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Some history

Philip Anderson:
Born 1923
Wide range of achievements
↪→ In condensed matter physics
Nobel prize in 1977
Still Professor at Princeton

One of Anderson’s discoveries:
For particles moving in a disordered media
↪→ Localized behavior instead of diffusion.
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Equation under consideration
Equation:
Stochastic heat equation in Rd , with very rough environment:

∂tut(x) = 1
2∆ut(x) + ut(x) Ẇt(x), (1)

with
t ≥ 0, x ∈ Rd (we take d = 1 or d = 2 to simplify presentation).
Ẇ space-time Gaussian noise
Ẇ rougher than white in some directions.
ut(x) Ẇt(x) differential: Stratonovich or Skorohod sense.

Aim:
1 Define and solve the equation
2 Information on moments of the solution
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Basic questions
A formal decomposition of PAM: In the equation

∂tut(x) = 1
2∆ut(x) + ut(x) Ẇ (x),

we have (here Ẇ is a spatial noise)
∂tut = 1

2∆ut implies strong smoothing effect
∂tut = ut Ẇ implies large fluctuations
↪→ Formally we would have ut(x) = etẆ (x)

Basic question 1:
Who wins the above competition? Effect of randomness on u?

Related question 2:
Various aspects of localization
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Localization 1: intermittency phenomenon
Equation: ∂tut(x) = 1

2∆ut(x) + λ ut(x) Ẇt(x)

Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
↪→ Easy possible definition of intermittency: for all k1 > k2 ≥ 1

lim
t→∞

E1/k1
[
|ut(x)|k1

]
E1/k2 [|ut(x)|k2] =∞ .

Results:
White noise in time: Khoshnevisan, Foondun, Conus, Joseph
Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
Analysis through Feynman-Kac formula
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Intemittency: illustration (by Daniel Conus)
Simulations: for λ = 0.1, 0.5, 1 and 2.
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Localization 2: Eigenfunctions

Equation with spatial noise:
∂tut(x) = 1

2∆ut(x) + ut(x) Ẇ (x), for x ∈ [−M,M]d

Fact (discrete case):
The operator 1

2∆ + Ẇ (x) admits a discrete spectrum (λk)
↪→ Corresponding eigenfunction is vk

Localization 2:
The vk ’s decay exponentially fast around a center xk

This is reflected on λk
↪→ λk ' principal eigenvalue on a ball centered at xk
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Localization 2: illustration
Image (Filoche-Mayboroda): First eigenvectors for a PAM in [0, 1]2

Figure: Discrete random potential Figure: First five eigenvectors
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From spectral localization to ut(x)

Heuristics:
ut(0) related to the Laplace transform at t > 0
↪→ for the spectral measure of 1

2∆ + Ẇ
Asymptotics of ut(0) for large t
↪→ Information on spectral measure close to 0

Conclusion:

Limiting behavior of E[|ut(0)|p] for large p, t
Related to

Spectral information on 1
2∆ + Ẇ
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Model description

Equation: For x ∈ R or x ∈ R2 we consider∂tut(x) = 1
2∆ut(x) + ut(x) Ẇt(x),

u0(x) = 1

Model for the noise: We take

W fBs with parameters (H0,H1,H2) with some Hi ∈ (0, 1/2)
Ẇt(x) = ∂tx1x2Wt(x)
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Description of the noise

Covariance function for W : We have W Gaussian and

E [Wt(x) Ws(y)] = R0(s, t)
d∏

j=1
Rj(xj , yj),

with

Rj(u, v) = 1
2
(
|u|2Hj + |v |2Hj − |u − v |2Hj

)
, u, v ∈ R. (2)

Remarks:
We have a fBm in each direction
We are rougher than white noise if Hj <

1
2
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Examples of fBm paths

H = 0.3 H = 0.5 H = 0.7
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Description of the noise (2)
Covariance function for Ẇ : We have formally

E
[
Ẇt(x) Ẇs(y)

]
= γ0(t − s)

d∏
j=1

γj(yj − xj)

with the following distributional relation:

γj(u, v) = ∂uvR(u, v) ’ = ’ |u − v |2Hj−2. (3)

Remark:
The covariance γj is given in Fourier mode as

γj(x) =
∫
R

eıξx |ξ|1−2Hj dξ
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Skorohod solution

Skorohod equation: Of the form∂tut(x) = 1
2∆ut(x) + ut(x) � Ẇt(x),

u0(x) = 1,

where � is the Wick product.

Mild form: Written as

ut(x) = 1 +
∫ t

0

∫
Rd

pt−s(x − y)us(y) d�Ws(y),

where the stochastic integral is a Skorohod integral
↪→ extension of Itô from Malliavin calculus.
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Stratonovich solution

Stratonovich equation: Of the form∂tut(x) = 1
2∆ut(x) + ut(x)Ẇt(x),

u0(x) = 1,

where the product is the usual product.

Mild form: We have u = (renormalized)− limε→0 uε, where

uεt (x) = 1 +
∫ t

0

∫
Rd

pt−s(x − y)uεs (y) dW ε
s (y), (4)

where W ε is a mollification of W and (4) is an ordinary PDE
↪→ Regularity structures.
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A subcritical zone

Let us assume
1 d = 1
2 H0 > 1/2 and H1 < 1/2
3 H0 + H1 >

3
4

4 3
2 < 2H0 + H1 ≤ 2

Then we have
Global exist. and uniqu. for both u and u�

For all t ≥ 0, x ∈ R and p ≥ 1 we have

E[|u�t (x)|p] <∞, and E[|ut(x)|p] <∞

Theorem 1.
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Subcritical zone: illustration
In the (H0,H1) plane:
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A critical zone

Let us assume
1 d = 2
2 W does not depend on time: W = W (x)
3 H1 < 1/2
4 H1 + H2 = 1

Then we have
Local exist. and uniqu. for the Skorohod solution u�

Global exist. and uniqu. for the Stratonovich solution u

Theorem 2.

Samy T. (Purdue) Rough PAM Purdue 2020 21 / 33



A critical zone (2)

Under the same conditions as in Theorem 2 consider p > 1
Then

There exists τ �p such that for all t > τ �p , x ∈ R we have

E [|u�t (x)|p]


<∞, t < τ �p ,

=∞, t > τ �p .

For p ≥ 2, exact expression for τ �p
Upper bound for τ �p when 1 < p < 2
Finite moments for the Strato solution ut(x) for small t’s

Theorem 3.
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Comments on the results
Previous results on asymptotic behavior of moments:

H0 = 1
2 , Itô framework: Khoshnevisan, Conus, Foondun

Young type cases, 2H0 + H1 > 2:
Balan-Conus, Hu-Huang-Nualart-T, X. Chen
Rough Skorohod case: X. Chen

Previous results on renormalization:
Hairer-Labbé, Deya

Our contribution:
Existence of moments for renormalized versions of PAM
Link between renormalized Skorohod and Stratonovich
↪→ Through Feyman-Kac representations
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Feynman-Kac for the Skorohod equation

Regularized Feynman-Kac potential:
For ε > 0 and a Brownian motion B, set

V ε,B
t (x) =

∫ t

0

∫
R2

pε(Bx
t−r − y) dWs(y) (5)

Regularized Feynman-Kac compensator:

βε,Bt =
∫

[0,t]2

∫
Rd

e−ε|ξ|2eı〈ξ,Bt−s1−Bt−s2 〉γ0(s1 − s2)µ(dξ)

where
µ(dξ) =

d∏
j=1
|ξj |1−2Hj dξ
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Feynman-Kac for the Skorohod equation (2)

Limit theorem: We have (subcritical regime)

u�t (x) = L2(Ω)− lim
ε→0

uε,�t (x),

where

uε,�t (x) = EB

[
eV ε,B

t (x)− 1
2β

ε,B
t

]
= EB

[
exp

(
V ε,B

t (x)− 1
2EW

[∣∣∣V ε,B
t (x)

∣∣∣2])] .
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Feynman-Kac for the Stratonovich equation

Regularized Feynman-Kac potential:
For ε > 0 and a Brownian motion B, set

V ε,B
t (x) =

∫ t

0

∫
R2

pε(Bx
t−r − y) dWs(y) (6)

Regularized Feynman-Kac compensator: Of the form

cεt,

with
cεt ' EB

[
βε,Bt

]
� 1
ε2−2H0−H1
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Feynman-Kac for the Stratonovich equation (2)

Limit theorem: We have (subcritical regime)

ut(x) = a.s− lim
ε→0

uεt (x),

where

uεt (x) = EB

[
eV ε,B

t (x)−cεt
]
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Comparison between F-K representations

Recall: we have

uεt (x) = EB

[
eV ε,B

t (x)−cεt
]

uε,�t (x) = EB

[
eV ε,B

t (x)− 1
2β

ε,B
t

]

Strategy for the comparison: We have

Fluctuations
(1
2β

ε,B
t − cεt

)
� Fluctuations

(
V ε,B

t (x)
)
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Regularity exponents in parabolic scaling

Parabolic scaling: for ϕ : R× R→ R set

St,xϕ(s, y) = 1
δ3
ϕ
(s − t

δ2
,
y − x
δ

)

Distributional exponent: F ∈ C−α in parabolic scaling if∫
R×R

[St,xϕ](s, y) F (s, y) dsdy ≤ cϕ δ−α
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Noise regularity in the 1 + 1 case

Wiener integral computation: For a smooth ϕ we have

E
[∣∣∣Ẇ (St,xϕ)

∣∣∣2]
=
∫
R4

[St,xϕ](s1, y1)[St,xϕ](s2, y2)|s1 − s2|2H0−2|y1 − y2|2H1−2 dsdy

= 1
δ2(3−2H0−H1) J(ϕ), with J(ϕ) independent of δ.

Fractional noise irregularity: We have Ẇ ∈ C−α−ε with

α = 3− 2H0 − H1

Samy T. (Purdue) Rough PAM Purdue 2020 32 / 33



Heuristics for the Young equation region

Recall: We consider

∂tut(x) = 1
2∆ut(x) + ut(x) Ẇt(x)

Heat semigroup smoothing: We expect u ∈ Cβ with

β = −α + 2 = 2H0 + H1 − 1

Definition of uẆ : Whenever

β − α > 0 ⇔ 2H0 + H1 > 2
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