An overview of 2-d signatures methods

Samy Tindel

Purdue University

Mini-Courses: Rough Paths, Signatures, and their applications in Machine Learning *BI – Oslo – November 2023*

Joint works with

- Guang Lin and Sheng Zhang
- Joscha Diehl, Kurusch Ebrahimi-Fard and Fabian Harang

Signatures for images (ongoing CAS project)

Figure: Fragmented glass

Samy T. (Purdue)

2-d signatures methods

Oslo 2023 2

2/77

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

3 Extended signature in the plane

- A very simple signature
- The extended signature

4 PDE perspective on 2d-signatures

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature The extended signature

• The extended signature

4 PDE perspective on 2d-signatures

1-d signatures as features

• A motivation for feature extraction

• Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature The extended signature

A PDF perspective on 2d-signature

A basic classification task

Data:

- Points $\mathbf{X} = \{\mathbf{x}_i; i = 1, \dots, n\}$ with $\mathbf{x}_i \in \mathbb{R}^d$
- Labels $\{y_i; i = 1, \dots, n\}$ with $y_i \in \{0, 1\}$
- When labels are known, the learning is supervised

Aim:

• Find a proper separation between labels 0 and labels 1

Linear separation

Separation using hyperplanes:

- We use a classification $\hat{y} = \operatorname{sign}(\mathbf{v} \cdot \mathbf{x})$
- v optimized
 → According to our data:

$$\mathbf{v} = \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^n \|\operatorname{sign} (\mathbf{w} \cdot \mathbf{x}_i) - y_i\|^2$$

Figure: Separation of 2 subgroups according to H_1, H_2, H_3

Oslo 2023 7 / 77

Separation using neural networks

Definition of the multilayer neural network:

- Recursion $\mathbf{x}^{k+1} = S(\mathbf{w}^k \mathbf{x}^k + \mathbf{d}^k)$ for $k = 0, \dots, n_{\text{layer}}$
- \mathbf{w}^k matrix-valued, \mathbf{d}^k vector-valued
- S defined componentwise by σ below
- \mathbf{w}^k and \mathbf{d}^k to be optimized

Figure: Sigmoid $\sigma(x) = \frac{2}{\pi} \tanh(x)$ and ReLU $\sigma(x) = \max\{x, 0\}$

8 / 77

Feature extraction problem

Objection to previous situation:

- In classification problem, X was supposed to be fixed
- If X is high-dimensional, this might be a problem
 → feature extraction needed

			1 = 1		-	*) 4 (*
Samy T. (Purdue)	2-d signatures methods		Oslo	o 2023	9 /	77

Feature extraction (2)

Main goal of feature extraction: Given input X

- extract information to be fed as additional input to the machine learning algorithm
- Be sparse in the additional input:
 - more information given
 - \implies more computationally expensive learning task
 - Unnecessary noise added with more information

Wishlist for good features:

- Computationally efficient
- Accurate description of the data distribution
- If possible: interpretable.

References

Bensoussan, A., Zhou, X. et al (2020). Machine learning and control theory. arXiv preprint arXiv:2006.05604.

Samy T. (Purdue)

- ∢ ⊒ → Oslo 2023 11 / 77

▶ < ∃ ▶</p>

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature The extended signature

The extended signature

4 PDE perspective on 2d-signatures

Notation for 1-d parameter signature

Signal: We first consider a \mathbb{R}^d -valued

$$x = \left\{x_s^i; s \in [0, T], i = 1..., d\right\}$$

Second order 1-d signature: For our signal x

$$\mathbf{x}_{st}^{1,i_1} = x_t^{i_1} - x_s^{i_1} = \int_{s < r_1 < t} \mathrm{d} x_{r_1}^{i_1}$$
$$\mathbf{x}_{st}^{2,i_1,i_2} = \int_{s < r_1 < r_2 < t} \mathrm{d} x_{r_1}^{i_1} \, \mathrm{d} x_{r_2}^{i_2}.$$

Samy T. (Purdue)

Oslo 2023 13 / 77

Signature as a feature

Claim:

• Signature is a good feature for the signal x

Some properties to review:

- Natural feature
- 2 Algebraic properties
- Analytic properties
- Accurate description of the path
- Computationally efficient
- Possibility of interpretation

The founding fathers

Kuo Tsai Chen

Terry Lyons

Brief history survey:

- K. T. Chen, 50s: Structure of iterated-integrals signatures
- K. Itô, 50s: Itô stochastic calculus
- T. Lyons, 90s: Theory of rough paths.

Signatures are natural features (1)

Notation: For a function $z : [0, T] \to \mathbb{R}^d$,

$$\delta z_{st} = z_t - z_s$$

Change of variable formula: Consider smooth functions

• $x : [0, T] \to \mathbb{R}^d$ • $f : \mathbb{R}^d \to \mathbb{R}$

Then we have

$$\delta f(\mathbf{x})_{st} = \int_{s \leq r_1 \leq t} \partial_{i_1} f(\mathbf{x}_{r_1}) \, \mathrm{d} \mathbf{x}_{r_1}^{i_1}$$

Signatures are natural features (2)

Iterating change of variable: Write

$$\begin{split} \delta f(\mathbf{x})_{st} &= \int_{s \leq r_1 \leq t} \partial_{i_1} f(\mathbf{x}_{r_1}) \, \mathrm{d} \mathbf{x}_{r_1}^{i_1} \\ &= \partial_{i_1} f(\mathbf{x}_s) \int_{s \leq r_1 \leq t} \, \mathrm{d} \mathbf{x}_{r_1}^{i_1} + \int_{s \leq r_1 \leq t} \delta \left[\partial_{i_1} f(\mathbf{x}) \right]_{sr_1} \, \mathrm{d} \mathbf{x}_{r_1}^{i_1} \\ &= \partial_{i_1} f(\mathbf{x}_s) \int_{s \leq r_1 \leq t} \, \mathrm{d} \mathbf{x}_{r_1}^{i_1} + \int_{s \leq r_2 \leq r_1 \leq t} \partial_{i_1 i_2} f(\mathbf{x}_{r_2}) \, \mathrm{d} \mathbf{x}_{r_2}^{i_2} \mathrm{d} \mathbf{x}_{r_1}^{i_1} \\ &= \partial_{i_1} f(\mathbf{x}_s) \int_{s \leq r_1 \leq t} \, \mathrm{d} \mathbf{x}_{r_1}^{i_1} + \partial_{i_1 i_2} f(\mathbf{x}_s) \int_{s \leq r_2 \leq r_1 \leq t} \, \mathrm{d} \mathbf{x}_{r_2}^{i_2} \mathrm{d} \mathbf{x}_{r_1}^{i_1} \\ &+ \int_{s \leq r_2 \leq r_1 \leq t} \delta \left[\partial_{i_1 i_2} f(\mathbf{x}) \right]_{sr_2} \, \mathrm{d} \mathbf{x}_{r_2}^{i_2} \mathrm{d} \mathbf{x}_{r_1}^{i_1} \end{split}$$

Samy T. (Purdue)

Oslo 2023 17 / 77

A (10) × (10)

Signatures are natural features (3)

Approximations in change of variable: For a smooth enough f,

$$f(x_t) - f(x_s) \simeq \sum_{i_1} \partial_{i_1} f(x_s) \mathbf{x}_{st}^{\mathbf{1},i_1} + \sum_{i_1,i_2} \partial_{i_1,i_2}^2 f(x_s) \mathbf{x}_{st}^{\mathbf{2},i_1,i_2}$$

This is one of the reasons why signatures are natural features

Full signature: For higher order approximations one can recur to

$$[S(x)]_{st} = 1 + \sum_{n=1}^{\infty} \int_{s < r_1 < r_2 < \dots < r_n < t} \mathrm{d}x_{r_1} \otimes \mathrm{d}x_{r_2} \otimes \dots \otimes \mathrm{d}x_{r_n} \qquad (1)$$

Next aim: Give a proper meaning to (1)

Where do signatures live (1)? Words: Define a set of words $W = \bigcup_{n \ge 0} W_n$ with

$$\mathcal{W}_n = \left\{ w = (i_1, \dots, i_n) ; \ n \ge 0 \text{ and } i_j \in \{1, \dots, d\} \text{ for all } j = 1, \dots, n
ight\}$$

Notation for simplexes: For a < b we set

$$\Delta_{a,b}^n = \left\{ r \in [0,T]^n ; a \le r^1 \le \cdots \le r^n \le b \right\}.$$

Evaluation on words: For $w = (i_1, \ldots, i_n) \in \mathcal{W}$ we set

$$\langle S_{st}(x), w \rangle = \int_{\Delta_{[s,t]}^n} \mathrm{d} x_{r^1}^{i_1} \cdots \mathrm{d} x_{r^n}^{i_n}.$$

Where do signatures live (2)?

Tensor algebra: We set

$$\mathcal{T}(\mathbb{R}^d) = \bigoplus_{n=0}^{\infty} (\mathbb{R}^d)^{\otimes n},$$

Canonical basis for \mathbb{R}^d :

$$(e_1,\ldots,e_d)$$

Canonical basis for $\mathcal{T}(\mathbb{R}^d)$:

$$\{e_w = e_{i_1} \otimes \cdots \otimes e_{i_n} ; w = (i_1, \ldots, i_n) \in \mathcal{W}\}.$$

Samy T. (Purdue)

Oslo 2023 20 / 77

Where do signatures live (3)?

Signature as evaluation: We see $S_{st}(x)$ as a linear map,

$$S_{st}(x): \mathcal{T}(\mathbb{R}^d) \longrightarrow \mathbb{R}, \qquad e_w \longmapsto \langle S(x), w \rangle_{st}$$

Tensor series: We also write

$$S(x) = \sum_{w \in \mathcal{W}} \langle S(x), w
angle \, e_w, \quad ext{and} \quad S_{st}(x) \in \mathcal{T}((\mathbb{R}^d))$$

• • = • • = •

Chen's algebraic relation (1)

Notation for products: For $g, h \in \mathcal{T}((\mathbb{R}^d))$,

$$[g\otimes h]^n = \sum_{k=0}^n g^{n-k} \otimes h^k$$

Notation for simplexes: For a < b we set

$$\Delta_{a,b}^n = \left\{ r \in [0,T]^n ; a \le r^1 \le \cdots \le r^n \le b \right\}.$$

Samy T. (Purdue)

Oslo 2023 22 / 77

Chen's algebraic relation (2)

Theorem 1.

Consider

- $x: [0, T] \to \mathbb{R}^d$ differentiable path
- S(x) its signature seen as an element of $\mathcal{T}((\mathbb{R}^d))$
- $(s, u, t) \in \Delta^3$

Then

$$S_{su}(x) \otimes S_{ut}(x) = S_{st}(x)$$

Shuffle algebraic identity (1)

Shuffle of permutations: Consider

$$\sigma \in \Sigma_{\{1,\dots,n\}}, \quad \text{and} \quad \tau \in \Sigma_{\{n+1,\dots,n+k\}}.$$

Then we set

 $\mathsf{Sh}(\sigma,\tau) = \left\{ \rho \in \Sigma_{\{1,\dots,n+k\}} ; \rho \text{ does not change the order of } \sigma \text{ and } \tau \right\}$

Example: Take

Then

$$\sigma = \{1, 3, 2\} \in \Sigma_{\{1, 2, 3\}}, \qquad \tau = \{5, 4\} \in \Sigma_{\{4, 5\}}$$

$$\rho = \{1, 5, 3, 2, 4\} \in \mathsf{Sh}(\sigma, \tau)$$

Shuffle algebraic identity (2)

Oslo 2023 25 / 77

Two basic analytic relations

Theorem 3.

Consider

- $x: [0, T] \to \mathbb{R}^d$ differentiable path
- S(x) its signature seen as an element of $\mathcal{T}((\mathbb{R}^d))$
- $(s,t)\in\Delta^2$ and w,w' two words in ${\mathcal W}$

Then

• Denoting $x^{\phi} = x \circ \phi$, we have an invariance,

$$[S(x)]_{\phi(s)\phi(t)}=S(x^{\phi})_{st}$$

The following analytic estimate holds true,

$$||S_n(x)|| \leq \frac{(C_{\sigma,x})^n}{n!}$$

Computational efficiency

Example of discretization of : Consider

- The element $\langle S_{0,T}(x), (1,2) \rangle$ in the signature
- $\{t_i = t_i^n; 0 \le i \le n\}$ uniform partition of [0, T]

Then

We have

$$\langle S_{0,T}(x), (1,2) \rangle \simeq \sum_{i=0}^{n-1} \left(\delta x^{1}_{0t_{i-1}} + \delta x^{1}_{t_{i-1}t_{i}} \right) \delta x^{2}_{t_{i}t_{i+1}}$$

2 This requires O(n) operations

Oslo 2023 27 / 77

Interpretation of double iterated integral Illustration:

Figure: Left: (S(x), (1,2)) and Right: (S(x), (2,1))

Interpretation:

- If $\langle S_{0,T}(x), (1,2) \rangle$ is large, then x^2 goes faster than x^1
- If $\langle S_{0,T}(x), (2,1) \rangle$ is large, then x^1 goes faster than x^2

Characterization of paths

Basic characterization: For two bounded variation paths,

$$S(x)_{01} = S(y)_{01}$$
 iff $x \sim y$,

where $x \sim y$ means that x, y only differs by a tree-like path

Some references:

- Characterization: Lyons-Hambly '10
- Characterization, rough paths setting: Boedihardjo, Geng, Lyons, Yang '16
- Reconstruction in the \mathcal{C}^1 case: Lyons-Xu '18
- Reconstruction in the Hölder case: Xi Geng '17

1-d signatures and data analysis

Bottomline: 1-d signatures are successful features \hookrightarrow for numerous data analysis procedures

Classical examples (Lyons and collaborators):

- Chinese character recognition
- Finance time series
- Topological data analysis
- Diagnosis prediction

A study on Alzheimer disease

Illustration:

Figure: Comparison of (S(x), (1, 2)), where 1 = Hippocampus, 2 = Whole brain

Samy T. (Purdue)

2-d signatures methods

References

 Friz, Peter K. and Victoir, Nicolas B.
 Multidimensional stochastic processes as rough paths Cambridge University Press, 2010

📔 Geng, Xi

Reconstruction for the signature of a rough path. Proceedings of the London Mathematical Society, 2017

Hambly, Ben and Lyons, Terry Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics, 2010

References

Lyons, Terry; Ni, Hao and Oberhauser, Harald A feature set for streams and an application to high-frequency financial tick data Proceedings of the 2014 BigDataScience, 2014

Moore, P. J.; Lyons, T. J. and Gallacher, J. Using path signatures to predict a diagnosis of Alzheimer's disease PLOS ONE, 2019

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature

• The extended signature

4 PDE perspective on 2d-signatures

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature The extended signature

The extended signature

4 PDE perspective on 2d-signatures

Notation for calculus in the plane

Basic notation for points in the plane:

Rectangles: We set

 $R = [\mathbf{s}, \mathbf{t}] := [s_1, t_1] \times [s_2, t_2], \text{ and } [\mathbf{0}, \mathbf{T}] = [0, T]^2$
Notation for 2d-signatures

Field: We first consider a \mathbb{R}^d -valued

$$X = \left\{X^i_{\mathbf{s}} = X^i_{\mathbf{s}_1;\mathbf{s}_2}; \, \mathbf{s} \in [\mathbf{0},\mathbf{T}], \, i = 1\dots, d
ight\} \, ,$$

where $i \equiv \text{color} (\text{rgb})$ for an image

Differentials: We set

How do 2d-signatures show up?

Rectangular increment: For a field X we set

$$\Box_{\mathbf{s},\mathbf{t}} X := X_{t_1;t_2} - X_{s_1;t_2} - X_{t_1;s_2} + X_{s_1;s_2}$$

Change of variable in the plane:

$$\Box_{\mathbf{s},\mathbf{t}}f(X) = \int_{[\mathbf{s},\mathbf{t}]} \partial_i f(X_{\mathbf{r}}) \,\mathrm{d}^i X_{\mathbf{r}} + \int_{[\mathbf{s},\mathbf{t}]} \partial_{ij} f(X_{\mathbf{r}}) \,\mathrm{d}^{ij} X_{\mathbf{r}}.$$

Problem:

Proper iteration of this formula for approximations

Part of a second order signature

Some elements of the signature:

Increment	Interpretation	Regularity	Increment	Interpretation
x ^{1;2}	$\int_1 \int_2 d_{12} x$	(γ_1, γ_2)	$\mathbf{x}^{\hat{1};\hat{2}}$	$\int_1 \int_2 d_{\hat{1}\hat{2}} x$
x ^{11;02}	$\int_1 d_1 x \int_2 d_{12} x$	$(2\gamma_1, \gamma_2)$	x ^{11;02}	$\int_1 d_1 x \int_2 d_{\hat{1}\hat{2}} x$
x ^{01;22}	$\int_2 d_2 x \int_1 d_{12} x$	$(\gamma_1, 2\gamma_2)$	x ^{01̂;22̂}	$\int_2 d_2 x \int_1 d_{\hat{1}\hat{2}} x$
x ^{11;22}	$\int_{1} \int_{2} d_{12} x d_{12} x$	$(2\gamma_1, 2\gamma_2)$	x ^{11̂;22̂}	$\int_{1} \int_{2} d_{12} x d_{\hat{1}\hat{2}} x$
x ^{11;22}	$\int_1 \int_2 d_{\hat{1}\hat{2}} x d_{12} x$	$(2\gamma_1, 2\gamma_2)$	x ^{î1;22}	$\int_1 \int_2 d_{\hat{1}\hat{2}} x d_{\hat{1}\hat{2}} x$

References on rough sheets:

- Chouk-Gubinelli, unpublished
- Chouk-T, EJP '15, Skorohod-Stratonovich corrections

Other properties of 2-d signatures

Algebraic and analytic properties:

- Not clear, since the notion of signature is not clear
- Coordinate-wise reparametrization invariance
- Signatures generated by Jacobian minor operators
 → in Giusti, Lee, Nanda, Oberhauser
- Signatures generated by line integrals
 → in Diehl, Ebrahimi-Farad, Tapia
- Non-commutative Stokes point of view \hookrightarrow in Lee-Oberhauser
- Overall, still a lot to be done

A modest goal

Our aim:

- Explore data analysis properties of 2d-signatures
- Simple numerical experiment on texture classification

 → in order to see if this makes sense empirically
- Try to find a signature for 2d-objects which has
 - Simple enough structure
 - Good algebraic-analytic properties
 - Good discriminating properties

References

- Chouk, Khalil and Gubinelli, Massimiliano Rough sheets Arxiv preprint, 2013
- Chouk, Khalil and Tindel, Samy Skorohod and Stratonovich integration in the plane Electronic Journal of Probability, 2015
- Giusti, Chad ; Lee, Darrick; Nanda, Vidit and Oberhauser, Harald A topological approach to mapping space signatures arXiv preprint, 2022
- Diehl, Joscha; Ebrahimi-Fard, Kurusch; Tapia, Nikolas Generalized iterated-sums signatures
 J. Algebra 632 (2023), 801–824.

Outline

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature

• The extended signature

4 PDE perspective on 2d-signatures

Texture dataset

- 42 textures
- Dataset: CuRRET
- Supervised class. procedure

Samy T. (Purdue)

2-d signatures methods

Oslo 2023

44 / 77

Supervised learning

Procedure:

- We randomly sample (100 imes 100)-sized images from each texture
- 10 samples from every texture used for training
- 100 images from every texture sampled for testing

Figure: Ten samples from the texture "21-Lettuce Leaf"

Samy T. (Purdue)

2-d signatures methods

Oslo 2023

45 / 77

2d-simplexes

Points in the plane: Consider

•
$$\mathbf{s} = (s_1, s_2)$$
 in $[0, T]^2$
• $\mathbf{t} = (t_1, t_2)$ in $[0, T]^2$

• $s_1 \leq t_1$ and $s_2 \leq t_2$

2d-simplexes:

$$\Delta_{[\mathbf{s},\mathbf{t}]}^{n} := \Delta_{s_{1},t_{1}}^{n} \times \Delta_{s_{2},t_{2}}^{n} = \left\{ (\mathbf{r}^{1}, \dots, \mathbf{r}^{n}) \in ([0, T]^{2})^{n}; \\ s_{1} \leq r_{1}^{1} \leq \dots \leq r_{1}^{n} \leq t_{1} \text{ and } s_{2} \leq r_{2}^{1} \leq \dots \leq r_{2}^{n} \leq t_{2} \right\}.$$
(2)

→ < ∃ →</p>

Features

A list of features: We include discretized versions of

$$\begin{split} \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(1,2);i} &= \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}^{i} x_{\mathbf{r}_{1}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1},\hat{2});i} &= \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}^{ii} x_{\mathbf{r}_{1}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1},\hat{2});ii} &= \int_{\Delta_{\mathbf{s},\mathbf{t}}^{2}} \mathrm{d}^{i} x_{\mathbf{r}_{1}}^{i} \mathrm{d}^{i} x_{\mathbf{r}_{2}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1}\hat{1},\hat{2}\hat{2});ii} &= \int_{\Delta_{\mathbf{s},\mathbf{t}}^{2}} \mathrm{d}^{ii} x_{\mathbf{r}_{1}}^{i} \mathrm{d}^{ii} x_{\mathbf{r}_{2}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1}\hat{1},\hat{2}\hat{2});ii} &= \int_{\Delta_{\mathbf{s},\mathbf{t}}^{2}} \mathrm{d}^{i} x_{\mathbf{r}_{1}}^{i} \mathrm{d}^{ii} x_{\mathbf{r}_{2}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1}\hat{1},\hat{2}\hat{2});ii} &= \int_{\Delta_{\mathbf{s},\mathbf{t}}^{2}} \mathrm{d}^{ii} x_{\mathbf{r}_{1}}^{i} \mathrm{d}^{ii} x_{\mathbf{r}_{2}}^{i} \\ \mathbf{X}_{\mathbf{s},\mathbf{t}}^{(\hat{1}\hat{1},\hat{2}\hat{2});ii} &= \int_{\Delta_{\mathbf{s},\mathbf{t}}^{2}} \mathrm{d}^{ii} x_{\mathbf{r}_{1}}^{i} \mathrm{d}^{ii} x_{\mathbf{r}_{2}}^{i} \end{split}$$

Samy T. (Purdue)

Oslo 2023 47 / 77

э

イロト イポト イヨト イヨト

More about the procedure

Rotations:

• We average our features (See Mallat-Sifre) \hookrightarrow over $\frac{\pi}{2}$ rotations

Dimension of feature space:

- For X^{(1,2);i}_{s,t}, i.e rectangular increments
 → PCA on all small increments
- $\bullet\,$ Number of PCA components ≤ 40
- Overall, feature dimension \leq 52 \hookrightarrow Considered as small

Classification method:

Random forests

Outcome 1: visualization

Projection using t-distributed stochastic neighbor embedding:

Outcome 2: accuracy

Samy T. (Purdue)

2-d signatures methods

э

Outline

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature The extended signature

4 PDE perspective on 2d-signatures

Conclusion 1:

• Signatures based on 2-d increments are worth exploring

Conclusion 2:

- We should look for simple enough structures
- At least simpler than structure from calculus in the plane

References

Zhang, Sheng and Lin, Guang and Tindel, Samy Two-dimensional signature of images and texture classification Proceedings of the Royal Society A, 2022

Oslo 2023 53 / 77

- **→** ∃ →

Outline

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature

The extended signature

4 PDE perspective on 2d-signatures

2d-simplexes (repeated)

Points in the plane: Consider

- $\mathbf{s} = (s_1, s_2)$ in $[0, T]^2$
- $\mathbf{t} = (t_1, t_2)$ in $[0, T]^2$
- $s_1 \leq t_1$ and $s_2 \leq t_2$

2d-simplexes:

$$\Delta_{[\mathbf{s},\mathbf{t}]}^{n} := \Delta_{s_{1},t_{1}}^{n} \times \Delta_{s_{2},t_{2}}^{n} = \left\{ (\mathbf{r}^{1}, \dots, \mathbf{r}^{n}) \in ([0,T]^{2})^{n}; \\ s_{1} \leq r_{1}^{1} \leq \dots \leq r_{1}^{n} \leq t_{1} \text{ and } s_{2} \leq r_{2}^{1} \leq \dots \leq r_{2}^{n} \leq t_{2} \right\}.$$
 (3)

Oslo 2023 55 / 77

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition of the simple signature

Definition 4.
Consider
•
$$\mathbf{s}, \mathbf{t}$$
 in $[0, T]^2$
• $w = (i_1, \dots, i_n) \in \mathcal{W}$
Then we set
 $\langle \mathbf{S}_{\mathbf{s}, \mathbf{t}}^{\mathrm{Id}}(X), w \rangle = \int_{\Delta_{\mathbf{i}, \mathbf{t}}^n} \mathrm{d}^{i_1} X_{\mathbf{r}^1} \cdots \mathrm{d}^{i_n} X_{\mathbf{r}^n}$

Recursive definition: We also have

$$\left\langle \mathbf{S}^{\mathrm{Id}}_{\mathbf{s},\mathbf{t}}(X), w \right\rangle = \int_{[\mathbf{s},\mathbf{t}]} \left\langle \mathbf{S}^{\mathrm{Id}}_{\mathbf{s},\mathbf{r}}(X), (i_1,\ldots,i_{n-1}) \right\rangle \, \mathrm{d}^{i_n} X_{\mathbf{r}}$$

How does the simple signature show up?

Equation: Let
•
$$X : [0, T]^2 \rightarrow \mathbb{R}^d$$

• $v \in \mathbb{R}^d$ and $\{A^i ; i = 1, ..., d\}$ matrices in $\mathbb{R}^{d,d}$

Then let Y be the solution to

$$Y_{\mathbf{t}} = \mathbf{v} + \sum_{i=1}^{d} \int_{[\mathbf{s},\mathbf{t}]} A^{i} Y_{\mathbf{r}} \, \mathrm{d}^{i} X_{\mathbf{r}}$$

Expansion: Y can be formally expanded as

$$\Box_{\mathsf{s},\mathsf{t}}Y = \sum_{w \in \mathcal{W}} A^{\circ w} v \left\langle \mathsf{S}^{\mathrm{Id}}_{\mathsf{s},\mathsf{t}}(X), w \right\rangle$$

Lack of shuffle property (1)

Desirable property: Take

• $\left< {f S}^{\rm Id}_{{f s},{f t}}(X), \, w_1 \right>$ and $\left< {f S}^{\rm Id}_{{f s},{f t}}(X), \, w_2 \right>$ in the signature

We wish to have

$$ig\langle {\sf S}^{
m Id}_{{\sf s},{\sf t}}(X),\, {\it w}_1ig
angle \, ig\langle {\sf S}^{
m Id}_{{\sf s},{\sf t}}(X),\, {\it w}_2ig
angle = \sum$$
 Elements of the signature

Simple example: Consider $X : [0, T]^2 \to \mathbb{R}$ and

•
$$\langle \mathbf{S}_{\mathbf{s},\mathbf{t}}^{\mathrm{Id}}(X), w_1 \rangle = \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}X_{\mathbf{r}}$$

• $\langle \mathbf{S}_{\mathbf{s},\mathbf{t}}^{\mathrm{Id}}(X), w_2 \rangle = \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}X_{\mathbf{v}}$

Then define

$$\boldsymbol{\Pi}_{\boldsymbol{s},\boldsymbol{t}} = \int_{[\boldsymbol{s},\boldsymbol{t}]} \mathrm{d} X_{\boldsymbol{r}} \, \int_{[\boldsymbol{s},\boldsymbol{t}]} \mathrm{d} X_{\boldsymbol{v}}$$

く 何 ト く ヨ ト く ヨ ト

Lack of shuffle property (2)

Relation for Π : Recall that

$$\boldsymbol{\Pi}_{\mathbf{s},\mathbf{t}} = \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}X_{\mathbf{r}} \; \int_{[\mathbf{s},\mathbf{t}]} \mathrm{d}X_{\mathbf{v}}$$

Then

$$\Pi_{\mathbf{s},\mathbf{t}} = \underbrace{\int_{\Delta_{[\mathbf{s},\mathbf{t}]}^{2}} \mathrm{d}X_{r_{1}^{1};r_{2}^{1}} \mathrm{d}X_{r_{1}^{2};r_{2}^{2}}}_{\Pi_{\mathbf{s},\mathbf{t}}^{1}} + \underbrace{\int_{\Delta_{[\mathbf{s},\mathbf{t}]}^{2}} \mathrm{d}X_{r_{1}^{1};r_{2}^{2}} \mathrm{d}X_{r_{1}^{2};r_{2}^{1}}}_{\Pi_{\mathbf{s},\mathbf{t}}^{2}}$$

Identifying Π^1 : One can easily see that

$$\Pi^1_{\mathbf{s},\mathbf{t}} = \langle \mathbf{S}(X), (1,1) \rangle_{\mathbf{s},\mathbf{t}}$$

Samy T. (Purdue)

< 3 > Oslo 2023 59 / 77

→ < Ξ →</p>

Lack of shuffle property (3)

Problem with Π^2 : Recall that

$$\boldsymbol{\Pi}_{\mathbf{s},\mathbf{t}}^2 = \int_{\boldsymbol{\Delta}_{[\mathbf{s},\mathbf{t}]}^2} \mathrm{d}X_{r_1^1;r_2^2} \mathrm{d}X_{r_1^2;r_2^1}$$

Then

- This object is not in the signature
- This is due to the permutation $r_2^2 \leftrightarrow r_2^1$

Remark:

- This problem with permutations pops up at many places
- We thus introduce a new signature involving permutations

Outline

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

Extended signature in the plane A very simple signature

• The extended signature

4 PDE perspective on 2d-signatures

Definition of extended words

Definition 5.

For $n \ge 1$ we set

$$\hat{\mathcal{W}}_n = \{(w,
u) | \ w \in \mathcal{W}_n, \ ext{and} \
u \in \Sigma_{\{1, ..., n\}}\}$$

Then the set of extended words is given by

$$\hat{\mathcal{W}} = \bigcup_{n=0}^{\infty} \hat{\mathcal{W}}_n$$

~	_ /		
Samu		Purdue	
Janny		I uluue	

Oslo 2023 62 / 77

2d-simplexes (repeated)

Points in the plane: Consider

- $\mathbf{s} = (s_1, s_2)$ in $[0, T]^2$
- $\mathbf{t} = (t_1, t_2)$ in $[0, T]^2$
- $s_1 \leq t_1$ and $s_2 \leq t_2$

2d-simplexes:

$$\Delta_{[\mathbf{s},\mathbf{t}]}^{n} := \Delta_{s_{1},t_{1}}^{n} \times \Delta_{s_{2},t_{2}}^{n} = \left\{ (\mathbf{r}^{1}, \dots, \mathbf{r}^{n}) \in ([0,T]^{2})^{n}; \\ s_{1} \leq r_{1}^{1} \leq \dots \leq r_{1}^{n} \leq t_{1} \text{ and } s_{2} \leq r_{2}^{1} \leq \dots \leq r_{2}^{n} \leq t_{2} \right\}.$$
(4)

Oslo 2023 63 / 77

э

・ 何 ト ・ ヨ ト ・ ヨ ト ・

Definition of the extended signature

Claim:

This extended signature has good algebraic properties

~	 (n
5 a may	 Durduo
. Jailly	 i F nrune

Shuffle of words

Shuffle of permutations

Shuffle relation

Theorem 9. Let • $X : [0, T]^2 \to \mathbb{R}^d$ smooth path • **s**, **t** in $[0, T]^2$ • (w, ν) and (w', ν') elements of $\hat{\mathcal{W}}$ Then we have $\langle \mathbf{S}_{st}(X), (w, \nu) \rangle \langle \mathbf{S}_{st}(X), (w', \nu') \rangle$ $= \sum \left\{ \left\{ \mathbf{S}_{\mathbf{s},\mathbf{t}}(X), (\phi([w,w']), \rho \circ \phi([\nu,\nu'])) \right\} \right\}$ $\phi \in Sh(w, w') \rho \in Sh(\nu, \nu')$

Oslo 2023 67 / 77

Other results and perspectives

Other results:

- Partial versions of Chen's relations
 - Splits in direction 1 and 2
 - Symmetrized signature
- Invariances by change of variables

Perspectives:

- Full algebraic setting for Chen
- 2 Relation with stochastic calculus in the plane
- Selation with non-commutative Stokes theorem

Outline

1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures

Introducing 2d-signatures

- Basic properties of 2d-signatures
- Numerical experiment

3 Extended signature in the plane

- A very simple signature
- The extended signature

A PDE perspective on 2d-signatures

Brief summary

Examples of natural notions of 2d-signatures: Based on

- Calculus in the plane
- Jacobian minors
- Noncommutative Stokes

Another natural notion: Based on

• PDEs for image processing

Smoothing an image

Setting: We consider

- $u_0: \Omega \equiv [0, T]^2 \to \mathbb{R}$ (original noisy image)
- G_{σ} Gaussian kernel

Smoothed version: For σ to be calibrated,

$$u_{\sigma} = G_{\sigma} * u_0$$

PDE version: u_{σ} can also be computed through

$$\begin{cases} \partial_t u = \operatorname{div} (\nabla u), & \text{in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}, & \text{on } \partial \Omega, \end{cases}$$

Oslo 2023 71 / 77

Modulating the diffusion

Problem with diffusion equation:

- Images become very blurry
- Main problem: respect the corners and edges
- Solution: smaller diffusion when gradient is large

New equation: For g decaying at ∞ ,

 $\begin{cases} \partial_t u = \operatorname{div} \left(g(|\nabla u|) \nabla u \right), & \text{in } \Omega\\ \frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}, & \text{on } \partial \Omega, \end{cases}$
A class of PDEs for image processing

Basic model: By Rudin-Osher-Fatemi, > 18,000 citations

$$\partial_t u = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) - \lambda (u - u_0)$$

Remarks about the model:

- Numerous extensions (4th order, anisotropic)
- Model justified by optimization considerations

Generic smoothed model: With λ regularization parameter

$$\partial_t u = \underbrace{\operatorname{div} \left(\varphi(\nabla u) \, \nabla u \right)}_{\operatorname{smoothing} + \operatorname{edges}} - \underbrace{\lambda \left(u - u_0 \right)}_{\operatorname{stay close to original } u_0}$$

Oslo 2023

73 / 77

An implementation from Osher-Solé-Vese (2003) Corrupted image:

Restored image:

Features from PDEs

Basic idea:

- Use regularity structures methods to expand the PDE
 → Produces a hierarchy of linear PDEs
- Use the solutions to this family of PDEs as features

Justification:

- Smoothing methods already been used for representation
- $\bullet \ {\sf Regularity \ structures} \longrightarrow {\sf algebraic/analytic \ machinery}$
- Approach already used by Chevyrev-Gerasimovics-Weber

A generic coefficient

Method implemented:

- Taken from Otto-Sauer-Smith-Weber, using multiindex notation
- Below \mathcal{E}_m is an awful index set

Basic operator: We set

$$\mathcal{A}_0 = \varphi_0 \Delta u - \lambda u$$

Hierarchy of PDEs: We get

$$\left(\partial_t - \mathcal{A}_0\right) \Pi_{\mathbf{x}m} = \sum_{n,k,p,m_p^k,m^{k+1} \in \mathcal{E}_m} \operatorname{div}\left(\left(\prod_{l=1}^d \prod_{j=1}^{n(l)} \nabla^{(k)} \Pi_{\mathbf{x}m_j^l}\right) \nabla \Pi_{\mathbf{x}m^{k+1}}\right)$$

References

- Osher, Stanley; Solé, Andrés; Vese, Luminita.
 Image decomposition and restoration using total variation minimization and the H¹ norm.
 Multiscale Model. Simul.1, 2003
- Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad.
 Nonlinear total variation based noise removal algorithms.
 Phys. D, 1992
- Felix Otto, Jonas Sauer, Scott Smith, Hendrik Weber. A priori bounds for quasi-linear SPDEs in the full sub-critical regime.

Arxiv preprint, 2021.