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Brownian motion

Let
(Ω,F ,P) probability space
{Bt ; t ≥ 0} stochastic process, R-valued

We say that B is a Brownian motion if:
1 B0 = 0 almost surely
2 B is Gaussian centered
3 For 0 ≤ s < t we have

E
[
(Bt − Bs)

2] = (t − s)

Definition 1.
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Brownian motion is non smooth (B ∈ C1/2−ε)
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Illustration: Brownian motion is random
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Fractional Brownian motion

Let
(Ω,F ,P) probability space and H ∈ (0, 1)
{BH

t ; t ≥ 0} stochastic process, R-valued
We say that BH is a fractional Brownian motion if:

1 BH
0 = 0 almost surely

2 BH is Gaussian centered
3 For 0 ≤ s < t we have

E
[(
BH
t − BH

s

)2
]
= (t − s)2H

Definition 2.
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Examples of fBm paths (B ∈ CH−ε)

H = 0.3 H = 0.5 H = 0.7
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Noises

White noise: We have
Ḃ = distributional derivative of B
Regularity: Ḃ element of Besov space B−1/2−ε

Covariance:
E
[
Ḃt Ḃs

]
= δ(t − s)

Colored noise: Defined as
ḂH = distributional derivative of BH

Regularity: ḂH element of Besov space B−(1−H+ε)

Covariance: can also be a distribution

E
[
ḂH
t ḂH

s

]
= |t − s|−(2−2H)
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Model for the noise in Rd

Covariance function for Ẇ : Gaussian noise on R+ × Rd , with

E
[
Ẇt(x) Ẇs(y)

]
= |t − s|−α0 |y − x |−α (1)

Remark:
1 One can do more general than (1), with a Dalang type condition
2 Under (1), we have

Ẇt(·) ∈ B−(α+ε)/2
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Another point of view on the noise
Noise as a derivative: One has the distributional derivative relation

Ẇt(x) =
∂W

∂t∂x
(t, x) ,

where W ≡ fractional Brownian sheet
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Covariance in Fourier modes

Notation for the covariance: On R+ × R, one can write

E
[
Ẇt(x) Ẇs(y)

]
= γ0(t − s) γ1(y − x)

with the following distributional relation:

γj(u, v) = |u − v |2Hj−2. (2)

Covariance in Fourier modes:
The covariance γj is given in Fourier mode as

γj(x) =

∫
R
eıξx |ξj |1−2Hjdξ
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Equation under consideration

Equation:
Stochastic heat equation on Rd :

∂tut(x) =
1
2
∆ut(x) + ut(x) Ẇt(x), (3)

with
t ≥ 0, x ∈ Rd .
Ẇ Gaussian noise such that

▶ Ẇ white noise or fractional in time
▶ Ẇ has a certain spatial covariance structure.

ut(x) Ẇt(x) differential: Stratonovich or Skorohod sense.
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Motivation: intermittency phenomenon

Equation: ∂tut(x) = 1
2∆ut(x) + λ ut(x) Ẇt(x)

Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
↪→ Easy possible definition of intermittency: for all k1 > k2 ≥ 1

lim
t→∞

E1/k1
[
|ut(x)|k1

]
E1/k2 [|ut(x)|k2]

= ∞ .

Results:
White noise in time: Khoshnevisan, Foondun, Conus, Joseph
Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
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Intermittency: illustration (by Daniel Conus)
Simulations: for λ = 0.1, 0.5, 1 and 2.
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Model for the noise on R+ × R (repeated)

Covariance function for Ẇ : As before,

E
[
Ẇt(x) Ẇs(y)

]
= γ0(t − s) γ1(y − x)

with the following distributional relation:

γj(u, v) = |u − v |2Hj−2.
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Existence and uniqueness results
Existence-uniqueness in the (H0,H1) plane: according to 2H0 + H1
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A stochastic integral

Heat kernel: Let pt ≡ heat kernel for 1
2∆,

pt(x) =
1

(2πt)d/2
exp

(
−x2

2t

)
Noise we consider: White in time, colored in space,

E
[
Ẇt(x) Ẇs(y)

]
= δ0(t − s) |y − x |−α

A stochastic integral: Set

Xt(x) =

∫ t

0

∫
Rd

ps(x − y)W (ds, dy)
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Variance computation

Variance in direct mode: One can prove that

E
[
|Xt(x)|2

]
=

∫ t

0

∫
Rd×Rd

ps(x − y1)|y1 − y2|−αps(x − y2) dsdy1dy2

Variance in Fourier mode: We also have

E
[
|Xt(x)|2

]
=

∫ t

0

∫
Rd

|Fps(ξ)|2|ξ|d+α dsdξ

↪→ Much easier to handle!
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Long term project

Main question:
Do we observe a big difference in the previous exponents
↪→ under geometric settings?

Settings of interest:
Sub-Riemannian manifolds
On Heisenberg groups: use of Fourier
Fractals

Related models:
Polymers
KPZ equation
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Group structure

Symplectic form on R2n:

ω((x , y), (x ′, y ′)) =
n∑

i=1

x ′i yi − xiy
′
i

Heisenberg group Hn: Seen as R2n+1 equipped with

(x , y , z) ⋆ (x ′, y ′, z ′)

:=
(
x + x ′, y + y ′, z + z ′ + 2ω ((x , y), (x ′, y ′))

)
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Sub-Riemannian structure

Invariant vector fields:
At p = (x , y , z) and for i = 1, . . . , n, given as

Xi(p) = ∂xi + 2yi∂z , Yi(p) = ∂yi − 2xi∂z , Z (p) = ∂z .

Then Xi ,Yi are the horizontal vector fields.

Horizontal sub-Laplacian: Defined by

∆ =
n∑

i=1

X 2
i + Y 2

i .

Samy T. (Purdue) Heat equation on Heisenberg Purdue 2022 29 / 45



Horizontal tangent planes in Hn

Xi(p) = ∂xi + 2yi∂z , Yi(p) = ∂yi − 2xi∂z .
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Distance

Carnot-Carathéodory distance:

dcc(p1, p2) := inf

{∫ 1

0
|γ̇(t)|Hdt ;

γ : [0, 1] → Hn is horizontal, γ(0) = p1, γ(1) = p2

}
Bounds on cc-distance:

C1(
√
|(x , y)|2 + |z |

1
2 ) ≤ dcc(e, q) ≤ C2(

√
|(x , y)|2 + |z |

1
2 ))
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Unit sphere in Hn
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Heat kernel

Definition: Solution of

∂tpt(q) =
1
2
∆pt(q), p0(q) = δe(q)

Gaussian type bounds: We have

c1

tn+1 exp

(
−c2

t
dcc(e, q)

2
)

≤ pt(q) ≤
c3

tn+1 exp

(
−c4

t
dcc(e, q)

2
)

Remark: The heat kernel is more singular
↪→ Than the heat kernel in R2n+1
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Usual Fourier transform
A unitary group representation:
For q = (x , y , z) ∈ Hn, λ ∈ R and u ∈ L2(Rn) we set

Uλ
q u(ξ) = e−ıλ(z+2x ·(ξ−y))u (ξ − 2y) , ξ ∈ Rn

Fourier transform: For f ∈ L1(Hn), operator valued,

F(f )(λ) =

∫
Hn

f (q)Uλ
q dµ(q).

Relation with Laplacian: We have

F (∆f ) (λ) = 4F(f )(λ) ◦∆λ
osc

with

∆λ
oscu(x) =

n∑
j=1

∂2
j u(x)− λ2|x |2u(x)
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Projective version of Fourier

Hermite functions: Onb for −∆1
osc, defined for k ∈ Nn by

−∆1
oscΦk = (2|k |+ n) Φk

Rescaled Hermite functions:

Φλ
k(x) = |λ|n/4 Φk

(√
|λ|x

)
Projective Fourier: For (m, ℓ, λ) ∈ Nn × Nn × R∗, we set

f̂ (m, ℓ, λ) = ⟨F(f )(λ)Φλ
m,Φ

λ
ℓ ⟩L2(Rn)
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Properties of the projective version

Plancherel identity: We have∫
Hn

|f (q)|2dq =
2n−1

πn+1

∑
m,ℓ∈Nn

∫ +∞

−∞
|f̂ (m, ℓ, λ)|2|λ|ndλ

Fourier and Laplace: For a smooth enough f ,

∆̂f (m, ℓ, λ) = −4 |λ|(2|m|+ n) f̂ (m, ℓ, λ)

Powers of Laplace: For α > 0,

̂(−∆)−αf (m, ℓ, λ) = 4−α|λ|−α(2|m|+ n)−αf̂ (m, ℓ, λ)
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A class of Gaussian noises

Test function: For α ≥ 0 and φ smooth, set

Wα(φ) =

∫
R+

∫
Hn

φ(t, q)Wα(dt, dq)

Covariance: For 2 test functions φ, ψ,

E [Wα(φ)Wα(ψ)] =
〈
(−∆)−αφ, (−∆)−αψ

〉
L2(R+×Hn)
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Properties of the Gaussian noise

Relation with white noise: One can write

Wα = (−∆)−αW, with W ≡ space-time white noise on Hn

Inequality for the covariance: For positive test functions φ, ψ,

E [Wα(φ)Wα(ψ)] ≍
∫
R+

∫
(Hn)2

φ(t, q1)ψ(t, q2)

dcc(q1, q2)2n+2−4α dt dµ(q1)dµ(q2)
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Existence-uniqueness

Consider
Noise Wα as in previous slide
Stochastic heat equation on Hn:

∂tut(q) =
1
2
∆ut(q) + ut(x) Ẇt(q),

interpreted in the Itô sense.
Then a necessary and sufficient condition
↪→ to have existence and uniqueness is

α >
n

2

Theorem 3.
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Comparison with Rd

Bessel noises: Noises on Rd with covariance

E [Wα(φ)Wα(ψ)] =
〈
(Id −∆)−αφ, (Id −∆)−αψ

〉
L2(R+×Rd )

Condition in Rd : In order to solve SHE,

α >
d

4
− 1

2

Condition in Hn: The condition α > n/2 can be read as

α >
Q

4
− 1

2
, with Q = 2n + 2 = Effective dimension
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The basic identity in Hn

Stochastic convolution: Consider the process

Xt ≡
∫ t

0

∫
Hn

pt−s(q)Wα(ds, dq)

Variance in Fourier mode:

E
[
X 2
t

]
=

∫
[0,t]

ds

∫
R
|λ|n

∑
m∈Nn

|λ|−2α(2|m|+ n)−2αe−8s|λ|(2|m|+n) dλ

Lower bound: We have

E
[
X 2
t

]
≳

∫
[0,t]

ds

∫
R
|λ|n−2αe−8ns|λ| dλ

This is finite for α ∈ (n2 ,
n+1
2 )
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