Rough paths methods 1: Introduction

Samy Tindel

Purdue University

University of Aarhus 2016

Outline

Motivations for rough paths techniques

2 Summary of rough paths theory

 Samy T. (Purdue)
 Rough Paths 1
 Aarhus 2016
 2 / 16

Outline

Motivations for rough paths techniques

Summary of rough paths theory

Samy T. (Purdue)

Equation under consideration

Equation:

Standard differential equation driven by fBm, \mathbb{R}^n -valued

$$Y_t = a + \int_0^t V_0(Y_s) \, ds + \sum_{j=1}^d \int_0^t V_j(Y_s) \, dB_s^j, \tag{1}$$

with

- $t \in [0, 1]$.
- Vector fields V_0, \ldots, V_d in C_b^{∞} .
- A *d*-dimensional fBm *B* with 1/3 < H < 1.
- Note: some results will be extended to H > 1/4.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

Fractional Brownian motion

- $B = (B^1, ..., B^d)$
- B^j centered Gaussian process, independence of coordinates
- Variance of the increments:

$$\mathbf{E}[|B_t^j - B_s^j|^2] = |t - s|^{2H}$$

- $H^- \equiv \text{H\"older-continuity}$ exponent of B
- If H = 1/2, B = Brownian motion
- If $H \neq 1/2$ natural generalization of BM

Remark: FBm widely used in applications

Samy T. (Purdue)

Examples of fBm paths

H = 0.3

H = 0.5

6 / 16

Rough Patl

Paths 1 Aarhus 2016

Paths for a linear SDE driven by fBm

$$dY_t = -0.5Y_t dt + 2Y_t dB_t, \quad Y_0 = 1$$

$$H = 0.5$$

$$H = 0.7$$

Blue: $(B_t)_{t \in [0,1]}$ Red: $(Y_t)_{t \in [0,1]}$

Some applications of fBm driven systems

Biophysics, fluctuations of a protein:

- New experiments at molecule scale
 - \hookrightarrow Anomalous fluctuations recorded
- Model: Volterra equation driven by fBm
 - → Samuel Kou
- Statistical estimation needed

Finance:

- Stochastic volatility driven by fBm (Sun et al. 2008)
- Captures long range dependences between transactions

Outline

Motivations for rough paths techniques

2 Summary of rough paths theory

 Samy T. (Purdue)
 Rough Paths 1
 Aarhus 2016
 9 / 16

Rough paths assumptions

Context: Consider a Hölder path x and

- For $n \ge 1$, $x^n \equiv$ linearization of x with mesh $1/n \hookrightarrow x^n$ piecewise linear.
- For 0 < s < t < 1, set

$$\mathbf{x}_{st}^{2,n,i,j} \equiv \int_{s < u < v < t} dx_u^{n,i} dx_v^{n,j}$$

Rough paths assumption 1:

- x is a \mathcal{C}^{γ} function with $\gamma > 1/3$.
- The process $\mathbf{x}^{2,n}$ converges to a process \mathbf{x}^2 as $n \to \infty$ \hookrightarrow in a $\mathcal{C}^{2\gamma}$ space.

Rough paths assumption 2:

• Vector fields V_0, \ldots, V_i in C_b^{∞} .

Main rough paths theorem (Lyons): Under previous assumptions \hookrightarrow Consider y^n solution to equation

$$y_t^n = a + \int_0^t V_0(y_u^n) du + \sum_{j=1}^d \int_0^t V_j(y_u^n) dx_u^{n,j}.$$

Then

- y^n converges to a function Y in C^{γ} .
- Y can be seen as solution to

$$\hookrightarrow Y_t = a + \int_0^t V_0(Y_u) du + \sum_{j=1}^d \int_0^t V_j(Y_u) dx_u^j$$

Samy T. (Purdue)

Main rough paths theorem (Lyons): Under previous assumptions \hookrightarrow Consider y^n solution to equation

$$y_t^n = a + \int_0^t V_0(y_u^n) du + \sum_{i=1}^d \int_0^t V_j(y_u^n) dx_u^{n,j}.$$

Then

- y^n converges to a function Y in C^{γ} .
- Y can be seen as solution to

$$\hookrightarrow Y_t = a + \int_0^t V_0(Y_u) du + \sum_{j=1}^d \int_0^t V_j(Y_u) dx_u^j$$

Rough paths theory

11 / 16

Main rough paths theorem (Lyons): Under previous assumptions \hookrightarrow Consider y^n solution to equation

$$y_t^n = a + \int_0^t V_0(y_u^n) du + \sum_{j=1}^d \int_0^t V_j(y_u^n) dx_u^{n,j}.$$

Then

- y^n converges to a function Y in C^{γ} .
- Y can be seen as solution to $\hookrightarrow Y_t = a + \int_0^t V_0(Y_u) du + \sum_{i=1}^d \int_0^t V_i(Y_u) dx_u^j$

Main rough paths theorem (Lyons): Under previous assumptions \hookrightarrow Consider y^n solution to equation

$$y_t^n = a + \int_0^t V_0(y_u^n) du + \sum_{j=1}^d \int_0^t V_j(y_u^n) dx_u^{n,j}.$$

Then

- y^n converges to a function Y in C^{γ} .
- Y can be seen as solution to $\hookrightarrow Y_t = a + \int_0^t V_0(Y_u) du + \sum_{i=1}^d \int_0^t V_i(Y_u) dx_u^j$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥9

Samy T. (Purdue) Rough Paths 1 Aarhus 2016 11 / 16

Iterated integrals and fBm

Nice situation: H > 1/4

 \hookrightarrow 2 possible constructions for geometric iterated integrals of *B*.

- Malliavin calculus tools
 - \hookrightarrow Ferreiro-Utzet
- Regularization or linearization of the fBm path
 - \hookrightarrow Coutin-Qian, Friz-Gess-Gulisashvili-Riedel

Conclusion: for H > 1/4, one can solve equation

$$dY_t = V_0(Y_t) dt + V_j(Y_t) dB_t^j,$$

in the rough paths sense.

Remark: Extensions to $H \le 1/4$ (Unterberger, Nualart-T).

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かり(で

Samy T. (Purdue) Rough Paths 1 Aarhus 2016 12 / 16

Study of equations driven by fBm

Basic properties:

- Moments of the solution
- Continuity w.r.t initial condition, noise

More advanced natural problems:

- Numerical schemes→ Neuenkirch-T, Friz-Riedel
- **③** Statistical estimation (H, coeff. V_j) \hookrightarrow Berzin-León, Hu-Nualart, Neuenkirch-T

Extensions of the rough paths formalism

Stochastic PDEs:

- Equation: $\partial_t Y_t(\xi) = \Delta Y_t(\xi) + \sigma(Y_t(\xi)) \dot{x}_t(\xi)$
- $(t,\xi) \in [0,1] \times \mathbb{R}^d$
- Easiest case: x finite-dimensional noise
- Methods:
 - \hookrightarrow viscosity solutions or adaptation of rough paths methods

KPZ equation:

- Equation: $\partial_t Y_t(\xi) = \Delta Y_t(\xi) + (\partial_\xi Y_t(\xi))^2 + \dot{x}_t(\xi) \infty$
- $(t,\xi) \in [0,1] \times \mathbb{R}$
- $\dot{x} \equiv$ space-time white noise
- Methods:
 - Extension of rough paths to define $(\partial_x Y_t(\xi))^2$
 - ightharpoonup Renormalization techniques to remove ∞

Aim

- Definition and properties of fractional Brownian motion
- ② Some estimates for Young's integral, case H > 1/2
- **3** Extension to $1/3 < H \le 1/2$

General strategy

- In order to solve our equation, we shall go through the following steps:
 - ▶ Young integral for H > 1/2
 - ▶ Case 1/3 < H < 1/2, with a semi-pathwise method
- For each case, 2 main steps:
 - ▶ Definition of a stochastic integral $\int u_s dB_s$ for a reasonable class of processes u
 - Resolution of the equation by means of a fixed point method