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Signatures for images (ongoing CAS project)

Figure: Fragmented glass
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@ 1-d signatures as features
@ A motivation for feature extraction
@ Basic properties of 1-d signatures
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@ Numerical experiment

© Extended signature in the plane
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@ A PDE perspective on 2d-signatures
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Outline

@ 1-d signatures as features

@ A motivation for feature extraction
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A basic classification task

Data:
e Points X = {x;;i =1,...,n} with x; € R?
o Labels {y;;i=1,...,n} with y; € {0,1}

@ When labels are known, the learning is supervised

Aim:

e Find a proper separation between labels 0 and labels 1
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Linear separation

Separation using hyperplanes:

.. . XZ H1 3
@ We use a classification ’
o °,
y = sign(v - x) . "
@ v optimized °, o g
— According to our data: 5 ©
0°lo
v= m|n E ||sign (w - x;) — yi|? 8 9g

Figure: Separation of 2 subgroups according to
Hi, Ha, H3
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Separation using neural networks

Definition of the multilayer neural network:
o Recursion x**1 = S(w¥x¥ +d¥) for k = 0,.. ., Nayer
e wk matrix-valued, d* vector-valued
@ S defined componentwise by o below

e w¥ and d* to be optimized

Figure: Sigmoid o(x) = 2 tanh(x) and ReLU o(x) = max{x, 0}

o7
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Feature extraction problem

Objection to previous situation:
@ In classification problem, X was supposed to be fixed

e If X is high-dimensional, this might be a problem
— feature extraction needed

Machine Learning

& iy -4 Il

Input Feature extraction Classification Output
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Feature extraction (2)

Main goal of feature extraction: Given input X

@ extract information to be fed as additional input to the
machine learning algorithm

@ Be sparse in the additional input:

» more information given
= more computationally expensive learning task
» Unnecessary noise added with more information

Wishlist for good features:
o Computationally efficient
@ Accurate description of the data distribution
@ If possible: interpretable.
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@ 1-d signatures as features

@ Basic properties of 1-d signatures

Samy T. (Purdue)

2-d signatures methods



Notation for 1-d parameter signature

Signal: We first consider a R%valued

X—{x sel0,T],i=1...,d}

Second order 1-d signature: For our signal x

L _ i i _ i
Xg = X —Xxl = dx;!
s<n<t

2:i1 7i2 _ i i
X5t = dx,; dx2.
s<n<n<t
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Signature as a feature

Claim:

e Signature is a good feature for the signal x

Some properties to review:
© Natural feature
© Algebraic properties
© Analytic properties
© Accurate description of the path
© Computationally efficient
© Possibility of interpretation
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The founding fathers

ﬁ S

Kuo Tsai Chen  Kyosi Itd6  Terry Lyons

Brief history survey:
@ K. T. Chen, 50s: Structure of iterated-integrals signatures
e K. Ito, 50s: Itd stochastic calculus
e T. Lyons, 90s: Theory of rough paths.
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Signatures are natural features (1)

Notation: For a function z : [0, T] — RY,
6Zst =Zy — Zs

Change of variable formula: Consider smooth functions
e x:[0,T] - R?
o f:RY =R

Then we have

5F(x)ee = / 0, F () A
s<n<t
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Signatures are natural features (2)

Iterating change of variable: Write

5F(x)er = / )
s<n<t

—0uf(x) [ dxi+ / 5[0, F(x)],,, dxi
s<n<t s<n<t

= 0, f(xs) dx; + / Diinf (xr,) dx2dx!
s<n<t s<n<n<t

= 0, f(x) / dx + 0y f(xs) / dxPdx;!
s<n<t s<n<n<t

+ / ) [ahiz f(X)]Srz dxgdxg
s<n<n<t
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Signatures are natural features (3)

Approximations in change of variable: For a smooth enough f,

F(xe) — F(x) Z&,lf X)X+ Y 02 (%) x5

1,02

This is one of the reasons why signatures are natural features

Full signature: For higher order approximations one can recur to

[e.o]

Sl =1+ [ Iy @iy @@ ddx, (1)
n=1 Ss<N<N< <<t

Next aim: Give a proper meaning to (1)

Samy T. (Purdue) 2-d signatures methods Oslo 2023 18/77



Where do signatures live (1)?
Words: Define a set of words W = U,>oWWV, with

Wn:{wz(il,...,i,,);

n>0andjje{l,....,d}forall j=1,...

Notation for simplexes: For a < b we set

ry={rel0. Tl a< < << b}

Evaluation on words: For w = (iy,...,i,) € W we set

(Sst(x), w) = / dxt - dx

Al
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Where do signatures live (2)?

Tensor algebra: We set

T(RY) = DR
n=0
Canonical basis for RY:
(ela ) ed)

Canonical basis for T(RY):

{ew=6€,® - ®e¢€,;w=(h,...,0h) € W}.

Samy T. (Purdue) 2-d signatures methods Oslo 2023

20/77



Where do signatures live (3)?

Signature as evaluation: We see S4(x) as a linear map,

Se(x) : T(RY) — R, ew — (S(x), w)

st

Tensor series: We also write

S(x) =Y (S(x),w) e,, and Sg(x) € T((R))

wew
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Chen'’s algebraic relation (1)

Notation for products: For g, h € T((R?)),

lg@h"=> g oh
k=0

Notation for simplexes: For a < b we set

A, ={re0,T]";a<r <. <r"<b}.
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Chen'’s algebraic relation (2)

—~ Theorem 1.

Consider
e x:[0, T] — R differentiable path
@ S(x) its signature seen as an element of 7 ((R?))
o (s,u,t) €A’

Then

SSU(X) ® Sut(X) = Sst(X)
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Shuffle algebraic identity (1)

Shuffle of permutations: Consider

o€ Z{1 ..... n}s and T € Z{nJrl ..... n+k} -

.....

Example: Take
0= {17 37 2} € Z{1,2,3}a T = {5a 4} € z{4,5}
Then
p=11,5,3,2,4} € Sh(o, 1)
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Shuffle algebraic identity (2)

~ Theorem 2. \

Consider
e x:[0, T] — R differentiable path
e S(x) its signature seen as an element of T ((RY))

o (s,t) € A?
e w,w' two words in VW
Then
n+n’
(Ssel), w) (Su(), W) = 3 [T ax 0
pesh(w.w') /A5
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Two basic analytic relations

~ Theorem 3. \

Consider
e x : [0, T] — R differentiable path
@ S(x) its signature seen as an element of 7 ((R?))
o (s,t) € A% and w, w' two words in W

Then

@ Denoting x? = x o ¢, we have an invariance,

[SCesra) = S(x*)st
© The following analytic estimate holds true,

(Cox)"
n!

15 (I <
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Computational efficiency

Example of discretization of : Consider
@ The element (Sp 7(x), (1,2)) in the signature
o {t; =t",0 < i< n} uniform partition of [0, T]

Then
@ We have
n—1
(Sor(x), (1,2)) = > <5x5lti_1 n 5x,},,_lt,,) 632,
i=0

@ This requires O(n) operations
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Interpretation of double iterated integral

Illustration:

11 11

10 10

9 9

8 8

7 7

~ 6

& g X g

4 4

3 3

2 2

1 1

0 0
01 2 3 4 5 6 7 8 9 10 11 01 2 3 4 5 6 7 8 9 10 11

X1 X1

Figure: Left: (S(x), (1,2)) and Right: (5(x), (2,1))

Interpretation:
o If (Sp.7(x), (1,2)) is large, then x? goes faster than x*
o If (So.7(x), (2,1)) is large, then x* goes faster than x°
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Characterization of paths

Basic characterization: For two bounded variation paths,

S(x)or = S(¥)ar iff X~Y,
where x ~ y means that x, y only differs by a tree-like path

Some references:
o Characterization: Lyons-Hambly '10

o Characterization, rough paths setting:
Boedihardjo, Geng, Lyons, Yang '16

@ Reconstruction in the C! case: Lyons-Xu '18

@ Reconstruction in the Holder case: Xi Geng '17
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1-d signatures and data analysis

Bottomline: 1-d signatures are successful features
— for numerous data analysis procedures

Classical examples (Lyons and collaborators):
@ Chinese character recognition
@ Finance time series
@ Topological data analysis

@ Diagnosis prediction
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A study on Alzheimer disease

Illustration:

%10
1
= Alzheimer's disease | Heathy -

- S}
|

o
]
]

area (h,w)

participant number participant number

Figure: Comparison of (5(x), (1,2)), where 1 = Hippocampus, 2 = Whole brain
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Outline

© Introducing 2d-signatures
@ Basic properties of 2d-signatures
@ Numerical experiment
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Outline

© Introducing 2d-signatures

@ Basic properties of 2d-signatures
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Notation for calculus in the plane

Basic notation for points in the plane:

AAxis 2

t= (1, ¢
" (t1, 12)
2
= (s1, %) .
5t t1 Axis 1

Rectangles: We set

R=[s,t] :=[s1,t1] x [, 1], and [0, T] =0, T]?
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Notation for 2d-signatures

Field: We first consider a R valued

X={X =X,

iise0 T, i=1....d},
where i = color (rgb) for an image
Differentials: We set

din = dlzxsi;t = 812Xri dl’ldl’z
diX, = dgps XS, = X 9X) drdr.
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How do 2d-signatures show up?

Rectangular increment: For a field X we set
Ds,tX = Xt1;t2 - X51:t2 - Xt1;52 + Xsl;Sz

Change of variable in the plane:

Oaef (X) = [ 0F(X)dX+ [ 95F(X)d7X..

[s,t] [s,t]

Problem:
Proper iteration of this formula for approximations
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Part of a second order signature

Some elements of the signature:

Increment | Interpretation || Regularity || Increment | Interpretation
x'i2 J1 J> dhax (71,72) X2 J1 S, disx
X102 fl dix fz diox | (271,72) x!102 f1 dix fz disx
x01:22 f2 dhx fl diox | (71,272) x0L:22 f2 dhx fl djsX
x11i22 1 J5 diaxdiox | (271,272) x11i22 1 J5 diaxdisx
Xll;22 fl f2 diﬁxdlzx (2’)/1, 2’}/2) Xll;22 fl f2 diQXdiQX

References on rough sheets:

@ Chouk-Gubinelli, unpublished
@ Chouk-T, EJP '15, Skorohod-Stratonovich corrections
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Other properties of 2-d signatures

Algebraic and analytic properties:
@ Not clear, since the notion of signature is not clear
@ Coordinate-wise reparametrization invariance

@ Signatures generated by Jacobian minor operators
— in Giusti, Lee, Nanda, Oberhauser

@ Signatures generated by line integrals
— in Diehl, Ebrahimi-Farad, Tapia

@ Non-commutative Stokes point of view
< in Lee-Oberhauser

@ Overall, still a lot to be done
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A modest goal

Our aim:
@ Explore data analysis properties of 2d-signatures
@ Simple numerical experiment on texture classification
< in order to see if this makes sense empirically
@ Try to find a signature for 2d-objects which has

@ Simple enough structure
@ Good algebraic-analytic properties
© Good discriminating properties
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© Introducing 2d-signatures

@ Numerical experiment
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Texture dataset

@ 42 textures
o Dataset: CuRRET

@ Supervised class.
procedure

Samy T. (Pu

01-Felt 02-Polyester 03-Terrycloth 04-Rough_Plastic 05-Leather

06-Sandpaper

07-Velvet 09-Frosted_Glass 10-Plaster 11-Tree _Bark

12-Artificial_Grass

13-Roofing_Shingle 16-Rough_Tile

19-5ponge 20-Lamb_Wool 21 Lettuce_Leaf 22-Rabbit_Fur 23-Quarry_Tile

18-Styrofoam

24-Loofa

--

] 759
25-Insulation 26-Crumpled_Paper 27-Slate 28-Painted Spheves 29-Limestone

30-Straw.

31Brick X 33-Salt_Crystals

Oslo 2023
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Supervised learning
Procedure:

@ We randomly sample (100 x 100)-sized images from each texture
@ 10 samples from every texture used for training

@ 100 images from every texture sampled for testing

Samy T. (Purdue)

Figure: Ten samples from the texture “21-Lettuce Leaf”
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2d-simplexes

Points in the plane: Consider
e s=(s,%)in [0, T]?
e t=(t;,t)in [0, T]?
0 5<t;and s, <t

2d-simplexes:

L= AL x AL, =L ) e (0, TP)"

51§r11§---§r1”§tland52§r21§---§r2”§t2}. (2)
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Features
A list of features: We include discretized versions of

X3 = / d'x;,
s

XG = / dix;
[s:t]

X(ll 22);ii _ / diXi dixi
2

11,2%)ii
X.S,,t ) = /
AZ
X(ll ,22);ii _ / aiiXi diXi
A
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More about the procedure

Rotations:

@ We average our features (See Mallat-Sifre)
< over 7 rotations

Dimension of feature space:

1,20 - .
e For X;t )7 i.e rectangular increments
<% PCA on all small increments

@ Number of PCA components < 40

@ Overall, feature dimension < 52
< Considered as small

Classification method:

@ Random forests
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Outcome 1: visualization
Projection using t-distributed stochastic neighbor embedding:

80

60

-80

Samy T. (Pu

o 20 40
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60

O1-Felt
02-Polyester
03Terrycloth
04-Rough_Plastic
05-Leather
06-Sandpaper
07-velvet
08-Pebbles
09-Frosted_Glass
10-Plaster

11ree _Bark
12-Artificial_Grass
13-Roofing_Shingle
14-Aluminum_Foil
15-Cork
16-Rough_Tile
17-Rug
18-Styrofoam
19-Sponge
20-Lamb_Wool
21-Lettuce_Leaf
22-Rabbit_Fur
23-Quarry_Tile
24-Loofa
25-Insulation
26-Crumpled_Paper
27-Slate
28-Painted_Spheres.
29-Limestone
30-Straw

31-8rick
32-Corduroy
33-Salt_Crystals
34-Linen

35-Cotton
36-Aquarium_Stones
37-Concrete
38-Corn_Husk
39-Bread
40-Soleirolia_Plant
41-Wood
42-Cracker

Oslo 2023

49 /77



Outcome 2: accuracy

Classification accuracy on testing data

Classification accuracy on testing data

5 training data in every class

100% -

80%

60% 1

40%

20%

/

%4\\

—— With symmetric signatures
~—— With signatures
~—— No signature

o

o 15 20 25 30 35 4
Number of principal components

=

10 training data in every class

100% 4

60%

80% 7\\/\\/\—\,_\

40% -

20%

—— With symmetric signatures
—— With signatures
—— No signature

0%
0

10 15 20 25 30 35 40

Number of principal components o
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Outline

© Extended signature in the plane
@ A very simple signature
@ The extended signature
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Brief summary

Conclusion 1:

@ Signatures based on 2-d increments are worth exploring

Conclusion 2:
@ We should look for simple enough structures

@ At least simpler than structure from calculus in the plane
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© Extended signature in the plane

@ A very simple signature
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2d-simplexes (repeated)

Points in the plane: Consider
e s=(s,%)in [0, T]?
e t=(t;,t)in [0, T]?
0 5<t;and s, <t

2d-simplexes:

L= AL x AL, =L ) e (0, TP)"

51§r11§---grl”gtland52§r21§---§r2”§t2}. (3)
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Definition of the simple signature

— Definition 4. |

Consider

e s, tin[0, T]?

o w=_i,...,0h) EW
Then we set

(S1(X), w) = /A B X oo dXon

\

Recursive definition: We also have

(S400 w) = [ (SO0, (o)) 0%

[s.t]
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How does the simple signature show up?

Equation: Let

@ X:[0,T]>? = R

eveRyand {A"; i=1,...,d} matrices in R%?
Then let Y be the solution to

d
Y, = v—I—Z/ A'Y, d'X,
5.4

i=1

Expansion: Y can be formally expanded as

Doy = ) A (Si(X), w)

wew
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Lack of shuffle property (1)

Desirable property: Take
<S (X), W1> and <S , W2> in the signature

We wish to have

(SH(X), wa) (SE(X), wo) = Z Elements of the signature

Simple example: Consider X : [0, T]> — R and
o (SU(X), wi) = [ X
o (SH(X), ws) = [,y dX,

Then define
I'Is7t—/ dX,/ dX,
[s,t] [s,t]

Samy T. (Purdue) 2-d signatures methods Oslo 2023 58 /77



Lack of shuffle property (2)

Relation for I'1: Recall that

Moy = / ax, / X,
[s,t] [s,t]

Then
I_Is,t = /2 d)<r11;r21d)<r12;r22_'_/2 d)<r11;r22d)<r12;r21
Ao B )
o T,

Identifying M': One can easily see that

ni,t = <S(X)7 (17 1)>s,t
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Lack of shuffle property (3)

Problem with M?%: Recall that

2
ns, = /2 dX,2d X2,
A
X

Then

@ This object is not in the signature

@ This is due to the permutation r2 <— rJ
Remark:

@ This problem with permutations pops up at many places

@ We thus introduce a new signature involving permutations
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Outline

© Extended signature in the plane

@ The extended signature
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Definition of extended words

~ Definition 5. .

For n > 1 we set
Wn ={(w,v)lw eW,, and v € Z{l,...,n}}

Then the set of extended words is given by

W= W,
n=0
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2d-simplexes (repeated)

Points in the plane: Consider
e s=(s,%)in [0, T]?
e t=(t;,t)in [0, T]?
0 5<t;and s, <t

2d-simplexes:

L= AL x AL, =L ) e (0, TP)"

51§r11§---§r1”§tland52§r21§---§r2”§t2}. (4)
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Definition of the extended signature

—~ Definition 6.

Consider
e s tin]0, T)?
o (w,v) € W, with

» w=(f1,...,0n)

> VEX( )
Then we set
(Ssx(X), (w, / dewf o

[st] i=1

\

Claim:
This extended signature has good algebraic properties
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Shuffle of words
~ Definition 7.}

Let
en>1k>1
e Word w = (i1, ..., ip)
e Word v = (j1,...,Jjk)

o [W,V]:(il,...,in,_jl,...,jk)

Then the shuffle of v and w is given by

Sh(w, v) = {Permutations of [w, v];

orders of w and v are not changed}
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Shuffle of permutations

~ Definition 8.

Let
en>1k>1
@ Permutation o € X1 ny

@ Permutation 7 € X(pi1. k)

o [W,V] = (il,...,in,_jl,...,jk)
Then the shuffle of o and 7 is given by

Sh(o, 1) = {p € X(1,..ntk}

p does not change the order of o and 7'}
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Shuffle relation

—~ Theorem 9.

Let
e X : [0, T]?> — R smooth path
e s tin]0, TJ?

Then we have

(Ss(X), (w, V)><$st(X) (W’,;/)>

= 2 >

¢eSh(w,w’) peSh(v,v’)

o (w,v) and (W', ') elements of W

o([w, w), po o([v,])))
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Other results and perspectives

Other results:
@ Partial versions of Chen’s relations

» Splits in direction 1 and 2
» Symmetrized signature

@ Invariances by change of variables

Perspectives:
© Full algebraic setting for Chen
© Relation with stochastic calculus in the plane

@ Relation with non-commutative Stokes theorem

Samy T. (Purdue) 2-d signatures methods Oslo 2023

68 /77



Outline

@ A PDE perspective on 2d-signatures
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Brief summary

Examples of natural notions of 2d-signatures: Based on
@ Calculus in the plane
@ Jacobian minors

@ Noncommutative Stokes

Another natural notion: Based on

@ PDEs for image processing
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Smoothing an image

Setting: We consider
@ up:Q=[0,T]>? =R (original noisy image)
@ G, Gaussian kernel

Smoothed version: For o to be calibrated,

u, = G, * U

PDE version: u, can also be computed through

{&u:mwvw,inﬂ

%:O, on 0f,
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Modulating the diffusion

Problem with diffusion equation:
@ Images become very blurry
@ Main problem: respect the corners and edges

@ Solution: smaller diffusion when gradient is large

New equation: For g decaying at oo,

{&u:dﬂﬂWMﬂML in Q

fu — 0, on 99,
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A class of PDEs for image processing

Basic model: By Rudin-Osher-Fatemi, > 18,000 citations

. (V
Oru = div (|V_Z|) — Au— wp)

Remarks about the model:
@ Numerous extensions (4th order, anisotropic)

@ Model justified by optimization considerations

Generic smoothed model: With A regularization parameter

Oy =div(p(Vu)Vu) —  A(u— up)
v ——
smoothin\g,Jr edges stay close to original ug
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An implementation from Osher-Solé-Vese (2003)

Corrupted image:
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Features from PDEs

Basic idea:

@ Use regularity structures methods to expand the PDE
— Produces a hierarchy of linear PDEs

@ Use the solutions to this family of PDEs as features

Justification:
@ Smoothing methods already been used for representation
@ Regularity structures — algebraic/analytic machinery

@ Approach already used by Chevyrev-Gerasimovics-Weber
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A generic coefficient

Method implemented:
@ Taken from Otto-Sauer-Smith-Weber, using multiindex notation

@ Below &, is an awful index set

Basic operator: We set

Ao = polAu — Au

Hierarchy of PDEs: We get

d n(/)
(at — .Ao) I'Ixm = Z diV((HHV(k)ﬂxmj{>vnxmk+l)

n,k,p,mk,mklegy, =1 j=1
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