An overview of 2-d signatures methods

Samy Tindel
Purdue University

Mini-Courses: Rough Paths, Signatures, and their applications in Machine Learning

BI - Oslo - November 2023

Joint works with

- Guang Lin and Sheng Zhang
- Joscha Diehl, Kurusch Ebrahimi-Fard and Fabian Harang

Signatures for images (ongoing CAS project)

Figure: Fragmented glass

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature

4 A PDE perspective on 2d-signatures

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2 d -signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature

4 A PDE perspective on 2d-signatures

A basic classification task

Data:

- Points $\mathbf{X}=\left\{\mathbf{x}_{i} ; i=1, \ldots, n\right\}$ with $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- Labels $\left\{y_{i} ; i=1, \ldots, n\right\}$ with $y_{i} \in\{0,1\}$
- When labels are known, the learning is supervised

Aim:

- Find a proper separation between labels 0 and labels 1

Linear separation

Separation using hyperplanes:

- We use a classification
$\hat{y}=\operatorname{sign}(\mathbf{v} \cdot \mathbf{x})$
- v optimized
\hookrightarrow According to our data:
$\mathbf{v}=\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left\|\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)-y_{i}\right\|^{2}$

Figure: Separation of 2 subgroups according to H_{1}, H_{2}, H_{3}

Separation using neural networks

Definition of the multilayer neural network:

- Recursion $\mathbf{x}^{k+1}=S\left(\mathbf{w}^{k} \mathbf{x}^{k}+\mathbf{d}^{k}\right)$ for $k=0, \ldots, n_{\text {layer }}$
- \mathbf{w}^{k} matrix-valued, \mathbf{d}^{k} vector-valued
- S defined componentwise by σ below
- \mathbf{w}^{k} and \mathbf{d}^{k} to be optimized

Figure: Sigmoid $\sigma(x)=\frac{2}{\pi} \tanh (x)$ and $\operatorname{ReLU} \sigma(x)=\max \{x, 0\}$

Feature extraction problem

Objection to previous situation:

- In classification problem, \mathbf{X} was supposed to be fixed
- If \mathbf{X} is high-dimensional, this might be a problem
\hookrightarrow feature extraction needed

Machine Learning

Feature extraction (2)

Main goal of feature extraction: Given input \mathbf{X}

- extract information to be fed as additional input to the machine learning algorithm
- Be sparse in the additional input:
- more information given
\Longrightarrow more computationally expensive learning task
- Unnecessary noise added with more information

Wishlist for good features:

- Computationally efficient
- Accurate description of the data distribution
- If possible: interpretable.

References

园 Bensoussan, A., Zhou, X. et al (2020). Machine learning and control theory. arXiv preprint arXiv:2006.05604.

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2 d -signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Notation for 1-d parameter signature

Signal: We first consider a \mathbb{R}^{d}-valued

$$
x=\left\{x_{s}^{i} ; s \in[0, T], i=1 \ldots, d\right\}
$$

Second order 1-d signature: For our signal x

$$
\begin{aligned}
\mathbf{x}_{s t}^{1, i_{1}} & =x_{t}^{i_{1}}-x_{s}^{i_{1}}=\int_{s<r_{1}<t} \mathrm{~d} x_{r_{1}}^{i_{1}} \\
\mathbf{x}_{s t}^{2, i_{1}, i_{2}} & =\int_{s<r_{1}<r_{2}<t} \mathrm{~d} x_{r_{1}}^{i_{1}} \mathrm{~d} x_{r_{2}}^{i_{2}} .
\end{aligned}
$$

Signature as a feature

Claim:

- Signature is a good feature for the signal x

Some properties to review:
(1) Natural feature
(2) Algebraic properties
(0) Analytic properties
(9) Accurate description of the path

- Computationally efficient
(0) Possibility of interpretation

The founding fathers

Brief history survey:

- K. T. Chen, 50s: Structure of iterated-integrals signatures
- K. Itô, 50s: Itô stochastic calculus
- T. Lyons, 90s: Theory of rough paths.

Signatures are natural features (1)

Notation: For a function $z:[0, T] \rightarrow \mathbb{R}^{d}$,

$$
\delta z_{s t}=z_{t}-z_{s}
$$

Change of variable formula: Consider smooth functions

- $x:[0, T] \rightarrow \mathbb{R}^{d}$
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

Then we have

$$
\delta f(x)_{s t}=\int_{s \leq r_{1} \leq t} \partial_{i_{1}} f\left(x_{r_{1}}\right) \mathrm{d} x_{r_{1}}^{i_{1}}
$$

Signatures are natural features (2)

Iterating change of variable: Write

$$
\begin{aligned}
& \delta f(x)_{s t}=\int_{s \leq r_{1} \leq t} \partial_{i_{1}} f\left(x_{r_{1}}\right) \mathrm{d} x_{r_{1}}^{i_{1}} \\
& =\partial_{i_{1}} f\left(x_{s}\right) \int_{s \leq r_{1} \leq t} \mathrm{~d} x_{r_{1}}^{i_{1}}+\int_{s \leq r_{1} \leq t} \delta\left[\partial_{i_{1}} f(x)\right]_{s_{r_{1}}} \mathrm{~d} x_{r_{1}}^{i_{1}} \\
& =\partial_{i_{1}} f\left(x_{s}\right) \int_{s \leq r_{1} \leq t} \mathrm{~d} x_{r_{1}}^{i_{1}}+\int_{s \leq r_{2} \leq r_{1} \leq t} \partial_{i_{1} i_{2}} f\left(x_{r_{2}}\right) \mathrm{d} x_{r_{2}}^{i_{2}} \mathrm{~d}_{r_{1}}^{i_{1}} \\
& =\partial_{i_{1}} f\left(x_{s}\right) \int_{s \leq r_{1} \leq t} \mathrm{~d} x_{r_{1}}^{i_{1}}+\partial_{i_{1} i_{2}} f\left(x_{s}\right) \int_{s \leq r_{2} \leq r_{1} \leq t} \mathrm{~d} x_{r_{2}}^{i_{2}} \mathrm{~d} x_{r_{1}}^{i_{1}} \\
& \quad+\int_{s \leq r_{2} \leq r_{1} \leq t} \delta\left[\partial_{i_{1} i_{2}} f(x)\right]_{s r_{2}} \mathrm{~d} x_{r_{2}}^{i_{2}} \mathrm{~d} x_{r_{1}}^{i_{1}}
\end{aligned}
$$

Signatures are natural features (3)

Approximations in change of variable: For a smooth enough f,

$$
f\left(x_{t}\right)-f\left(x_{s}\right) \simeq \sum_{i_{1}} \partial_{i_{1}} f\left(x_{s}\right) x_{s t}^{1, i_{1}}+\sum_{i_{1}, i_{2}} \partial_{i_{1}, i_{2}}^{2} f\left(x_{s}\right) x_{s t}^{2, i_{1}, i_{2}}
$$

This is one of the reasons why signatures are natural features
Full signature: For higher order approximations one can recur to

$$
\begin{equation*}
[S(x)]_{s t}=1+\sum_{n=1}^{\infty} \int_{s<r_{1}<r_{2}<\cdots<r_{n}<t} \mathrm{~d} x_{r_{1}} \otimes \mathrm{~d} x_{r_{2}} \otimes \cdots \otimes \mathrm{~d} x_{r_{n}} \tag{1}
\end{equation*}
$$

Next aim: Give a proper meaning to (1)

Where do signatures live (1)?

Words: Define a set of words $\mathcal{W}=\cup_{n \geq 0} \mathcal{W}_{n}$ with

$$
\begin{aligned}
& \mathcal{W}_{n}=\left\{w=\left(i_{1}, \ldots, i_{n}\right)\right. \\
& \left.\quad n \geq 0 \text { and } i_{j} \in\{1, \ldots, d\} \text { for all } j=1, \ldots, n\right\}
\end{aligned}
$$

Notation for simplexes: For $a<b$ we set

$$
\Delta_{a, b}^{n}=\left\{r \in[0, T]^{n} ; a \leq r^{1} \leq \cdots \leq r^{n} \leq b\right\}
$$

Evaluation on words: For $w=\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{W}$ we set

$$
\left\langle S_{s t}(x), w\right\rangle=\int_{\Delta_{[s, t]}^{n}} \mathrm{~d} x_{r^{1}}^{i_{1}} \cdots \mathrm{~d} x_{r^{n}}^{i_{n}}
$$

Where do signatures live (2)?

Tensor algebra: We set

$$
\mathcal{T}\left(\mathbb{R}^{d}\right)=\bigoplus_{n=0}^{\infty}\left(\mathbb{R}^{d}\right)^{\otimes n}
$$

Canonical basis for \mathbb{R}^{d} :

$$
\left(e_{1}, \ldots, e_{d}\right)
$$

Canonical basis for $\mathcal{T}\left(\mathbb{R}^{d}\right)$:

$$
\left\{e_{w}=e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} ; w=\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{W}\right\}
$$

Where do signatures live (3)?

Signature as evaluation: We see $S_{\text {st }}(x)$ as a linear map,

$$
S_{s t}(x): \mathcal{T}\left(\mathbb{R}^{d}\right) \longrightarrow \mathbb{R}, \quad e_{w} \longmapsto\langle S(x), w\rangle_{s t}
$$

Tensor series: We also write

$$
S(x)=\sum_{w \in \mathcal{W}}\langle S(x), w\rangle e_{w}, \quad \text { and } \quad S_{s t}(x) \in \mathcal{T}\left(\left(\mathbb{R}^{d}\right)\right)
$$

Chen's algebraic relation (1)

Notation for products: For $g, h \in \mathcal{T}\left(\left(\mathbb{R}^{d}\right)\right)$,

$$
[g \otimes h]^{n}=\sum_{k=0}^{n} g^{n-k} \otimes h^{k}
$$

Notation for simplexes: For $a<b$ we set

$$
\Delta_{a, b}^{n}=\left\{r \in[0, T]^{n} ; a \leq r^{1} \leq \cdots \leq r^{n} \leq b\right\} .
$$

Chen's algebraic relation (2)

Theorem 1.

Consider

- $x:[0, T] \rightarrow \mathbb{R}^{d}$ differentiable path
- $S(x)$ its signature seen as an element of $\mathcal{T}\left(\left(\mathbb{R}^{d}\right)\right)$
- $(s, u, t) \in \Delta^{3}$

Then

$$
S_{s u}(x) \otimes S_{u t}(x)=S_{s t}(x)
$$

Shuffle algebraic identity (1)

Shuffle of permutations: Consider

$$
\sigma \in \Sigma_{\{1, \ldots, n\}}, \quad \text { and } \quad \tau \in \Sigma_{\{n+1, \ldots, n+k\}} .
$$

Then we set
$\operatorname{Sh}(\sigma, \tau)=\left\{\rho \in \Sigma_{\{1, \ldots, n+k\}} ; \rho\right.$ does not change the order of σ and $\left.\tau\right\}$
Example: Take

$$
\sigma=\{1,3,2\} \in \Sigma_{\{1,2,3\}}, \quad \tau=\{5,4\} \in \Sigma_{\{4,5\}}
$$

Then

$$
\rho=\{1,5,3,2,4\} \in \operatorname{Sh}(\sigma, \tau)
$$

Shuffle algebraic identity (2)

Theorem 2.

Consider

- $x:[0, T] \rightarrow \mathbb{R}^{d}$ differentiable path
- $S(x)$ its signature seen as an element of $\mathcal{T}\left(\left(\mathbb{R}^{d}\right)\right)$
- $(s, t) \in \Delta^{2}$
- w, w^{\prime} two words in \mathcal{W}

Then

$$
\left\langle S_{s t}(x), w\right\rangle\left\langle S_{s t}(x), w^{\prime}\right\rangle=\sum_{\phi \in \operatorname{Sh}\left(w, w^{\prime}\right)} \int_{\Delta_{s t}^{n+t^{\prime}}} \prod_{i=1}^{n+n^{\prime}} \mathrm{d} x_{r_{i}}^{\hat{w}_{\phi(i)}}
$$

Two basic analytic relations

Theorem 3.

Consider

- $x:[0, T] \rightarrow \mathbb{R}^{d}$ differentiable path
- $S(x)$ its signature seen as an element of $\mathcal{T}\left(\left(\mathbb{R}^{d}\right)\right)$
- $(s, t) \in \Delta^{2}$ and w, w^{\prime} two words in \mathcal{W}

Then
(1) Denoting $x^{\phi}=x \circ \phi$, we have an invariance,

$$
[S(x)]_{\phi(s) \phi(t)}=S\left(x^{\phi}\right)_{s t}
$$

(2) The following analytic estimate holds true,

$$
\left\|S_{n}(x)\right\| \leq \frac{\left(C_{\sigma, x}\right)^{n}}{n!}
$$

Computational efficiency

Example of discretization of : Consider

- The element $\left\langle S_{0, T}(x),(1,2)\right\rangle$ in the signature
- $\left\{t_{i}=t_{i}^{n} ; 0 \leq i \leq n\right\}$ uniform partition of $[0, T]$

Then

(1) We have

$$
\left\langle S_{0, T}(x),(1,2)\right\rangle \simeq \sum_{i=0}^{n-1}\left(\delta x_{0 t_{i-1}}^{1}+\delta x_{t_{i-1} t_{i}}^{1}\right) \delta x_{t_{i} t_{i+1}}^{2}
$$

(2) This requires $O(n)$ operations

Interpretation of double iterated integral

Illustration:

Figure: Left: $\langle S(x),(1,2)\rangle$ and Right: $\langle S(x),(2,1)\rangle$
Interpretation:

- If $\left\langle S_{0, T}(x),(1,2)\right\rangle$ is large, then x^{2} goes faster than x^{1}
- If $\left\langle S_{0, T}(x),(2,1)\right\rangle$ is large, then x^{1} goes faster than x^{2}

Characterization of paths

Basic characterization: For two bounded variation paths,

$$
S(x)_{01}=S(y)_{01} \quad \text { iff } \quad x \sim y,
$$

where $x \sim y$ means that x, y only differs by a tree-like path
Some references:

- Characterization: Lyons-Hambly '10
- Characterization, rough paths setting: Boedihardjo, Geng, Lyons, Yang '16
- Reconstruction in the \mathcal{C}^{1} case: Lyons-Xu '18
- Reconstruction in the Hölder case: Xi Geng '17

1-d signatures and data analysis

Bottomline: 1-d signatures are successful features \hookrightarrow for numerous data analysis procedures

Classical examples (Lyons and collaborators):

- Chinese character recognition
- Finance time series
- Topological data analysis
- Diagnosis prediction

A study on Alzheimer disease

Illustration:

Figure: Comparison of $\langle S(x),(1,2)\rangle$, where $1=$ Hippocampus, $2=$ Whole brain

References

Friz, Peter K. and Victoir, Nicolas B.
Multidimensional stochastic processes as rough paths
Cambridge University Press, 2010
围 Geng, Xi
Reconstruction for the signature of a rough path. Proceedings of the London Mathematical Society, 2017

囲 Hambly, Ben and Lyons, Terry
Uniqueness for the signature of a path of bounded variation and the reduced path group.
Annals of Mathematics, 2010

References

Ryons, Terry; Ni, Hao and Oberhauser, Harald A feature set for streams and an application to high-frequency financial tick data
Proceedings of the 2014 BigDataScience, 2014
囦 Moore, P. J.; Lyons, T. J. and Gallacher, J.
Using path signatures to predict a diagnosis of Alzheimer's disease
PLOS ONE, 2019

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature

4 A PDE perspective on 2d-signatures

Notation for calculus in the plane

Basic notation for points in the plane:

Rectangles: We set

$$
R=[\mathbf{s}, \mathbf{t}]:=\left[s_{1}, t_{1}\right] \times\left[s_{2}, t_{2}\right], \quad \text { and } \quad[\mathbf{0}, \mathbf{T}]=[0, T]^{2}
$$

Notation for 2d-signatures

Field: We first consider a \mathbb{R}^{d}-valued

$$
X=\left\{X_{\mathrm{s}}^{i}=X_{s_{1} ; s_{2}}^{i} ; \mathbf{s} \in[\mathbf{0}, \mathbf{T}], i=1 \ldots, d\right\}
$$

where $i \equiv$ color (rgb) for an image
Differentials: We set

$$
\begin{aligned}
\mathrm{d}^{i} X_{\mathrm{r}} & =\mathrm{d}_{12} X_{s ; t}^{i}
\end{aligned}=\partial_{12} X_{\mathrm{r}}^{i} \mathrm{~d} r_{1} \mathrm{~d} r_{2},{ }_{2} \hat{\mathrm{~d}}^{i j} X_{\mathrm{r}}=\mathrm{d}_{\hat{1} \hat{2}} X_{s ; t}^{i j}=\partial_{1} X_{\mathrm{r}}^{i} \partial_{2} X_{\mathrm{r}}^{j} \mathrm{~d} r_{1} \mathrm{~d} r_{2} .
$$

How do 2d-signatures show up?

Rectangular increment: For a field X we set

$$
\square_{\mathrm{s}, \mathrm{t}} X:=X_{t_{1} ; t_{2}}-X_{s_{1} ; t_{2}}-X_{t_{1} ; s_{2}}+X_{s_{1} ; s_{2}}
$$

Change of variable in the plane:

$$
\square_{\mathrm{s}, \mathrm{t}} f(X)=\int_{[\mathrm{s}, \mathrm{t}]} \partial_{i} f\left(X_{\mathrm{r}}\right) \mathrm{d}^{i} X_{\mathrm{r}}+\int_{[\mathrm{s}, \mathrm{t}]} \partial_{i j} f\left(X_{\mathrm{r}}\right) \hat{\mathrm{d}}^{i j} X_{\mathrm{r}} .
$$

Problem:
Proper iteration of this formula for approximations

Part of a second order signature

Some elements of the signature:

Increment	Interpretation	Regularity	Increment	Interpretation
$\mathbf{x}^{1 ; 2}$	$\iint_{2} d_{12} x$	(γ_{1}, γ_{2})	$\mathbf{x}^{1,2}$	$\int_{1} \int_{2} d_{\hat{1} \hat{2}} x$
$\mathbf{x}^{11 ; 02}$	$\int_{1} d_{1} x \int_{2} d_{12} x$	$\left(2 \gamma_{1}, \gamma_{2}\right)$	x^{11002}	$\int_{1} d_{1} x \int_{2} d_{\hat{1} \hat{2}} x$
$\mathrm{x}^{01 ; 22}$	$\int_{2} d_{2} x \int_{1} d_{12} x$	$\left(\gamma_{1}, 2 \gamma_{2}\right)$	$\mathrm{x}^{01 \hat{1}^{12}}$	$\int_{2} d_{2} x \int_{1} d_{\hat{1} \hat{2}} x$
$\mathbf{x}^{11 ; 22}$	$\int_{1} \int_{2} d_{12} x d_{12} x$	($2 \gamma_{1}, 2 \gamma_{2}$)	$\mathbf{x}^{11,2 \hat{2}}$	$\int_{1} \int_{2} d_{12} x d_{\hat{1} \hat{2}} x$
$\mathrm{x}^{\text {i1; }}$ 22 2	$\int_{1} \int_{2} d_{\hat{1} \hat{2}} x d_{12} x$	($2 \gamma_{1}, 2 \gamma_{2}$)	$\mathrm{x}^{\text {11, }{ }^{\text {22 }}}$	$\int_{1} \int_{2} d_{1 \hat{1} \hat{2}} x d_{\hat{1} \hat{2}} x$

References on rough sheets:

- Chouk-Gubinelli, unpublished
- Chouk-T, EJP '15, Skorohod-Stratonovich corrections

Other properties of 2-d signatures

Algebraic and analytic properties:

- Not clear, since the notion of signature is not clear
- Coordinate-wise reparametrization invariance
- Signatures generated by Jacobian minor operators \hookrightarrow in Giusti, Lee, Nanda, Oberhauser
- Signatures generated by line integrals \hookrightarrow in Diehl, Ebrahimi-Farad, Tapia
- Non-commutative Stokes point of view \hookrightarrow in Lee-Oberhauser
- Overall, still a lot to be done

A modest goal

Our aim:

- Explore data analysis properties of 2d-signatures
- Simple numerical experiment on texture classification \hookrightarrow in order to see if this makes sense empirically
- Try to find a signature for 2 d-objects which has
(1) Simple enough structure
(2) Good algebraic-analytic properties
(Good discriminating properties

References

R Chouk, Khalil and Gubinelli, Massimiliano Rough sheets Arxiv preprint, 2013

嗇 Chouk, Khalil and Tindel, Samy Skorohod and Stratonovich integration in the plane Electronic Journal of Probability, 2015
R Giusti, Chad; Lee, Darrick; Nanda, Vidit and Oberhauser, Harald A topological approach to mapping space signatures arXiv preprint, 2022

䍰 Diehl, Joscha; Ebrahimi-Fard, Kurusch; Tapia, Nikolas Generalized iterated-sums signatures J. Algebra 632 (2023), 801-824.

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Texture dataset

- 42 textures
- Dataset: CuRRET
- Supervised class. procedure

Supervised learning

Procedure:

- We randomly sample (100×100)-sized images from each texture
- 10 samples from every texture used for training
- 100 images from every texture sampled for testing

Figure: Ten samples from the texture "21-Lettuce Leaf"

2d-simplexes

Points in the plane: Consider

- $\mathbf{s}=\left(s_{1}, s_{2}\right)$ in $[0, T]^{2}$
- $\mathbf{t}=\left(t_{1}, t_{2}\right)$ in $[0, T]^{2}$
- $s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$

2d-simplexes:

$$
\begin{align*}
\Delta_{[\mathrm{s}, \mathrm{t}]}^{n}:= & \Delta_{s_{1}, t_{1}}^{n} \times \Delta_{s_{2}, t_{2}}^{n}=\left\{\left(\mathbf{r}^{1}, \ldots, \mathbf{r}^{n}\right) \in\left([0, T]^{2}\right)^{n}\right. \\
& \left.s_{1} \leq r_{1}^{1} \leq \cdots \leq r_{1}^{n} \leq t_{1} \text { and } s_{2} \leq r_{2}^{1} \leq \cdots \leq r_{2}^{n} \leq t_{2}\right\} \tag{2}
\end{align*}
$$

Features

A list of features: We include discretized versions of

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(1,2) ; i}=\int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d}^{i} x_{\mathrm{r}_{1}}^{i} \\
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(\hat{1} \hat{2}) ; i}=\int_{[\mathrm{s}, \mathrm{t}]} \hat{\mathrm{d}}^{i i} x_{\mathrm{r}_{1}}^{i} \\
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(11,22) ; i i}=\int_{\Delta_{\mathrm{s}, \mathrm{t}}^{2}} \mathrm{~d}^{i} x_{\mathrm{r}_{1}}^{i} \mathrm{~d}^{i} x_{\mathrm{r}_{2}}^{i} \\
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(\hat{\mathrm{s}} \hat{1} \hat{2} \hat{2}) ; i i}=\int_{\Delta_{\mathrm{s}, \mathrm{t}}^{2}} \hat{\mathrm{~d}}^{i} x_{\mathrm{r}_{1}}^{i} \hat{\mathrm{~d}}^{i j} x_{\mathrm{r}_{2}}^{i} \\
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(1 \hat{1}, 2 \hat{2}) ; i i}=\int_{\Delta_{\mathrm{s}, \mathrm{t}}^{2}} \mathrm{~d}^{i} x_{r_{1}}^{i} \hat{\mathrm{i}}^{i i} x_{r_{2}}^{i} \\
& \mathbf{X}_{\mathrm{s}, \mathrm{t}}^{(\hat{\mathrm{s} 1}, \hat{2}) ; i i}=\int_{\Delta_{\mathrm{s}, \mathrm{t}}^{2}} \hat{\mathrm{~d}}^{i i} x_{\mathrm{r}_{1}}^{i} \mathrm{~d}^{i} x_{\mathrm{r}_{2}}^{i}
\end{aligned}
$$

More about the procedure

Rotations:

- We average our features (See Mallat-Sifre)
\hookrightarrow over $\frac{\pi}{2}$ rotations
Dimension of feature space:
- For $\mathbf{X}_{s, t}^{(1,2) ; i}$, i.e rectangular increments \hookrightarrow PCA on all small increments
- Number of PCA components ≤ 40
- Overall, feature dimension ≤ 52
\hookrightarrow Considered as small
Classification method:
- Random forests

Outcome 1: visualization

Projection using t-distributed stochastic neighbor embedding:

- 01-Felt
- 02-Polyester
- 03-Terrycloth
- 04-Rough_Plastic
- 05-Leather
- 06-Sandpaper
- 07-Velvet
- 08-Pebbles
- 09-Frosted_Glass
- 10-Plaster
- 11-Tree _Bark

12-Artificial_Grass

- 13-Roofing_Shingle

14-Aluminum_Foil

- 15-Cork

16-Rough_Tile
17-Rug
-18-Styrofoam
19-Sponge

- 20-Lamb_Wool
- 21-Lettuce_Leaf

22-Rabbit_Fur
23-Quarry_Tile

- 24-Loofa
- 25-Insulation

26-Crumpled_Paper
27-Slate 28-Painted_Spheres 29-Limestone 30-Straw 31-Brick 32-Corduroy

- 33-Salt_Crystals
- 34-Linen
-35-Cotton
-36-Aquarium_Stones
- 37-Concrete
- 38-Corn_Husk
- 39-Bread
- 40-Soleirolia_Plant

41-Wood
42-Cracker

Outcome 2: accuracy

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Brief summary

Conclusion 1:

- Signatures based on 2-d increments are worth exploring

Conclusion 2:

- We should look for simple enough structures
- At least simpler than structure from calculus in the plane

References

R Zhang, Sheng and Lin, Guang and Tindel, Samy Two-dimensional signature of images and texture classification Proceedings of the Royal Society A, 2022

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2 d -signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

2d-simplexes (repeated)

Points in the plane: Consider

- $\mathbf{s}=\left(s_{1}, s_{2}\right)$ in $[0, T]^{2}$
- $\mathbf{t}=\left(t_{1}, t_{2}\right)$ in $[0, T]^{2}$
- $s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$

2d-simplexes:

$$
\begin{align*}
\Delta_{[\mathrm{s}, \mathrm{t}]}^{n}:= & \Delta_{s_{1}, t_{1}}^{n} \times \Delta_{s_{2}, t_{2}}^{n}=\left\{\left(\mathbf{r}^{1}, \ldots, \mathbf{r}^{n}\right) \in\left([0, T]^{2}\right)^{n}\right. \\
& \left.s_{1} \leq r_{1}^{1} \leq \cdots \leq r_{1}^{n} \leq t_{1} \text { and } s_{2} \leq r_{2}^{1} \leq \cdots \leq r_{2}^{n} \leq t_{2}\right\} \tag{3}
\end{align*}
$$

Definition of the simple signature

Definition 4.

Consider

- \mathbf{s}, \mathbf{t} in $[0, T]^{2}$
- $w=\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{W}$

Then we set

$$
\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w\right\rangle=\int_{\Delta_{[\mathrm{s}, \mathrm{t}]}^{n}} \mathrm{~d}^{\mathrm{i}_{1}} X_{\mathrm{r}^{1}} \cdots \mathrm{~d}^{\mathrm{i}^{n}} X_{r^{n}}
$$

Recursive definition: We also have

$$
\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w\right\rangle=\int_{[\mathrm{s}, \mathrm{t}]}\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{r}}^{\mathrm{Id}}(X),\left(i_{1}, \ldots, i_{n-1}\right)\right\rangle \mathrm{d}^{\mathrm{i}_{n}} X_{\mathrm{r}}
$$

How does the simple signature show up?

Equation: Let

- $X:[0, T]^{2} \rightarrow \mathbb{R}^{d}$
- $v \in \mathbb{R}^{d}$ and $\left\{A^{i} ; i=1, \ldots, d\right\}$ matrices in $\mathbb{R}^{d, d}$

Then let Y be the solution to

$$
Y_{\mathbf{t}}=v+\sum_{i=1}^{d} \int_{[\mathrm{s}, \mathrm{t}]} A^{i} Y_{\mathbf{r}} \mathrm{d}^{i} X_{\mathbf{r}}
$$

Expansion: Y can be formally expanded as

$$
\square_{\mathrm{s}, \mathrm{t}} Y=\sum_{w \in \mathcal{W}} A^{o w} v\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w\right\rangle
$$

Lack of shuffle property (1)

Desirable property: Take

- $\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\text {Id }}(X), w_{1}\right\rangle$ and $\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w_{2}\right\rangle$ in the signature

We wish to have

$$
\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w_{1}\right\rangle\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w_{2}\right\rangle=\sum \text { Elements of the signature }
$$

Simple example: Consider $X:[0, T]^{2} \rightarrow \mathbb{R}$ and

- $\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w_{1}\right\rangle=\int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{r}}$
- $\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}^{\mathrm{Id}}(X), w_{2}\right\rangle=\int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{v}}$

Then define

$$
\Pi_{\mathrm{s}, \mathrm{t}}=\int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{r}} \int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{v}}
$$

Lack of shuffle property (2)

Relation for Π : Recall that

$$
\Pi_{\mathrm{s}, \mathrm{t}}=\int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{r}} \int_{[\mathrm{s}, \mathrm{t}]} \mathrm{d} X_{\mathrm{v}}
$$

Then

$$
\Pi_{\mathrm{s}, \mathbf{t}}=\underbrace{\int_{\Delta_{\mathrm{s}, \mathrm{t}]}^{2}} \mathrm{~d} X_{r_{1}^{1} ; r_{2}^{1}} \mathrm{~d} X_{r_{1}^{2} ; r_{2}^{2}}}_{\Pi_{\mathrm{s}, \mathrm{t}}^{1}}+\underbrace{\int_{\Delta_{[\mathrm{s}, \mathrm{t}]}^{2}} \mathrm{~d} X_{r_{1}^{1} ; r_{2}^{2}} \mathrm{~d} X_{r_{1}^{2} ; r_{2}^{1}}}_{\Pi_{\mathrm{s}, \mathrm{t}}^{2}}
$$

Identifying Π^{1} : One can easily see that

$$
\Pi_{\mathrm{s}, \mathrm{t}}^{1}=\langle\mathbf{S}(X),(1,1)\rangle_{\mathrm{s}, \mathrm{t}}
$$

Lack of shuffle property (3)

Problem with Π^{2} : Recall that

$$
\Pi_{\mathrm{s}, \mathrm{t}}^{2}=\int_{\Delta_{[\mathrm{s}, \mathrm{t}}^{2}} \mathrm{~d} X_{r_{1}^{1} ; r_{2}^{2}} X_{r_{1}^{2} ; r_{2}^{1}}
$$

Then

- This object is not in the signature
- This is due to the permutation $r_{2}^{2} \longleftrightarrow r_{2}^{1}$

Remark:

- This problem with permutations pops up at many places
- We thus introduce a new signature involving permutations

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2d-signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Definition of extended words

Definition 5.

For $n \geq 1$ we set

$$
\hat{\mathcal{W}}_{n}=\left\{(w, \nu) \mid w \in \mathcal{W}_{n}, \text { and } \nu \in \Sigma_{\{1, \ldots, n\}}\right\}
$$

Then the set of extended words is given by

$$
\hat{\mathcal{W}}=\bigcup_{n=0}^{\infty} \hat{\mathcal{W}}_{n}
$$

2d-simplexes (repeated)

Points in the plane: Consider

- $\mathbf{s}=\left(s_{1}, s_{2}\right)$ in $[0, T]^{2}$
- $\mathbf{t}=\left(t_{1}, t_{2}\right)$ in $[0, T]^{2}$
- $s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$

2d-simplexes:

$$
\begin{align*}
\Delta_{[\mathrm{s}, \mathrm{t}]}^{n}:= & \Delta_{s_{1}, t_{1}}^{n} \times \Delta_{s_{2}, t_{2}}^{n}=\left\{\left(\mathbf{r}^{1}, \ldots, \mathbf{r}^{n}\right) \in\left([0, T]^{2}\right)^{n}\right. \\
& \left.s_{1} \leq r_{1}^{1} \leq \cdots \leq r_{1}^{n} \leq t_{1} \text { and } s_{2} \leq r_{2}^{1} \leq \cdots \leq r_{2}^{n} \leq t_{2}\right\} \tag{4}
\end{align*}
$$

Definition of the extended signature

Definition 6.

Consider

- \mathbf{s}, \mathbf{t} in $[0, T]^{2}$
- $(w, \nu) \in \hat{\mathcal{W}}_{n}$ with
- $w=\left(i_{1}, \ldots, i_{n}\right)$
- $\nu \in \Sigma_{\{1, \ldots, n\}}$

Then we set

$$
\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}(X),(w, \nu)\right\rangle=\int_{\Delta_{[s, t]}^{n}} \prod_{i=1}^{n} \mathrm{~d} X^{w_{i}}\left(r_{1}^{i}, r_{2}^{\nu_{i}}\right)
$$

Claim:
This extended signature has good algebraic properties

Shuffle of words

Definition 7.

Let

- $n \geq 1, k \geq 1$
- Word $w=\left(i_{1}, \ldots, i_{n}\right)$
- Word $v=\left(j_{1}, \ldots, j_{k}\right)$
- $[w, v]=\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{k}\right)$

Then the shuffle of v and w is given by

$$
\operatorname{Sh}(w, v)=\{\text { Permutations of }[w, v] ;
$$

orders of w and v are not changed $\}$

Shuffle of permutations

Definition 8.

Let

- $n \geq 1, k \geq 1$
- Permutation $\sigma \in \Sigma_{\{1, \ldots, n\}}$
- Permutation $\tau \in \Sigma_{\{n+1, \ldots, n+k\}}$
- $[w, v]=\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{k}\right)$

Then the shuffle of σ and τ is given by

$$
\operatorname{Sh}(\sigma, \tau)=\left\{\rho \in \Sigma_{\{1, \ldots, n+k\}} ;\right.
$$

ρ does not change the order of σ and $\tau\}$

Shuffle relation

Theorem 9.

Let

- $X:[0, T]^{2} \rightarrow \mathbb{R}^{d}$ smooth path
- \mathbf{s}, \mathbf{t} in $[0, T]^{2}$
- (w, ν) and $\left(w^{\prime}, \nu^{\prime}\right)$ elements of $\hat{\mathcal{W}}$

Then we have

$$
\begin{aligned}
& \left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}(X),(w, \nu)\right\rangle\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}(X),\left(w^{\prime}, \nu^{\prime}\right)\right\rangle \\
& =\sum_{\phi \in \operatorname{Sh}\left(w, w^{\prime}\right)} \sum_{\rho \in \operatorname{Sh}\left(\nu, \nu^{\prime}\right)}\left\langle\mathbf{S}_{\mathrm{s}, \mathrm{t}}(X),\left(\phi\left(\left[w, w^{\prime}\right]\right), \rho \circ \phi\left(\left[\nu, \nu^{\prime}\right]\right)\right)\right\rangle
\end{aligned}
$$

Other results and perspectives

Other results:
(1) Partial versions of Chen's relations

- Splits in direction 1 and 2
- Symmetrized signature
(2) Invariances by change of variables

Perspectives:
(1) Full algebraic setting for Chen
(2) Relation with stochastic calculus in the plane
(3) Relation with non-commutative Stokes theorem

Outline

(1) 1-d signatures as features

- A motivation for feature extraction
- Basic properties of 1-d signatures
(2) Introducing 2d-signatures
- Basic properties of 2 d -signatures
- Numerical experiment
(3) Extended signature in the plane
- A very simple signature
- The extended signature
(4) A PDE perspective on 2d-signatures

Brief summary

Examples of natural notions of 2d-signatures: Based on

- Calculus in the plane
- Jacobian minors
- Noncommutative Stokes

Another natural notion: Based on

- PDEs for image processing

Smoothing an image

Setting: We consider

- $u_{0}: \Omega \equiv[0, T]^{2} \rightarrow \mathbb{R} \quad$ (original noisy image)
- G_{σ} Gaussian kernel

Smoothed version: For σ to be calibrated,

$$
u_{\sigma}=G_{\sigma} * u_{0}
$$

PDE version: u_{σ} can also be computed through

$$
\begin{cases}\partial_{t} u=\operatorname{div}(\nabla u), & \text { in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}=0, & \text { on } \partial \Omega\end{cases}
$$

Modulating the diffusion

Problem with diffusion equation:

- Images become very blurry
- Main problem: respect the corners and edges
- Solution: smaller diffusion when gradient is large

New equation: For g decaying at ∞,

$$
\begin{cases}\partial_{t} u=\operatorname{div}(g(|\nabla u|) \nabla u), & \text { in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}=0, & \text { on } \partial \Omega\end{cases}
$$

A class of PDEs for image processing

Basic model: By Rudin-Osher-Fatemi, $>18,000$ citations

$$
\partial_{t} u=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)-\lambda\left(u-u_{0}\right)
$$

Remarks about the model:

- Numerous extensions (4th order, anisotropic)
- Model justified by optimization considerations

Generic smoothed model: With λ regularization parameter

$$
\partial_{t} u=\underbrace{\operatorname{div}(\varphi(\nabla u) \nabla u)}_{\text {smoothing }+ \text { edges }}-\underbrace{\lambda\left(u-u_{0}\right)}_{\text {stay close to original } u_{0}}
$$

An implementation from Osher-Solé-Vese (2003)

Corrupted image:

Restored image:

Features from PDEs

Basic idea:

- Use regularity structures methods to expand the PDE \hookrightarrow Produces a hierarchy of linear PDEs
- Use the solutions to this family of PDEs as features

Justification:

- Smoothing methods already been used for representation
- Regularity structures \longrightarrow algebraic/analytic machinery
- Approach already used by Chevyrev-Gerasimovics-Weber

A generic coefficient

Method implemented:

- Taken from Otto-Sauer-Smith-Weber, using multiindex notation
- Below \mathcal{E}_{m} is an awful index set

Basic operator: We set

$$
\mathcal{A}_{0}=\varphi_{0} \Delta u-\lambda u
$$

Hierarchy of PDEs: We get

$$
\left(\partial_{t}-\mathcal{A}_{0}\right) \Pi_{\mathrm{x} m}=\sum_{n, k, p, m_{p}^{k}, m^{k+1} \in \mathcal{E}_{m}} \operatorname{div}\left(\left(\prod_{l=1}^{d} \prod_{j=1}^{n(I)} \nabla^{(k)} \Pi_{\mathrm{x} m_{j}^{\prime}}\right) \nabla \Pi_{\mathrm{x} m^{k+1}}\right)
$$

References

: Osher, Stanley; Solé, Andrés; Vese, Luminita. Image decomposition and restoration using total variation minimization and the H^{1} norm.
Multiscale Model. Simul.1, 2003
围 Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad. Nonlinear total variation based noise removal algorithms. Phys. D, 1992
國 Felix Otto, Jonas Sauer, Scott Smith, Hendrik Weber. A priori bounds for quasi-linear SPDEs in the full sub-critical regime.
Arxiv preprint, 2021.

