyrev-Gerasimovics-Weber
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A generic coefficient

Method implemented:

Taken from Otto-Sauer-Smith-Weber, using multiindex notation

Below Em is an awful index set

Basic operator: We set

A0 = φ0∆u − λ u

Hierarchy of PDEs: We get

(∂t −A0) Πxm =
∑

n,k,p,mk
p ,m

k+1∈Em

div

(( d∏
l=1

n(l)∏
j=1

∇(k)Πxml
j

)
∇Πxmk+1

)
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