Towards an analysis of parabolic Anderson models in very rough environments

Samy Tindel

Purdue University

University of Wyoming – 2019

1st Meeting for the Northern States Section of Siam

Ongoing joint work with A. Deya, X. Chen, C. Ouyang

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 1 / 28

Outline

Parabolic Anderson model

Main results

Feyman-Kac representations

Samy T. (Purdue)

2 / 28

Outline

Parabolic Anderson model

Main results

Feyman-Kac representations

∢ロト < 個ト < 重ト < 重ト < 重 り < 0</p>

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 3 / 28

Some history

Philip Anderson:

- Born 1923
- Nobel prize in 1977
- Still Professor at Princeton

One of Anderson's discoveries:

For particles moving in a disordered media

 \hookrightarrow Localized behavior instead of diffusion.

Equation under consideration

Equation:

Stochastic heat equation in \mathbb{R}^d , with very rough environment:

$$\partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \, \dot{W}_t(x), \tag{1}$$

with

- $t \ge 0$, $x \in \mathbb{R}^d$ (we take d = 1 or d = 2 to simplify presentation).
- W space-time Gaussian noise
- ullet W rougher than white in some directions.
- $u_t(x) \dot{W}_t(x)$ differential: Stratonovich or Skorohod sense.

Aim:

- Define and solve the equation
- 2 Information on moments of the solution

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Basic questions

A formal decomposition of PAM: In the equation

$$\partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \dot{W}(x),$$

we have (here \dot{W} is a spatial noise)

- ullet $\partial_t u_t = rac{1}{2} \Delta u_t$ implies strong smoothing effect
- $\partial_t u_t = u_t \dot{W}$ implies large fluctuations \hookrightarrow Formally we would have $u_t(x) = e^{t\dot{W}(x)}$

Basic question 1:

Who wins the above competition? Effect of randomness on u?

Related question 2:

Various aspects of localization

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 6 / 28

Localization 1: intermittency phenomenon

Equation:
$$\partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + \frac{\lambda}{\lambda} u_t(x) \dot{W}_t(x)$$

Phenomenon: The solution u concentrates its energy in high peaks.

Characterization: through moments

 \hookrightarrow Easy possible definition of intermittency: for all $k_1>k_2\geq 1$

$$\lim_{t \to \infty} \frac{\mathsf{E}^{1/k_1} \left[|u_t(x)|^{k_1} \right]}{\mathsf{E}^{1/k_2} \left[|u_t(x)|^{k_2} \right]} = \infty \ .$$

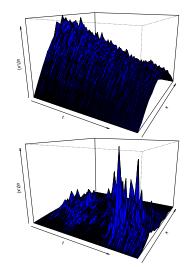
Results:

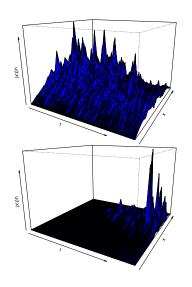
- White noise in time: Khoshnevisan, Foondun, Conus, Joseph
- Fractional noise in time: Balan-Conus, Hu-Huang-Nualart-T
- Analysis through Feynman-Kac formula

→ロト→部ト→差ト→差 のQで

Intemittency: illustration (by Daniel Conus)

Simulations: for $\lambda = 0.1$, 0.5, 1 and 2.





 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 8 / 28

Localization 2: Eigenfunctions

Equation with spatial noise:

$$\partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \dot{W}(x)$$
, for $x \in [-M, M]^d$

Fact (discrete case):

The operator $\frac{1}{2}\Delta + \dot{W}(x)$ admits a discrete spectrum (λ_k) \hookrightarrow Corresponding eigenfunction is v_k

Localization 2:

- The v_k 's decay exponentially fast around a center x_k
- This is reflected on λ_k
 - $\hookrightarrow \lambda_k \simeq$ principal eigenvalue on a ball centered at x_k

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りの

Localization 2: illustration

Image (Filoche-Mayboroda): First eigenvectors for a PAM in $[0,1]^2$

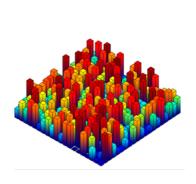


Figure: Discrete random potential

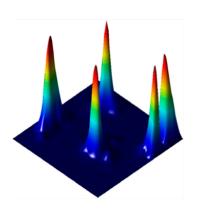


Figure: First five eigenvectors

From spectral localization to $u_t(x)$

Heuristics:

- $u_t(0)$ related to the Laplace transform at t>0 \hookrightarrow for the spectral measure of $\frac{1}{2}\Delta + \dot{W}$
- Asymptotics of $u_t(0)$ for large t \hookrightarrow Information on spectral measure close to 0

Conclusion:

Limiting behavior of $\mathbf{E}[|u_t(0)|^p]$ for large p,tRelated to Spectral information on $\frac{1}{2}\Delta + \dot{W}$

Outline

Parabolic Anderson model

Main results

Feyman-Kac representations

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 12 / 28

Model description

Equation: For $x \in \mathbb{R}$ or $x \in \mathbb{R}^2$ we consider

$$\begin{cases} \partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \dot{W}_t(x), \\ u_0(x) = 1 \end{cases}$$

Model for the noise: We take

- ullet W fBs with parameters (H_0,H_1,H_2) with some $H_i\in(0,1/2)$
- $\bullet \ \dot{W}_t(x) = \partial_{t \times_1 \times_2} W_t(x)$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Description of the noise

Covariance function for W: We have

$$\mathbf{E}[W_t(x) W_s(y)] = R_0(s, t) \prod_{j=1}^d R_j(x_j, y_j),$$

with

$$R_{j}(u,v) = \frac{1}{2} \left(|u|^{2H_{j}} + |v|^{2H_{j}} - |u-v|^{2H_{j}} \right), \qquad u,v \in \mathbb{R}.$$
 (2)

Remarks:

- We have a fBm in each direction
- We are rougher than white noise if $H_j < \frac{1}{2}$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

Description of the noise (2)

Covariance function for \dot{W} : We have formally

$$\mathbf{E}\left[\dot{W}_t(x)\ \dot{W}_s(y)\right] = \gamma_0(t-s)\prod_{j=1}^d \gamma_j(y_j-x_j)$$

with the following distributional relation:

$$\gamma_j(u, v) = \partial_{uv} R(u, v) ' = ' |u - v|^{2H_j - 2}.$$
 (3)

Remark:

• The covariance γ_j is given in Fourier mode as

$$\gamma_j(x) = \int_{\mathbb{R}} e^{i\xi x} |\xi|^{1-2H_j} d\xi$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Samy T. (Purdue) Rough PAM Siam 2019 15 / 28

Skorohod solution

Skorohod equation: Of the form

$$\begin{cases} \partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \diamond \dot{W}_t(x), \\ u_0(x) = 1, \end{cases}$$

where \diamond is the Wick product.

Mild form: Written as

$$u_t(x) = 1 + \int_0^t \int_{\mathbb{R}^d} \rho_{t-s}(x-y)u_s(y) d^{\diamond}W_s(y),$$

where the stochastic integral is a Skorohod integral \hookrightarrow extension of Itô from Malliavin calculus.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

16 / 28

Stratonovich solution

Stratonovich equation: Of the form

$$\begin{cases} \partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \dot{W}_t(x), \\ u_0(x) = 1, \end{cases}$$

where the product is the usual product.

Mild form: We have $u = (\text{renormalized}) - \lim_{\varepsilon \to 0} u^{\varepsilon}$, where

$$u_t^{\varepsilon}(x) = 1 + \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y) u_s^{\varepsilon}(y) dW_s^{\varepsilon}(y), \tag{4}$$

where W^{ε} is a mollification of W and (4) is an ordinary PDE \hookrightarrow Regularity structures.

イロト (個) (目) (目) (目) (2) (2)

A subcritical zone

Theorem 1.

Let us assume

- 0 d = 1
- ② $H_0 > 1/2$ and $H_1 < 1/2$
- \bullet $H_0 + H_1 > \frac{3}{4}$

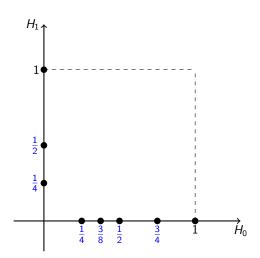
Then we have

- Global exist. and uniqu. for both u and u^{\diamond}
- For all $t \geq 0$, $x \in \mathbb{R}$ and $p \geq 1$ we have

$$\mathbf{E}[|u_t^{\diamond}(x)|^p] < \infty$$
, and $\mathbf{E}[|u_t(x)|^p] < \infty$

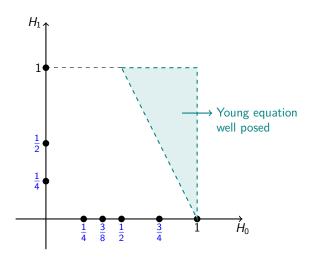
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

In the (H_0, H_1) plane:

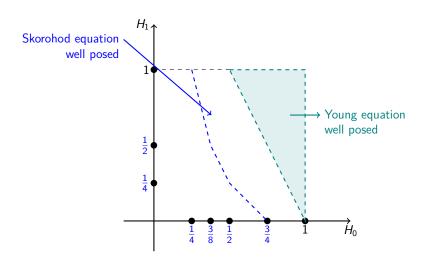


Samy T. (Purdue)

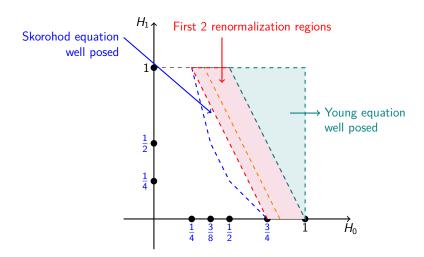
In the (H_0, H_1) plane:



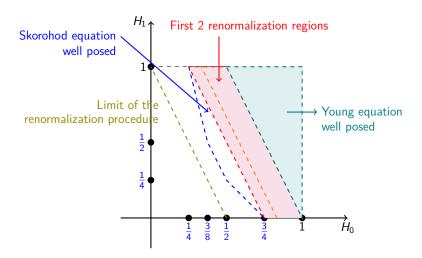
In the (H_0, H_1) plane:



In the (H_0, H_1) plane:



In the (H_0, H_1) plane:



Samy T. (Purdue)

A critical zone

Theorem 2.

Let us assume

- 0 d = 2
- ② W does not depend on time: W = W(x)
- \bullet $H_1 < 1/2$
- $H_1 + H_2 = 1$

Then we have

- Local exist. and uniqu. for the Skorohod solution u^{\diamond}
- Global exist. and uniqu. for the Stratonovich solution u

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ からぐ

A critical zone (2)

Theorem 3.

Under the same conditions as in Theorem 2 consider p>1 Then

ullet There exists au_p^\diamond such that for all $t> au_p^\diamond$, $x\in\mathbb{R}$ we have

$$\mathbf{E}[|u_t^{\diamond}(x)|^p] \begin{cases} <\infty, & t < \tau_p^{\diamond}, \\ =\infty, & t > \tau_p^{\diamond}. \end{cases}$$

- ullet For $p\geq 2$, exact expression for au_p^{\diamond}
- ullet Upper bound for au_p^\diamond when 1
- ullet Finite moments for the Strato solution $u_t(x)$ for small t's

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ からぐ

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 21 / 28

Comments on the results

Previous results on asymptotic behavior of moments:

- $H_0 = \frac{1}{2}$, Itô framework: Khoshnevisan, Conus, Foondun
- Young type cases, $2H_0 + H_1 > 2$: Balan-Conus, Hu-Huang-Nualart-T, X. Chen
- Rough Skorohod case: X. Chen

Previous results on renormalization:

Hairer-Labbé, Deya

Our contribution:

- Existence of moments for renormalized versions of PAM

Outline

Parabolic Anderson model

Main results

Feyman-Kac representations

◆ロ ト ◆ 部 ト ◆ 差 ト ◆ 差 ・ 夕 へ ⊙

Samy T. (Purdue) Rough PAM Siam 2019 23 / 28

Feynman-Kac for the Skorohod equation

Regularized Feynman-Kac potential:

For $\varepsilon > 0$ and a Brownian motion B, set

$$V_t^{\varepsilon,B}(x) = \int_0^t \int_{\mathbb{R}^2} p_{\varepsilon}(B_{t-r}^x - y) dW_s(y)$$
 (5)

Regularized Feynman-Kac compensator:

$$\beta_t^{\varepsilon,B} = \int_{[0,t]^2} \int_{\mathbb{R}^d} e^{-\varepsilon|\xi|^2} e^{i\langle \xi, B_{t-s_1} - B_{t-s_2} \rangle} \gamma_0(s_1 - s_2) \mu(d\xi)$$

where

$$\mu(d\xi) = \prod_{j=1}^d |\xi_j|^{1-2H_j} d\xi$$

Feynman-Kac for the Skorohod equation (2)

Limit theorem: We have (subcritical regime)

$$u_t^{\diamond}(x) = L^2(\Omega) - \lim_{\varepsilon \to 0} u_t^{\varepsilon, \diamond}(x),$$

where

$$u_t^{\varepsilon,\diamond}(x) = \mathbf{E}_B \left[e^{V_t^{\varepsilon,B}(x) - \frac{1}{2}\beta_t^{\varepsilon,B}} \right]$$
$$= \mathbf{E}_B \left[\exp\left(V_t^{\varepsilon,B}(x) - \frac{1}{2} \mathbf{E}_W \left[\left| V_t^{\varepsilon,B}(x) \right|^2 \right] \right) \right].$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 25 / 28

Feynman-Kac for the Stratonovich equation

Regularized Feynman-Kac potential:

For $\varepsilon > 0$ and a Brownian motion B, set

$$V_t^{\varepsilon,B}(x) = \int_0^t \int_{\mathbb{R}^2} p_{\varepsilon}(B_{t-r}^x - y) dW_s(y)$$
 (6)

Regularized Feynman-Kac compensator: Of the form

$$c_{\varepsilon}t$$
,

with

$$c_{arepsilon}t\simeq \mathbf{E}_{B}\left[eta_{t}^{arepsilon,B}
ight]symp rac{1}{arepsilon^{2-2H_{0}-H_{1}}}$$

Samy T. (Purdue)

Feynman-Kac for the Stratonovich equation (2)

Limit theorem: We have (subcritical regime)

$$u_t(x) = \text{a.s} - \lim_{\varepsilon \to 0} u_t^{\varepsilon}(x),$$

where

$$u_t^{\varepsilon}(x) = \mathbf{E}_B \left[e^{V_t^{\varepsilon,B}(x) - c_{\varepsilon}t} \right]$$

 Samy T. (Purdue)
 Rough PAM
 Siam 2019
 27 / 28

Comparison between F-K representations

Recall: we have

$$u_t^{\varepsilon}(x) = \mathbf{E}_B \left[e^{V_t^{\varepsilon,B}(x) - c_{\varepsilon}t} \right]$$
$$u_t^{\varepsilon,\diamond}(x) = \mathbf{E}_B \left[e^{V_t^{\varepsilon,B}(x) - \frac{1}{2}\beta_t^{\varepsilon,B}} \right]$$

Strategy for the comparison: We have

$$\mathsf{Fluctuations}\left(\frac{1}{2}\beta_t^{\varepsilon,B} - c_\varepsilon t\right) \ll \mathsf{Fluctuations}\left(V_t^{\varepsilon,B}(x)\right)$$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ