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A basic classification task

Data:

Points {xi ; i = 1, . . . , n} with xi ∈ Rd

Labels {yi ; i = 1, . . . , n} with yi ∈ {0, 1}
When labels are known, the learning is supervised

Aim:

Find a proper separation between labels 0 and labels 1
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Linear separation

Separation using hyperplanes:

We use a classification
ŷ = sign(v · x)
v optimized
↪→ According to our data:

v = min
w∈Rd

n∑
i=1

∥sign (w · xi)− yi∥2

Figure: Separation of 2 subgroups according to
H1,H2,H3
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Separation using neural networks
Definition of the multilayer neural network:

Recursion xk+1 = S(wkxk + dk) for k = 0, . . . , nlayer

wk matrix-valued, dk vector-valued

S defined componentwise by σ below

wk and dk to be optimized

Figure: Sigmoid σ(x) = 2
π
tanh(x) and ReLU σ(x) = max{x , 0}
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Towards a control theory framework (1)

Slight change of notation: We have seen that

xk defined recursively by

xk+1 = S
(
wkxk + dk

)
≡ b

(
xk ,uk

)
uk = (wk ,dk) parameter to be optimized
↪→ According to loss function

Example of loss function: With n = nlayer and y = label

J(u) = |y − xn|2 + λ
n−1∑
k=0

∣∣uk
∣∣2 ,

where λ ≡ regularization parameter
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Towards a control theory framework (2)

Recall: We have seen, for k = 0, . . . , n − 1,{
xk+1 = b

(
xk ,uk

)
J(u) = (y − xn)2 + λ

∑n−1
k=0

∣∣uk
∣∣2

Limiting procedure: Take n → ∞ and renormalize. We get{
dxt = b (xt , ut) dt , t ∈ [0,T ]

J(u) = G (xT ) +
∫ T

0
r (ut , xt) dt

This is a classical control theory framework.
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Generalization 1: noisy environment
A stochastic equation: For the neural network dynamics, take

A Brownian motion W

Equation of the form

dxt = b (xt , ut) dt + σ(xt) dWt

Motivation:

Neural networks are noisy

Noise stabilizes equations

Example on the right:
dxt = xt dt + σxt dWt

Figure: Stabilization with a multiplicative noise
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Generalization 2: reinforcement learning (1)
Equation: So far our problem is{

dxt = b (xt , ut) dt + σ(xt) dWt

J(u) = E
[
G (xT ) +

∫ T

0
r (ut , xt) dt

]
RL problematic:

Problem: In many situations, the dynamics for x is unknown

RL strategy: Use the control u for both
1 Optimization of the action
2 Exploration of different dynamics

Change in the model:

The control u will be measure-valued

We add an entropy term to the reward, to favor exploration
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Generalization 2: reinforcement learning (2)
Previous version of the model:{

xt = y +
∫ t

0
b (xr , ur ) dr +

∫ t

0
σ(xr ) dWr

J(u) = E
[
G (xT ) +

∫ T

0
r (ur , xr ) dr

]
Relaxed control: We consider

U ⊂ Rd

Control ur is replaced by γr ∈ P(U)

New version of the model:{
xt = y +

∫ t

0

∫
U
b (xr , a) γr (da)dr +

∫ t

0
σ(xr ) dWr

J(γ) = E
[
G (xT ) +

∫ T

0
F (xr , γr ) dr

]
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Generalization 2: reinforcement learning (3)

New version of the model:{
xt = y +

∫ t

0

∫
U
b (xr , a) γr (da)dr +

∫ t

0
σ(xr ) dWr

J(γ) = E
[
G (xT ) +

∫ T

0
F (r , xr , γr ) dr

]
Recall: We wish to use γ for

1 Optimization of the action

2 Exploration of different dynamics

Typical example of function F : If γr has a density γ̇r ,

F (r , x , γ) = e−ρr

(∫
U

r(x , u)γ̇r (u)du − λ

∫
U

γ̇r (u) log γ̇r (u)du

)
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Example in 3-d folding (1)

Notation: For a protein folding study,

st ≡ t-th iteration of the molecule configuration

a ≡ vector containing bond angle and bond torsion
↪→ to be optimized

γ, κ unknown parameters

U(s, a) ≡ energy to be minimized, with an entropy term

Dynamics:{
dst = at dt

dat = −γ at dt − κ dWt

Figure: Sequence of foldings
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Generalization 3: rough environment (1)

Observation:

We have assumed that x is driven by a Brownian motion

In real life, some observations are not Brownian

In particular
▶ The Hölder regularity of t 7→ Wt is not always 1/2− ε
▶ Environments are not always Markovian

Natural generalization:

Fractional Brownian motion
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Fractional Brownian motion

H ∈ (0, 1)

B = (B1, . . . ,Bd)

B j centered Gaussian process, independence of coordinates

Variance of the increments:(
E[|B j

t − B j
s |2]

)1/2

= |t − s|H

H− ≡ Hölder-continuity exponent of B

If H = 1/2, B = Brownian motion

If H ̸= 1/2 natural generalization of BM

Remark: FBm widely used in applications
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Examples of fBm paths

H = 0.3 H = 0.5 H = 0.7
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Paths for a linear SDE driven by fBm

dYt = −0.5xt dt + 2xt dBt , x0 = 1

H = 0.5 H = 0.7

Blue: (Bt)t∈[0,1] Red: (Yt)t∈[0,1]
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fBm and integration

Basic facts about fBm: Let B be a fBm with H ∈ (0, 1). Then:

B is not a finite variation process

B is not a Markov process

B is not a martingale

Main step in order to solve equations:

Define integrals of the form
∫ t

0
σ(xs) dBs

Problem for fBm:

Itô’s theory does not apply to B

Need for another integration theory −→ rough paths theory

This will rely on regularity and Gaussianity of B
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Generalization 3: rough environment (2)
Previous version of the model:{

xt = y +
∫ t

0

∫
U
b (xr , a) γr (da)dr +

∫ t

0
σ(xr ) dWr

J(γ) = E
[
G (xT ) +

∫ T

0
F (r , xr , γr ) dr

]
New version of the model:{

xt = y +
∫ t

0

∫
U
b (xr , a) γr (da)dr +

∫ t

0
σ(xr ) dBr

J(γ) = G (xT ) +
∫ T

0
F (r , xr , γr ) dr

Typical example of function F : If γr has a density γ̇r ,

F (r , x , γ) = e−ρr

(∫
U

r(x , u)γ̇r (u)du − λ

∫
U

γ̇r (u) log γ̇r (u)du

)
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Summary for our setting

We consider:

1 Control point of view on learning

2 Reinforcement learning setting with regularization by entropy

3 Rough environment, possibly driven by a fBm

4 Pathwise optimization
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A more formal framework (1)

Dynamics: For 0 ≤ s ≤ t ≤ T and xt ∈ Rm,

xt − xs =

∫ t

s

∫
U

b (xr , a) γr (da)dr +

∫ t

s

σ(xr ) dBr

Reward from s to T :

JsT (γ, y) =

∫ T

s

F (r , xγr , γr ) dr + G (xγT )

State space for γ: Minimal Hölder regularity in Wasserstein distance,

Vε([s,T ]) =
{
Cε([s,T ];P(U));W2(γr , γt) ≤ c |t − r |ε

for some c > 0 and all r , t ∈ [s,T ]
}
.
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A more formal framework (2)

Recall:

JsT (γ, y) =

∫ T

s

F (r , xγr , γr ) dr + G (xγT )

Value: We set, for 0 ≤ s ≤ T

V (s, y) = sup {JsT (γ, y); γ ∈ Vε([s,T ])}
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HJB equation for the value

The value V solves the following first order rough PDE:[
∂tv(t, y) + sup

γ∈P(U)

H(t, y , γ,∇v(t, y))
]
dt

+σ(t, y) · ∇v(t, y)dBt = 0

for (t, y) ∈ [0,T ]× Rn, with final condition

v(T , y) = G (y) .

The Hamiltonian H above is defined by

H(t, y , γ, p) = p ·
∫
U

b(y , a) γ(da) + F (t, y , γ)

Theorem 1.

Samy T. (Purdue) Reinforcement learning Auburn 2023 28 / 38



Notes on Theorem 1

Remarks:

V should be considered as a rough viscosity solution

Extra care due to the fact that γt is a measure

More results related to Theorem 1:

1 Definition of test functions for rough viscosity solutions
↪→ This is usually not done in other related works

2 Definition of related jets

3 Regularity of V

4 Existence of a minimizer γ∗

5 Transformation:
rough PDEs −→ PDE with random coefficients
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Perspectives
Program:

Numerical schemes for HJB
↪→ Policy iteration

Actor-critic scheme for the reinforcement part
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The rough paths problem (1)

The main integration problem: Give a meaning to integrals like∫ t

s

σ(r , y) · ∇v(r , y)dxr ,

where x ≡ fBm or other γ-Hölder path

Related toy model: With 1-d notations, define integrals like∫ t

s

V (xr )dxr
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The rough paths problem (2)

Easy expansion: We have∫ t

s

V (xr )dxr = V (xs)x
1
st + V ′(xs)x

2
st

+

∫ t

s

∫ r

s

(V ′(xu)− V ′(xs)) dxudxr

Explanation of terms: In the above expansion we have

1 x1st = xt − xs , well-defined

2 Assumption: x2st =
∫ t

s

∫ r

s
dxudxr well-defined

↪→ Main rough paths assumption

3

∫ t

s

∫ r

s
(V ′(xu)− V ′(xs)) dxudxr

↪→ defined as a ”Young” integral if x ∈ Cγ

Samy T. (Purdue) Reinforcement learning Auburn 2023 33 / 38



Rough paths assumptions
Context: Consider a Hölder path x and

For n ≥ 1, xn ≡ linearization of x with mesh 1/n
↪→ xn piecewise linear.

For 0 ≤ s < t ≤ 1, set

x2,n,i ,jst ≡
∫
s<u<v<t

dxn,iu dxn,jv

Rough paths assumption 1:

x is a Cγ function with γ > 1/3.

The process x2,n converges to a process x2 as n → ∞
↪→ in a C2γ space.

Rough paths assumption 2:

Vector fields V0, . . . ,Vj in C∞
b .
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Brief summary of rough paths theory

Main rough paths theorem (Lyons): Under previous assumptions
↪→ Consider yn defined by

yn
t =

d∑
j=1

∫ t

0

Vj(x
n
u ) dx

n,j
u .

Then

yn converges to a function Y in Cγ.

Y can be seen as the integral path Yt =
∑d

j=1

∫ t

0
Vj(xu) dx

j
u.

Rough paths theoryRough paths theory

∫
dx ,

∫ ∫
dxdx

Smooth V0, . . . ,Vd

Rough paths theory

∫
dx ,

∫ ∫
dxdx

Smooth V0, . . . ,Vd

∫
Vj(x) dx

j

dy = Vj(y)dx
j
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Rough viscosity solutions

Recall: Our equation is[
∂tv(t, y) + sup

γ∈P(U)

H(t, y , γ,∇v(t, y))
]
dt

+σ(t, y) · ∇v(t, y)dBt = 0

Problem:
∇v above is ill-defined. The solution is not smooth in general

Viscosity solution idea:
Transfer derivatives on test functions

Changes in the rough paths setting:
Test functions should also be rough!

Samy T. (Purdue) Reinforcement learning Auburn 2023 36 / 38



Rough viscosity solutions: test functions

We are given

σ smooth enough

A rough path x (example x = B fBm with H > 1/3)

Drift term ψt ∈ Cε,1([0,T ]× Rm)

ψ : [0,T ]× Rm 7→ Rm

Then ψ is a test function in Tσ if ψ satisfies:

δψs1s2(y) =

∫ s2

s1

ψt
r (y)dr −

∫ s2

s1

σ(r , y) · ∇ψr (y)dxr

Definition 2.

Samy T. (Purdue) Reinforcement learning Auburn 2023 37 / 38



Rough viscosity solutions: Definition

Consider

x rough path

v path whose increments are controlled by x

We say that v is a rough viscosity supersolution of HJB equation
if

1 vT (y) ≥ G (y)

2 If ψ ∈ Tσ is such that
v − ψ admits a local minimum at (s, y), then

ψt
s(y) ≤ − sup

γ∈K
H(s, y , γ).

Definition 3.
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