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A basic classification task

Data:
@ Points {x;;i =1,...,n} with x; € R?
o Labels {y;;i=1,...,n} with y; € {0,1}

@ When labels are known, the learning is supervised

Aim:

e Find a proper separation between labels 0 and labels 1
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Linear separation

Separation using hyperplanes:

e %3 H, ",
@ We use a classification
~” °,
y = sign(v - x) . "
@ v optimized °, o g
— According to our data: 5 ©
0°lo
V= m|n E |sign (w - x;) — y;ill? 8 9g

Figure: Separation of 2 subgroups according to
Hi, Ha, H3
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Separation using neural networks

Definition of the multilayer neural network:
o Recursion x**1 = S(wx* +d*) for k =0, ... Mayer
e wk matrix-valued, d* vector-valued
@ S defined componentwise by o below

e w¥ and d* to be optimized

Figure: Sigmoid o(x) = 2 tanh(x) and ReLU o(x) = max{x, 0}

o7

Samy T. (Purdue) Reinforcement learning Auburn 2023 6/38



Towards a control theory framework (1)

Slight change of notation: We have seen that
o x¥ defined recursively by

X = S (whxk +d¥) = b (x*,u¥)

o uk = (w*,d") parameter to be optimized
— According to loss function

Example of loss function: With n = nj, and y = label
n—1 )
Ju) =y =x"P+ A o]
k=0

where A\ = regularization parameter
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Towards a control theory framework (2)

Recall: We have seen, for k =10,...,n—1,

= b(x", )
( )= (v —x") + A Ju’
Limiting procedure: Take n — oo and renormalize. We get

dXt — b(Xt, Ut) dt t € [O, T]
J(u) = G(x71) + fo (us, x;) dt

This is a classical control theory framework.
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Generalization 1: noisy environment

A stochastic equation: For the neural network dynamics, take
@ A Brownian motion W

@ Equation of the form
dx; = b(x¢, u) dt + o(x;) AW,
Motivation:

@ Neural networks are noisy "

— =0
Sample path
1 — o =28, 500-average

@ Noise stabilizes equations S
@ Example on the right: .
g

dXt:Xtdt +UXtth @

Time t

Figure: Stabilization with a multiplicative noise

Samy T. (Purdue) Reinforcement learning Auburn 2023 11/38



Generalization 2: reinforcement learning (1)

Equation: So far our problem is

{dxt = b(x¢, ur) dt + o(x;) dW,
J(u) =E {G(XT) + T (ue, %) dt]

RL problematic:
@ Problem: In many situations, the dynamics for x is unknown

@ RL strategy: Use the control u for both

@ Optimization of the action
@ Exploration of different dynamics

Change in the model:
@ The control u will be measure-valued

@ We add an entropy term to the reward, to favor exploration
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Generalization 2: reinforcement learning (2)

Previous version of the model:

xt:y—i—fot (x,, uy) dr—l—fo o(x,)dW,
J( )zE[G XT —|—fo r(ur, x) dr]

Relaxed control: We consider
e UCR?
e Control u, is replaced by 7, € P(U)

New version of the model:

J( ) =E [G xT) + fo x,,fy,) dr]
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Generalization 2: reinforcement learning (3)

New version of the model:

=y + [y [, b a) v(da)dr + [; o(x)dW,
J(’y) =E [G x7) + fo F(ryx, ) dr}

Recall: We wish to use v for
© Optimization of the action
@ Exploration of different dynamics

Typical example of function F: If v, has a density 7,

Frox) = ([ rea)icto)da = [ 5o (o)au)
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Example in 3-d folding (1)

Notation: For a protein folding study,
@ s, = t-th iteration of the molecule configuration

@ a = vector containing bond angle and bond torsion
— to be optimized

@ 7, Kk unknown parameters

e U(s,a) = energy to be minimized, with an entropy term

Dynamics:
¢ «
¥ E SO0 SRS
dSt = at dt ‘{“ ‘{v}k ‘{9 L
¢ ¢ ¢
dat :*’yatdt*f{th
Figure: Sequence of foldings
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Generalization 3: rough environment (1)

Observation:
@ We have assumed that x is driven by a Brownian motion
@ In real life, some observations are not Brownian
@ In particular

» The Holder regularity of t — W, is not always 1/2 — ¢
» Environments are not always Markovian

Natural generalization:

@ Fractional Brownian motion
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Fractional Brownian motion

e He(0,1)

e B=(B%,...,BY

@ B’ centered Gaussian process, independence of coordinates
°

Variance of the increments:

. . 1/2
(E0BE - BIPY) " =t —s|"

H~ = Holder-continuity exponent of B
e If H=1/2, B = Brownian motion
If H # 1/2 natural generalization of BM

Remark: FBm widely used in applications
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Examples of fBm paths

Y

MWWWW RN

H=0.3 H=10.5 H=0.7
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Paths for a linear SDE driven by fBm

dYt = —0.5X1_L dt + 2X1_L dBt, X0 = 1

‘W

H=05 H=07

Blue: (Bt)rep1 Red: (Yt)eeqo 1
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fBm and integration

Basic facts about fBm: Let B be a fBm with H € (0,1). Then:
@ B is not a finite variation process
@ B is not a Markov process

@ B is not a martingale

Main step in order to solve equations:
@ Define integrals of the form fot o(xs) dBs

Problem for fBm:
@ [t0's theory does not apply to B
@ Need for another integration theory — rough paths theory
@ This will rely on regularity and Gaussianity of B
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Generalization 3: rough environment (2)

Previous version of the model:

=y+ [y [, b(x,a) v(da)dr + [; o(x)dW,
J( )=E [G XT —i—fo F(r,x:,r) dr}

New version of the model:

=y+ [y [, b(x,a) v (da)dr + [; o(x)dB,
J(’Y):GXT +f0 r,Xr,'Yr) dr

Typical example of function F: If , has a density 7,,

Flrox) = ([ rtxupintadda = [ 5wy iogs (e
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Summary for our setting

We consider:
@ Control point of view on learning
© Reinforcement learning setting with regularization by entropy
© Rough environment, possibly driven by a fBm
© Pathwise optimization
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A more formal framework (1)

Dynamics: For 0 <s <t < T and x; € R",

t t
Xt — Xs = / / b(x,,a) v,(da)dr —1—/ o(x,)dB,
s v s

Reward from s to T:

-
dr(roy) = [ (a0 dr+ 6(7)
State space for : Minimal Holder regularity in Wasserstein distance,

Vi(ls, T1) = {C*([s, TI; P(U)); Wa(r,7e) < clt = r[f
for some ¢ > 0 and all r, t € [s, T]}.
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A more formal framework (2)

Recall: .
Jor(vay) = / F(r.x0,7) dr + G(x2)

Value: We set, for 0 <s < T

V(s,y) = sup{Jdst(7,y); v € V([s, T])}
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HJB equation for the value

~ Theorem 1. \

The value V solves the following first order rough PDE:

[atV(f,y)Jr sup H(t,ymVV(w))]df
veP(U)
+o(t,y) - Vv(t,y)dB; =0
for (t,y) € [0, T] x R", with final condition
v(T.y) = G(y).

The Hamiltonian H above is defined by

H(t,y,7,0) = p- / by, 2)7(da) + F(£,y,7)
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Notes on Theorem 1

Remarks:
@ V should be considered as a rough viscosity solution

@ Extra care due to the fact that ~; is a measure

More results related to Theorem 1:

@ Definition of test functions for rough viscosity solutions
< This is usually not done in other related works

© Definition of related jets
© Regularity of V
@ Existence of a minimizer v*

© Transformation:
rough PDEs — PDE with random coefficients
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Perspectives

Program:

@ Numerical schemes for HJB
— Policy iteration

@ Actor-critic scheme for the reinforcement part

Unknown Dynamics
Known Dynamics
Known Dynamics

Rough
Environment

g --——
nction, g
Policy 1

Controller/ 1

Action/control
Learning
uonendwod

leubis
JuUsWavIojuUIRY/01e1S

Research Task 1
Research Task 2

Research Task 3
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The rough paths problem (1)

The main integration problem: Give a meaning to integrals like

t
/ o(r,y) - Vv(r,y)dx,,
where x = fBm or other v-Holder path

Related toy model: With 1-d notations, define integrals like

/ V()
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The rough paths problem (2)

Easy expansion: We have
t
[ Viaddn = Ve + ViR,

+ t | (V) = Vi)

Explanation of terms: In the above expansion we have
@ xl, = x; — xs, well-defined
@ Assumption: x = [ [ dx,dx, well-defined
< Main rough paths assumption

O [ [1(V'(x) = V'(x)) dxudx,
— defined as a " Young” integral if x € C7
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Rough paths assumptions
Context: Consider a Holder path x and

@ For n > 1, x" = linearization of x with mesh 1/n
— x" piecewise linear.

@ For0<s<t<l1, set

2.nij __ n,i nj
Xg V= / dx;" dx
s<u<v<t

Rough paths assumption 1:

@ x is a C7 function with v > 1/3.

2,n 2

@ The process X converges to a process X“ as n — o0

< in a C% space.

Rough paths assumption 2:
@ Vector fields V, ..., Vjin C}°.
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Brief summary of rough paths theory

Main rough paths theorem (Lyons): Under previous assumptions
— Consider y" defined by

Z/ dx”J.
Then

@ y" converges to a function Y in C7.

@ Y can be seen as the integral path Y; = J L fo (xy) dxXd.
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Brief summary of rough paths theory

Main rough paths theorem (Lyons): Under previous assumptions
— Consider y" defined by

Z/ dx”J.
Then

@ y" converges to a function Y in C7.

@ Y can be seen as the integral path Y; = J L fo (xy) dxXd.

Jdx, [ [ dxdx

Rough paths theory
Smooth Vg, ..., Vy
—)
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Brief summary of rough paths theory

Main rough paths theorem (Lyons): Under previous assumptions
— Consider y" defined by

Z / " dx

Then
@ y" converges to a function Y in C".
@ Y can be seen as the integral path Y; = J L fo (xy) dxXd.
Jdx, [ [ dxdx J Vi(x) dx!
 ——— s

Rough paths theory )
Smooth V, ..., V, dy = Vj(y)dx’
_— ——>
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Rough viscosity solutions

Recall: Our equation is

Owv(t,y)+ sup H(t,y,7, Vv(t,y))|dt
yEP(V)

+o(t,y)-Vv(t,y)dB; =0

Problem:
Vv above is ill-defined. The solution is not smooth in general

Viscosity solution idea:
Transfer derivatives on test functions

Changes in the rough paths setting:
Test functions should also be rough!
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Rough viscosity solutions: test functions

—~ Definition 2.

We are given

@ 0 smooth enough

@ A rough path x (example x = B fBm with H > 1/3)
o Drift term ot € C='([0, T] x R™)

@ ¢: [0, T] x R" — R™

Then 1) is a test function in 7, if v satisfies:

Sty / Vi (y)dr / o(r,y) - Vuly)ebs
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Rough viscosity solutions: Definition

~ Definition 3.

Consider
@ x rough path

@ v path whose increments are controlled by x

if
Q vr(y) > G(y)

Q If ¢» € T, is such that
v — 1) admits a local minimum at (s, y), then

Yi(y) < —sup H(s,y,7).
veK

We say that v is a rough viscosity supersolution of HJB equation

Samy T. (Purdue) Reinforcement learning

Auburn 2023

38/38



	Supervised learning
	Noisy environment and reinforcement learning
	Results, perspective, methods
	Results and perspectives
	Methods


