Relativistic stable processes in quasi-ballistic heat conduction

Samy Tindel

Purdue University

Purdue – 2020 Applied Mathematics Pizza Seminar

Joint work with P. Chakraborty, A. Shakouri, B. Vermeersch

Samy T. (Purdue)

Relativistic stable processes

- 2 Relativistic stable processes
- 3 Model and data fit
- 4 Conclusion and perspectives

Introduction

- 2 Relativistic stable processes
- 3 Model and data fit
- 4 Conclusion and perspectives

N 4 E N

Experimental setting

TDTR: Time domain thermoreflectance

- Short heat impulses
- Strong pump pulses get into material
- Weaker probe signals

 → in order to measure change in reflectance due to heat
- Transform to $-V_{\rm in}/V_{\rm out}$

Material used:

$\mathsf{In}_{0.53}\mathsf{Ga}_{0.47}\mathsf{As}$

Illustration: Experimental Setting

Classical heat equation

Notation: We set

$T_0 \equiv$ Initial temperature distribution

and

$$\partial_t T(t,x) = \frac{\partial}{\partial t} T(t,x)$$

Equation: For $x \in \mathbb{R}^d$ and d = 1, 2, 3

$$\partial_t T(t,x) = rac{1}{2} \Delta T(t,x), ext{ with } T(0,x) = T_0(x).$$

Brownian motion

Definition 1.

Let

- $(\Omega, \mathcal{F}, \mathbf{P})$ probability space
- $\{W_t; t \ge 0\}$ stochastic process, \mathbb{R} -valued

We say that W is a Brownian motion if:

•
$$W_0 = 0$$
 almost surely

② Let
$$n \geq 1$$
 and $0 = t_0 < t_1 < \cdots < t_n$. The increments

 $\delta W_{t_0 t_1}, \delta W_{t_1 t_2}, \dots, \delta W_{t_{n-1} t_n}$ are independent

For t > 0 we have

$$W_t \sim \mathcal{N}(0, t), \quad ext{or} \quad \mathbf{E}\left[e^{\imath \xi W_t}
ight] = e^{-rac{1}{2}t\xi^2}$$

< 47 ▶

Illustration: chaotic path

Illustration: random path

Illustration: 2-d Brownian motion

Feynman-Kac representation

Equation: Classical heat equation

$$\partial_t T(t,x) = \frac{1}{2} \Delta T(t,x), \quad \text{with } T(0,x) = T_0(x).$$

Representation: For a Brownian motion W,

 $T(t,x) = \mathbf{E} \left[T_0(x+W_t) \right]$

E 6 4 E 6

A non Brownian world

A modified heat equation: Under our experimental setting

- The data does not match the heat equation
- Idea: replace the Brownian motion by a Levy process

Levy processes:

- Most natural generalizations of Brownian motion
- Involve jumps

Introduction

- 2 Relativistic stable processes
- 3 Model and data fit
- 4 Conclusion and perspectives

4 E b

Relativistic stable process

Definition 2.

Let $m\geq$ 0, 0 < lpha < 2 and

• $\{X_t^m; t \ge 0\}$ stochastic process, \mathbb{R} -valued

We say that X^m is a relativistic stable process if:

$$\mathsf{E}\left[e^{i\xi X_t^m}\right] = \exp\left(-t\left(\left(|\xi|^2 + m^{2/\alpha}\right)^{\alpha/2} - m\right)\right)$$

Remarks on relativistic stable process

Case $m = \infty$: We get a Brownian motion

$$\mathbf{E}\left[e^{i\xi X_t^m}\right] \simeq \exp\left(-c_m t |\xi|^2\right)$$

Case m = 0: We get an α -stable process

$$\mathsf{E}\left[e^{\imath\xi X_t^m}\right] = \exp\left(-t|\xi|^{\alpha}\right)$$

Jumps: All Levy processes have jumps

- Brownian motion is the only continuous Levy process
- Jumps can be described in terms of characteristic function
- α -stable have heavy tailed jumps
- Relativistic stable processes have light tailed jumps

Typical path of an α -stable process

Examples of paths: Different values of α , for m = 0

Role of parameter α : If α is small

- Larger jumps
- Less integrability: $\mathbf{E}[|X_t|^p] < \infty$ for $p < \alpha$

Transition from α -stable to Brownian

Theorem 3.
Let
•
$$X^m \equiv$$
 Relativistic stable process
• $p_t^m(x) \equiv$ Density of X_t^m
Then
 $p_t^m(x) = \begin{cases} c_{1,m} t^{-d/\alpha} \times \text{ decaying function}(x), & t \text{ small} \\ c_{1,m} t^{-d/2} \times \text{ decaying function}(x), & t \text{ large} \end{cases}$

Interpretation:

- For t small, α -stable behavior
- For *t* large, Brownian behavior

1 Introduction

2 Relativistic stable processes

3 Model and data fit

4 Conclusion and perspectives

ヨト イヨト

< 行

Feynman-Kac representation

Model: We assume, for a relativistic stable X^m ,

$$T(t,x) = \mathbf{E}\left[T_0(x+X_t^m)\right]$$

Corresponding PDE: Nonlocal, of the form

$$\partial_t T(t,x) = \mathcal{L}^m T(t,x),$$

with

$$\mathcal{L}^m = m - \left(-\Delta + m^{2/\alpha}\right)^{\alpha/2}.$$

Experimental setting (repeated)

TDTR: Time domain thermoreflectance

- Short heat impulses
- Strong pump pulses get into material
- Weaker probe signals

 → in order to measure change in reflectance due to heat

• Transform to
$$-V_{
m in}/V_{
m out}$$

Estimation for α :

- Experimental: $\alpha = 1.695$
- Theoretical Physics: $\alpha = 1.75$

Data fit

Comparison data/theoretical: For different values of f_{mod}

Samy T. (Purdue)

1 Introduction

- 2 Relativistic stable processes
- 3 Model and data fit
- 4 Conclusion and perspectives

N 4 E N

Conclusions

Advantages of the Levy formalism

- Natural extension of the Brownian formalism
- Justified by theoretical Physics considerations
- Connexions to a rich mathematical literature
 - Identification of the distribution
 - Kernel estimates
- Excellent data fit

Perspectives

Multilayer setting:

- Two layers of different materials, either in 2-d or 3-d
- Coupling of 2 nonlocal PDEs
- Boundary conditions: TBD

э