
Hyperbolic Anderson model
in the Skorohod and rough setting

Samy Tindel

Purdue University

Banff International Research Station – 2022
New Interfaces of Stochastic Analysis and Rough Paths

Joint works with Xia Chen, Aurélien Deya and Jian Song

Samy T. (Purdue) Hyperbolic Anderson Banff 2022 1 / 34



Outline

1 Parabolic Anderson model

2 The stochastic wave equation

3 Skorohod regime
Main result
Strategy of proof

4 Pathwise approaches
An additive case with nonlinearity
Main result
Strategy of proof

Samy T. (Purdue) Hyperbolic Anderson Banff 2022 2 / 34



Outline

1 Parabolic Anderson model

2 The stochastic wave equation

3 Skorohod regime
Main result
Strategy of proof

4 Pathwise approaches
An additive case with nonlinearity
Main result
Strategy of proof

Samy T. (Purdue) Hyperbolic Anderson Banff 2022 3 / 34



Equation under consideration

Equation:
Stochastic heat equation on Rd :

∂tut(x) =
1
2
∆ut(x) + ut(x) Ẇt(x), (1)

with
t ≥ 0, x ∈ Rd .
Ẇ Gaussian noise such that

▶ Ẇ white noise or fractional in time
▶ Ẇ has a certain spatial covariance structure.

ut(x) Ẇt(x) differential: Stratonovich or Skorohod sense.
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Motivation: intermittency phenomenon

Equation: ∂tut(x) =
1
2∆ut(x) + λ ut(x) Ẇt(x)

Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
↪→ Easy possible definition of intermittency: for all k1 > k2 ≥ 1

lim
t→∞

E1/k1
[
|ut(x)|k1

]
E1/k2 [|ut(x)|k2]

= ∞ .

Results:
White noise in time: Khoshnevisan, Foondun, Conus, Joseph
Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
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Intermittency: illustration (by Daniel Conus)
Simulations: for λ = 0.1, 0.5, 1 and 2.
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Possible model for the noise (1)

Covariance function for Ẇ : Gaussian noise on R+ × R, with

E
[
Ẇt(x) Ẇs(y)

]
= γ0(t − s) γ1(y − x)

with the following distributional relation:

γj(u, v) = |u − v |2Hj−2. (2)

Remark:
The covariance γj is given in Fourier mode as

γj(x) =

∫
R
eıξx |ξj |1−2Hjdξ
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Subcritical zone: illustration
Existence-uniqueness in the (H0,H1) plane: according to 2H0 + H1
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Equation under consideration

Equation:
Stochastic wave equation on Rd :

∂2
ttut(x) =

1
2
∆ut(x) + ut(x) Ẇt(x), (3)

with
t ≥ 0, x ∈ Rd .
Ẇ Gaussian noise such that

▶ Ẇ has a certain space-time covariance structure.

ut(x) Ẇt(x) differential: Stratonovich or Skorohod sense.
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Description of the noise

Covariance function for Ẇ : Gaussian noise on R+ × Rd , with

E
[
Ẇt(x) Ẇs(y)

]
= |t − s|−α0 γ(y − x)

with the following distributional relation:

γ(c x) = c−αγ(x). (4)

Remark:
1 One can do more general than (4), with a Dalang type condition
2 Under (4), we have

Ẇt(·) ∈ B−(α+ε)/2
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Simulation in the additive case (by David Cohen)
Equation: Stochastic wave equation on [0, 1]:

∂2
ttut(x) =

1
2
∆ut(x) + Ẇt(x), (5)

with
t ≥ 0, x ∈ [0, 1].
Ẇ space-time white noise
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Multiplicative case (by David Cohen)
Equation: Stochastic wave equation on [0, 1]:

∂2
ttut(x) =

1
2
∆ut(x) + u Ẇt(x), (6)

with
t ≥ 0, x ∈ [0, 1].
Ẇ space-time white noise
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Mild formulation

Notation: We set
Gt(x) ≡ fundamental solution of the wave equation

Duhamel’s principle: The solution to

∂2
ttut(x) =

1
2
∆ut(x) + ut(x) Ẇt(x), u(0, x) = ∂tu(0, x) = 0

can be written as

ut(x) =

∫ t

0

∫
Rd

Gt−s(x − y) us(y)W (ds, dy)
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Fundamental solution (1)
Notation: Set

ρt = Uniform measure on sphere with radius t.

Expression for the fundamental solution: We have

Gt(x) =



1
2
1[|x |<t] if d = 1,

1
2π

1√
t2 − |x |2

1[|x |<t] if d = 2, ,

1
4πt

ρt(dx) if d = 3,

Derivatives of ρt if d ≥ 4.

Conclusion: Ugly expressions as d gets large!
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Fundamental solution (2)

Fundamental solution in Fourier modes: We have

FGt(ξ) =
sin (2πt|ξ|)

2π|ξ|
.

Conclusion:
Some computations will be easier in Fourier modes!
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Existence-uniqueness, Skorohod case

We consider the Skorohod equation in Rd with d ≤ 3:

∂2
ttut(x) =

1
2
∆ut(x) + ut(x) ⋄ Ẇt(x) (7)

The noise covariance is (with scaling γ(c x) = c−αγ(x))

E
[
Ẇt(x) Ẇs(y)

]
= |t − s|−α0 γ(y − x).

Then a necessary and sufficient condition
↪→ to get existence-uniqueness for (7) is

α0 + α < 3

Theorem 1.
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Bibliography

Comparison with other contributions:
Dalang ’99:
↪→ White noise in time, Itô setting, α < 2
Balan ’12:
↪→ Colored space-time, α < 2
Balan-Chen-Chen ’22:
↪→ Spatial noise, α < 3

Note:
We are improving on Balan ’12 and Balan-Chen-Chen ’22
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Chaos expansion

Malliavin calculus notation: We denote
H ≡ Cameron-Martin space related to Ẇ

In ≡ multiple integrals with respect to Ẇ

Chaos expansion: One can write
u(t, x) =

∑∞
n=0 In(gn(·, t, x))

gn ≡ product of wave kernels

Reduction of the problem: We have to estimate

∥gn(·, t, x)∥2
H⊗n
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Reversed L2 estimates
Initial expression: We have

∥gn(·, t, x)∥2
H⊗n =

∫
([0,t]n<)2

∫
(Rd )2

( n∏
k=1

|sk − s ′k |−α0γ(xk − x ′k)

)

×
( n∏

k=1

Gsk−sk−1(xk − xk−1)Gs′k−s′k−1
(x ′k − x ′k−1)

)
dxdx′dsds′.

Bound for the Laplace transform: We get a less intricate expression,∫ ∞

0
e−2pt∥gn(t, x , ·)∥2

H⊗ndt ≤
p

2

∫
(Rd+1)2n

Hp(s1, x1 . . . , sn, xn)

× Hp(s
′
1, x

′
1, . . . , s

′
n, x

′
n)

( n∏
k=1

|sk − s ′k |−α0γ(xk − x ′k)

)
dxdx′dsds′.
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Remainder of the strategy

In a few words:
1 Going back and forth in Fourier and direct modes

↪→ reduction to products of 1-d integrals

2 Depoissonization:
▶ Take large values of p in the Laplace transform
▶ Relate to one value of t 7→ ∥gn(·, t, x)∥2

H⊗n
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An additive case (1)

First equation under consideration:

∂2
ttut(x) =

1
2
∆ut(x)− u2

t (x) + Ẇt(x), (8)

Approach: Solution as perturbation of the stochastic convolution

Ψt(x) =

∫ t

0

∫
Rd

Gt−s(x − y)W (ds, dy)

Equation for v ≡ u −Ψ:

∂2
ttvt(x) =

1
2
∆vt(x)− (vt(x) + Ψt(x))

2
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An additive case (2)

Problem: When W rough or dimension high
↪→ Ψ is a distribution and Ψ2 ill-defined

Renormalized equation: One considers
Smooth approximation of the noise W n

Family {un; n ≥ 1}
σn ∼ 2nγt

such that

∂2
ttu

n
t (x) =

1
2
∆un

t (x)−
[
(un

t (x))
2 − σn(t)

]
+ Ẇ n

t (x),

Then (Gubinelli-Koch-Oh, Deya) un converges
↪→ to renormalized version of (9)
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Stratonovich multiplicative setting

Equation under consideration:

∂2
ttut(x) =

1
2
∆ut(x) + ut(x)Ẇt(x), (9)

Approach (Chen-Deya-Song-T):
Mild form of the equation in pathwise sense:

ut(x) =

∫ t

0

∫
Rd

Gt−s(x − y) us(y)W (ds, dy)

Smoothing effect of wave kernel G
Young type integration
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Existence-uniqueness, Stratonovich case

We consider the Stratonovich equation in Rd with d ≤ 3:

∂2
ttut(x) =

1
2
∆ut(x) + ut(x) Ẇt(x) (10)

The noise covariance is (with scaling γ(c x) = c−αγ(x))

E
[
Ẇt(x) Ẇs(y)

]
= |t − s|−α0 γ(y − x).

Then existence-uniqueness for (10) under condition

α0 + α <

1, if d = 1,

1
2 , if d = 2.

Theorem 2.
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Besov spaces and Strichartz estimates

Weighted Besov space: We set
Bα ≡ weighted Besov space with exponential weight on Rd

Parameters µ, p, q in Bα,µ
p,q not specified for simplicity

Strichartz type estimates: For all t ∈ [0, 1], it holds that

∥∥Gtf
∥∥
Bα+ρd

≲ ∥f ∥Bα , with ρd ≡

{
1 if d = 1
1
2 if d = 2

Remarks:
Those Strichartz type estimates appear to be new
They rely on Ryzhkov’s version of weighted Besov spaces
Possibility of regularity structure type expansions
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Strategy for Strichartz estimates

Ingredients:
1 Consider rescaled wavelet type functions φℓ

2 Ryzkhov’s trick: subtle decomposition for φℓ ∗ Gtf

3 We are then reduce to obtain (B2 ≡ ball, radius 2)∫
Rd

dy

∫
B2

dz
∣∣Gt(y − 2−jz)− Gt(y)

∣∣ ≲ 2−jρd

4 ρd = 1
2 for d = 2, due to t−1/2 singularity of Gt
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