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Brownian motion

r—[Definition 1.] \

Let

e (Q, F,P) probability space

o {B:; t > 0} stochastic process, R-valued
We say that B is a Brownian motion if:

Q@ By = 0 almost surely

© B is Gaussian centered

© For 0 <s <t we have

E[(B: — B:)*] = (t —s)
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Brownian motion is non smooth (B € Cl/Q‘E)
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Illustration: Brownian motion is random
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Fractional Brownian motion

r—[Definition 2.] \

Let
e (Q,F,P) probability space and H € (0,1)
e {BI; t > 0} stochastic process, R-valued
We say that B is a fractional Brownian motion if:
@ Bt =0 almost surely
@ B is Gaussian centered
© For 0 <s <t we have

E|(8F - BY)?| = (¢ — s
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Examples of fBm paths (B € C"~)
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Noises

White noise: We have
e B = distributional derivative of B
o Regularity: B element of Besov space B~1/2—¢

@ Covariance: o
E [Bt BS} —5(t—s)

Colored noise: Defined as
e BH = distributional derivative of B"

o Regularity: B" element of Besov space B~ (1=H+<)

@ Covariance: can also be a distribution

E B BY] = |t — 5|2
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Model for the noise in R?

Covariance function for W: Gaussian noise on R, x R9, with

E [ Wa(x) Wily)| = [t = s| ™0 [y = x| (1)

Remark:
© One can do more general than (1), with a Dalang type condition
@ Under (1), we have

Wt(.) e B—(ate)/2
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Another point of view on the noise

ow

Noise as a derivative: One has the distributional derivative relation
. X)=——I(t, X

«x) (9t8x( X)

where W = fractional Brownian sheet
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Covariance in Fourier modes

Notation for the covariance: On R, x R, one can write
E [We(x) We(y)] = 0(t = 5) 1a(y = %)

with the following distributional relation:

— v|PHi2,

(s, v) = |u

Covariance in Fourier modes:

@ The covariance v; is given in Fourier mode as

() = /R e[
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Equation under consideration

Equation:
Stochastic heat equation on R¢:

Drtre(x) = ;Aut(x)  ue(x) Wi(x),

with
e t>0, xcRY.

e W Gaussian noise such that

» W white noise or fractional in time
» W has a certain spatial covariance structure.

o u:(x) W(x) differential: Stratonovich or Skorohod sense.
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Motivation: intermittency phenomenon

Equation: 0yus(x) = $Au(x) + A ue(x) W, (x)
Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
— Easy possible definition of intermittency: for all k; > k, > 1

i BV 1] _
o Rk lucC) k] o0

Results:
@ White noise in time: Khoshnevisan, Foondun, Conus, Joseph

e Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
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Intermittency: illustration (by Daniel Conus)
Simulations: for A = 0.1, 0.5, 1 and 2.
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Model for the noise on R, X R (repeated)

Covariance function for W: As before,
E [Wt(X) Ws(y)] =70(t = s) n(y — x)
with the following distributional relation:

vi(u, v) = |u— v|2HJ'_2.
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Existence and uniqueness results

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Existence and uniqueness results
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Existence and uniqueness results
Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Existence and uniqueness results

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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A stochastic integral

Heat kernel: Let p, = heat kernel for %A

pe(x) = W exp <—§)

Noise we consider: White in time, colored in space,
E [ Wa(x) Wily)] = do(t = 5) Iy — x|

A stochastic integral: Set

/ /desx— W(ds, dy)
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Variance computation

Variance in direct mode: One can prove that
t
E [IX:(x)[?] = / / Ps(x = y1)lyr — ya| *ps(x — y2) dsdyrdys
RI xR

Variance in Fourier mode: We also have

E [1X,(x)] / / Fpu(©)2E] e dsde

< Much easier to handle!
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Long term project

Main question:

@ Do we observe a big difference in the previous exponents
— under geometric settings?

Settings of interest:
@ Sub-Riemannian manifolds
@ On Heisenberg groups: use of Fourier

o Fractals

Related models:
@ Polymers

@ KPZ equation
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Group structure

Symplectic form on R2":
w((x, ), Zx Yi — Xy}

Heisenberg group H": Seen as R?"*! equipped with

(x,y,2)x(x,y', )
= <X +xy+y,z+7Z +2w ((x, ), (x’,y’)))
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Sub-Riemannian structure
Invariant vector fields:
At p=(x,y,z) and for i =1,...,n, given as
Xl(p) = aX,- + 2yiaza Yl(p) - ay,- - 2Xiaz; Z(p) — az-
Then X;, Y; are the horizontal vector fields.

Horizontal sub-Laplacian: Defined by

A:ZH:X,2+ Y2.

i=1
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Horizontal tangent planes in H”

Xl(p) - a><,- + 2)/iaz> Yl(p) - ay,- - 2X,'82.
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Distance

Carnot-Carathéodory distance:

1
dec(p1, p2) := inf {/ [9(t)|dt ;
0
v :[0,1] — H" is horizontal, v(0) = p1,7(1) = p2}

Bounds on cc-distance:

G(V](x, ¥ + [2]7) < dec(e,q) < G(V](x.y)]? + |2]2))
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Unit sphere in H"
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Heat kernel

Definition: Solution of

1

0epe(q) = 58pP:(q),  Po(q) = 0e(q)

Gaussian type bounds: We have

C

1 (&) 3 Cy
1 &P (—? dec(e, q)z) < p:(q) < 1 &P (—? dec(e, q)2>

Remark: The heat kernel is more singular
< Than the heat kernel in R2"+!
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Usual Fourier transform
A unitary group representation:
For g = (x,y,z) € H", A € R and v € L?(R") we set

Uyu(§) = e e EDu (¢ —2y), ¢eR

Fourier transform: For f € L'(H"), operator valued,

FOW) = [ @)U du(a).

HI‘I

Relation with Laplacian: We have

F(AF)(X) =4 F(F)(N) o A,

osc

with

Au(x) = Pu(x) = N|xPu(x)
j=1
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Projective version of Fourier

Hermite functions: Onb for —Al_,

defined for k € N" by

—Al q)k = (2|k| + n) cbk

osc

Rescaled Hermite functions:

O2(x) = A" &y (/[N]x)

Projective Fourier: For (m, ¢, \) € N” x N” x R*, we set

f(m> 2 )‘) = <‘F(f)()‘)¢i\n> ¢?>L2(R")
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Properties of the projective version

Plancherel identity: We have

2n—1 too .,
[ iF@Pda =25 S0 [ e P

meNn ¥

Fourier and Laplace: For a smooth enough f,

— ~

Af(m, 6,)) = —4|\|(2|m| + n) F(m, £, \)

Powers of Laplace: For a > 0,

~

(A)f(m, £, \) = 4~|\|"(2|m]| + n)~*F(m, £, \)
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A class of Gaussian noises

Test function: For o > 0 and ¢ smooth, set

/ / (t,q) W,(dt,dq)
R+ n

Covariance: For 2 test functions ¢, ),

E [Wa(9)Wa ()] = ((~ “B) ) ()
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Properties of the Gaussian noise

Relation with white noise: One can write

W, = (—A)"*W, with W = space-time white noise on H"

Inequality for the covariance: For positive test functions ¢, 1),

E [W, ()W ()] = / / . “’1 WA 9) 4y 100 di(as)

ql q2)2n+2 4o
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Existence-uniqueness

—~ Theorem 3. N

Consider

@ Noise W, as in previous slide

@ Stochastic heat equation on H":

0,u(q) = 5 8un(4) + ue(x) Wi(a).

interpreted in the It sense.

Then a necessary and sufficient condition
— to have existence and uniqueness is

>n
a —
2
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Comparison with R?

Bessel noises: Noises on R? with covariance
E [Wa(w)Wa(Qﬁ)] = <(Id - A)_a% (Id - A)_aw>L2(R+XRd)

Condition in RY: In order to solve SHE,

_d 1
“Ta )

Condition in H": The condition o > n/2 can be read as

1
o > f ~ 5 with @ = 2n + 2 = Effective dimension
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The basic identity in H”

Stochastic convolution: Consider the process

Xi = // pe—s( «(ds,dq)

Variance in Fourier mode:

E [X?] :/[0 ]ds/w" D AT (2Im] + n)2e SNE@ImEE) g\
t

meN”

Lower bound: We have

E[X?] 2 / ds / | A2 e=8nsIA g \
[0,¢] R

5 "5
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