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Some history

Philip Anderson:
@ Born 1923

@ Wide range of achievements
< In condensed matter physics

@ Nobel prize in 1977

@ Still Professor at Princeton

One of Anderson’s discoveries:
For particles moving in a disordered media
< Localized behavior instead of diffusion.
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Equation under consideration

Equation:
Stochastic heat equation in R?, with very rough environment:

Dptie(x) = ;Aut(x) () Walx), (1)

with
e t >0, x € R? (we take d = 1 or d = 2 to simplify presentation).
o W space-time Gaussian noise
o W rougher than white in some directions.

o u.(x) Wi(x) differential: Stratonovich or Skorohod sense.

Aim:
@ Define and solve the equation

@ Information on moments of the solution
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Basic questions

A formal decomposition of PAM: In the equation
1 .
Ortr(x) = iAUt(X) + ur(x) W(x),
we have (here W is a spatial noise)

@ Ou; = %Aut implies strong smoothing effect

@ O:u; = uy %% implies large fluctuations

< Formally we would have u(x) = et"V(*)

Basic question 1:

Who wins the above competition? Effect of randomness on u?

Related question 2:
Various aspects of localization
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Localization 1: intermittency phenomenon
Equation: d:u:(x) = 1Au(x) + A ue(x) W, (x)
Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments
— Easy possible definition of intermittency: for all k; > k, > 1

B [|ue(x) ]
0 El/k )]

Results:
@ White noise in time: Khoshnevisan, Foondun, Conus, Joseph
@ Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T

@ Analysis through Feynman-Kac formula
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Intemittency: illustration (by Daniel Conus)
Simulations: for A = 0.1, 0.5, 1 and 2.
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Localization 2: Eigenfunctions

Equation with spatial noise:
Oeue(x) = 3Aur(x) + ue(x) W(x), for x € [-M, M]¢

Fact (discrete case):
The operator A + W(x) admits a discrete spectrum (A)
— Corresponding eigenfunction is vy

Localization 2:
@ The v,'s decay exponentially fast around a center x

@ This is reflected on A\,
— A\x =~ principal eigenvalue on a ball centered at x
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Localization 2: illustration

Image (Filoche-Mayboroda): First eigenvectors for a PAM in [0, 1]?

Figure: Discrete random potential

Figure: First five eigenvectors
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From spectral localization to u(x)

Heuristics:

o u;(0) related to the Laplace transform at t > 0
— for the spectral measure of %A + W

@ Asymptotics of u;(0) for large t
— Information on spectral measure close to 0

Conclusion:

Limiting behavior of E[|u;(0)|?] for large p, t
Related to _
Spectral information on %A + W
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Model description

Equation: For x € R or x € R? we consider

{Gtut(x) — LAu(x) + ue(x) W(x),
UO(X) =1

Model for the noise: We take

e W fBs with parameters (Hp, H1, H>) with some H; € (0,1/2)
o Wt(X) - 8tX1X2 Wt(X)
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Description of the noise
Covariance function for W: We have
d
E [We(x) Wi(y)] = Ro(s, t) TT Ri(x:. ),
j=1

with

Rj(u> V) =

N+

Remarks:
@ We have a fBm in each direction

@ We are rougher than white noise if H; < 1
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Description of the noise (2)

Covariance function for W: We have formally

E [Wt(x) Ws(Y)} =0(t =) 1:[1%'()/1' - )

with the following distributional relation:

(U, v) = OuR(u,v) > =" Ju— v[?2.

Remark:

@ The covariance ; is given in Fourier mode as

() = [ e lgl2Hde
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Skorohod solution

Skorohod equation: Of the form

{atut(x) — LAu(x) + ue(x) o Wi(x),
Uo(X) =1

where ¢ is the Wick product.

Y

Mild form: Written as

() =1 [ peslx = y)usly) dWa(y)

where the stochastic integral is a Skorohod integral
— extension of 1t6 from Malliavin calculus.
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Stratonovich solution

Stratonovich equation: Of the form

{atut(x) — LAu(x) + ue(x) Wi(x),
Uo(X) = 1,

where the product is the usual product.

Mild form: We have u = (renormalized) — lim._,o u®, where

GO =1+ [ [ peslx = y)ily) Wi (),

where W¢ is a mollification of W and (4) is an ordinary PDE
— Regularity structures.
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A subcritical zone

~ Theorem 1. N

Let us assume

Qd=1

Q@ Hy>1/2and H; <1/2
Q@ Hy+Hy >3

Q 2<2Hy+H <2

Then we have

@ Global exist. and uniqu. for both v and u°
@ Forallt >0, x e R and p > 1 we have

E[|uf(x)|P] < 00, and E[|u:/(x)P] < o0

Samy T. (Purdue) Rough PAM Siam 2019 18 / 28



Subcritical zone: illustration
In the (Ho, H:1) plane:
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Subcritical zone: illustration
In the (Ho, H1) plane:
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Subcritical zone: illustration

In the (Ho, H:1) plane:

H,

Skorohod equation
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Subcritical zone: illustration
In the (Ho, H:1) plane:
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Subcritical zone: illustration
In the (Ho, H1) plane:
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A critical zone

—~ Theorem 2. N

Let us assume
Q d=2
@ W does not depend on time: W = W(x)
Q@ H <1)2
QO Hi+H,=1

Then we have

@ Local exist. and uniqu. for the Skorohod solution u®

@ Global exist. and uniqu. for the Stratonovich solution u
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A critical zone (2)

~ Theorem 3. N

Under the same conditions as in Theorem 2 consider p > 1
Then

@ There exists 7';; such that for all t > 7';;, x € R we have

< 00, t<T,,
E[u;(x)1]
= 00, t> 7,

@ For p > 2, exact expression for 7';
e Upper bound for 75 when 1 < p <2

@ Finite moments for the Strato solution u;(x) for small t's
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Comments on the results

Previous results on asymptotic behavior of moments:
o Ho =1, 1td framework: Khoshnevisan, Conus, Foondun

@ Young type cases, 2Hy + H; > 2:
Balan-Conus, Hu-Huang-Nualart-T, X. Chen

@ Rough Skorohod case: X. Chen

Previous results on renormalization:
o Hairer-Labbé, Deya

Our contribution:
@ Existence of moments for renormalized versions of PAM

@ Link between renormalized Skorohod and Stratonovich
— Through Feyman-Kac representations
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Feynman-Kac for the Skorohod equation

Regularized Feynman-Kac potential:
For ¢ > 0 and a Brownian motion B, set

VEE(x / [ p(BL, —y) dWi(y)

Regularized Feynman-Kac compensator:

—cl€P al€. Bos— By
= /[071.12 /Rde el¢] e<§7B . —B 2>70(51 _52)M(d£)

where
d
=Ll de
j=1
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Feynman-Kac for the Skorohod equation (2)

Limit theorem: We have (subcritical regime)

up(x) = L2(Q) — lim up®(x),

e—0

where
wo(x) = EB[ ViB(x)- 167 ]

= Eg [exp (VE’B(X) - %EW UVS’B(X))Qm '
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Feynman-Kac for the Stratonovich equation

Regularized Feynman-Kac potential:
For ¢ > 0 and a Brownian motion B, set

Vel = [ [ p(BE —y) dWA(y)

Regularized Feynman-Kac compensator: Of the form

C.t,
with 1
~ e,B| —
c:t~Egp { } 22—2Ho—H
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Feynman-Kac for the Stratonovich equation (2)

Limit theorem: We have (subcritical regime)
ur(x) = a.s — lim ug(x),

e—0

where

ui(x) = Eg

thE’B(X)_CEf]
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Comparison between F-K representations

Recall: we have
u(x) = E [Vf’%)—cgt}
t = Ep|€

e,B £,B
Eo(x) = Es[evf (935 }

Strategy for the comparison: We have

1
Fluctuations (5 o8B _ cgt> < Fluctuations (Vf’B(x))
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