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Equation under consideration

Equation:
Stochastic heat equation on R¢:

Drtre(x) = ;Aut(x)  ue(x) Wi(x),

with
e t>0, xcRY.

e W Gaussian noise such that

» W white noise or fractional in time
» W has a certain spatial covariance structure.

o u:(x) W(x) differential: Stratonovich or Skorohod sense.
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Motivation: intermittency phenomenon

Equation: 0yus(x) = $Au(x) + A ue(x) W, (x)
Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
— Easy possible definition of intermittency: for all k; > k, > 1

- EYR [Ju(x))]
lim = 0.

t—o00 El/ke [\ut(x)|k2] -

Results:
@ White noise in time: Khoshnevisan, Foondun, Conus, Joseph

e Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
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Intermittency: illustration (by Daniel Conus)
Simulations: for A = 0.1, 0.5, 1 and 2.
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Possible model for the noise (1)
Covariance function for W: Gaussian noise on R, x R, with
E [ We(x) Wa(y)] =70t = )y = )
with the following distributional relation:
vi(u,v) = |u— v[?H=2

Remark:

@ The covariance v; is given in Fourier mode as

() = /R e |6 [12H d
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Subcritical zone: illustration

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Subcritical zone: illustration

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Subcritical zone: illustration

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Subcritical zone: illustration
Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Subcritical zone: illustration

Existence-uniqueness in the (Hp, Hi) plane: according to 2Hy + H,
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Equation under consideration

Equation:
Stochastic wave equation on RY:

1 .
Oreuie(x) = EAUt(X) + ue(x) We(x),
with
e t>0, xecR
o W Gaussian noise such that
» W has a certain space-time covariance structure.

o u.(x) We(x) differential: Stratonovich or Skorohod sense.
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Description of the noise
Covariance function for W: Gaussian noise on R, x R?, with
E | Wh(x) Waly)| = It = sy = x)
with the following distributional relation:
V(ex) = cy(x). (4)

Remark:

© One can do more general than (4), with a Dalang type condition
@ Under (4), we have

Wt() e B—(a+€)/2
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Simulation in the additive case (by David Cohen)

Equation: Stochastic wave equation on [0, 1]:
2 1 ;
Optie(x) = 5 Bue(x) + Wilx), ()
with

e t>0, xel01]
o W space-time white noise
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Multiplicative case (by David Cohen)

Equation: Stochastic wave equation on [0, 1]:
1 .
02 uy(x) = EAut(x) + u Wi(x), (6)
with

e t>0, xel01]
o W space-time white noise
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Mild formulation

Notation: We set

@ G;(x) = fundamental solution of the wave equation

Duhamel’s principle: The solution to
1 .
02 uy(x) = EAut(x) + ue(x) We(x), u(0,x) = 0ru(0,x) =0

can be written as

ue(x) = /0 t 5 Ge—s(x = y) us(y) W(ds, dy)
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Fundamental solution (1)
Notation: Set

p: = Uniform measure on sphere with radius t.

Expression for the fundamental solution: We have

(1

51[\x|<t] if d = 1,
1 1 .
7ﬁ1[|x|<t] ifd=2,,
Gt(X) = 4 Tyt — |X|
1 .
m pt(dX) if d = 3,
| Derivatives of p; if d > 4.

Conclusion: Ugly expressions as d gets large!
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Fundamental solution (2)

Fundamental solution in Fourier modes: We have

FG(e) = %

Conclusion:
Some computations will be easier in Fourier modes!
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Existence-uniqueness, Skorohod case

—~ Theorem 1.

We consider the Skorohod equation in R? with d < 3:

02 uy(x) = %Aut(x) + u(x) 0 We(x) (7)
The noise covariance is (with scaling v(c x) = ¢~ *v(x))
E [Welx) Wa(y)] = I¢ = s 2y = x).

Then a necessary and sufficient condition
— to get existence-uniqueness for (7) is

g+ a <3
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Comparison with other contributions:

e Dalang '99:
— White noise in time, Itd setting, a < 2

e Balan '12:
— Colored space-time, o < 2

o Balan-Chen-Chen '22:
— Spatial noise, a < 3

Note:
We are improving on Balan '12 and Balan-Chen-Chen 22
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Chaos expansion

Malliavin calculus notation: We denote
e H = Cameron-Martin space related to W
multiple integrals with respect to W

e |, =

Chaos expansion: One can write
o u(t,x)=> "0 l(gn(-, t,x))
@ g, = product of wave kernels
Reduction of the problem: We have to estimate

Hgﬁcvth)H%®"
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Reversed L2 estimates

Initial expression: We have

e £ e / y ( )
A H A g
(H se—sics (X = Xk-1) Gt gt (Xp — x,’(_l)) dxdX dsds’.
Bound for the Laplace transform: We get a less intricate expression,
- —2pt 2 P
| e latex o<l [ s
0 2 (Rd+1)2n

X Hp(S1, X5+« Shy Xp) ( H sk — S| 7y (xk — x,’()) dxdx dsds'.

k=1
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Remainder of the strategy

In a few words:

© Going back and forth in Fourier and direct modes
— reduction to products of 1-d integrals

© Depoissonization:

» Take large values of p in the Laplace transform
> Relate to one value of t — ||gn(:, t, x) 13,50
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An additive case (1)

First equation under consideration:

Oe(x) = 5 Due(x) — 1 (x) + W), ©

Approach: Solution as perturbation of the stochastic convolution
t
V,(x) = / / Gi—s(x —y) W(ds,dy)
0o Jre

Equation for v=u —V:

Pvelx) = 5 Bw(x) — (w(x) + V()
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An additive case (2)

Problem: When W rough or dimension high
— W is a distribution and W? ill-defined

Renormalized equation: One considers
@ Smooth approximation of the noise W"
e Family {u"; n > 1}
@ o, ~2"Mt

such that

() = 5 Duf(x) — (20 — 0u(8)] + W (0),

Then (Gubinelli-Koch-Oh, Deya) u” converges
— to renormalized version of (9)
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Stratonovich multiplicative setting

Equation under consideration:

2 uy(x) = ;Aut(x) + up(x) Wi(x),

Approach (Chen-Deya-Song-T):

@ Mild form of the equation in pathwise sense:

u) = [ [ sl = ) utyywias. )

@ Smoothing effect of wave kernel G
@ Young type integration
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Existence-uniqueness, Stratonovich case

—~ Theorem 2.

We consider the Stratonovich equation in R with d < 3:

The noise covariance is (with scaling v(c x) = ¢~ *y(x))

E [ W) W(y)] = It = s 2y = x).
Then existence-uniqueness for (10) under condition

1, ifd=1,
1 ifd=2

2

g+ a <

Bunlx) = 30u0) +u(x) W) (10
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Besov spaces and Strichartz estimates

Weighted Besov space: We set
e B“ = weighted Besov space with exponential weight on R¢

e Parameters ji, p, g in Byl not specified for simplicity

Strichartz type estimates: For all t € [0, 1], it holds that

_ {1 ifd=1
Be Wlth Pd =

[Gef [ gosns < NI L ifd =2

Remarks:
@ Those Strichartz type estimates appear to be new
@ They rely on Ryzhkov's version of weighted Besov spaces
@ Possibility of regularity structure type expansions
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Strategy for Strichartz estimates

Ingredients:
© Consider rescaled wavelet type functions ¢,
© Ryzkhov's trick: subtle decomposition for ¢, * G, f
© We are then reduce to obtain (B, = ball, radius 2)

/ dy / dz|Gily — 2792) — Guly)| < 2%
R4 B>

Q pyg =13 for d =2, due to t~/2 singularity of G,
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