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1. Find the plane tangent to the surface z2 = 2xy at (1, 2,−2).

A. 2x + y − 2z = 8

B. x + 2y − 2z = 9

C. 2x + y + 2z = 0

D. 4x + 2y − z = 10

E. x + 2y + 2z = 1

F. 4x + 2y + z = 6

2. Find the absolute maximum value, M , and the absolute minimum value, m, of the function
f(x, y) = x2 + y2 − 4y + 4 on the closed disk {(x, y) : x2 + y2 ≤ 16}.

A. M = 36 and m = 0

B. M = 36 and m = 4

C. M = 28 and m = 2

D. M = 28 and m = 0

E. M = 28 and m = 4

F. M = 36 and m = 2
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3. Consider the limit lim
(x,y)→(0,0)

xy

x2 + y2
. Which of the following statements is true?

A. The limit does not exist, because the path-restricted limit approaching (0, 0) along
the diagonal y = x does not exist.

B. The limit does not exist, even though the path-restricted limits approaching (0, 0)
along the x-axis and the y-axis are both 0.

C. The limit does not exist, because the path-restricted limits approaching (0, 0) along
the x-axis and the y-axis are different.

D. The limit is 0, and the limit along any path approaching (0, 0) is also 0.

E. The limit is 0, because the path-restricted limit approaching (0, 0) along the diagonal
y = x is 0.

F. The limit is 0, even though the path-restricted limits approaching (0, 0) along the
x-axis and the y-axis are different.

4. Identify the surface that does not contain the curve

~r(t) = 〈cos t,− cos t, sin t〉

A. Plane: x + y = 0

B. Circular cylinder: y2 + z2 = 1

C. Ellipsoid:
x2

2
+

y2

2
+ z2 = 1

D. Circular cylinder: x2 + y2 = 1

E. Ellipsoid:
x2

3
+

2y2

3
+ z2 = 1

F. Circular cylinder: x2 + z2 = 1
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5. Suppose z = f(x, y) has the following level curves:

The surface formed by the graph of f could be which of the following?

A. Plane

B. Hyperbolic paraboloid

C. Hyperboloid of two sheets

D. Ellipsoid

E. Elliptic paraboloid

F. Elliptic cone

6. A ball is launched from an initial location of (0, h), with initial velocity vector 〈10, 10〉. Use
the constant g > 0 for the acceleration due to gravity, and assume the gravitational force
points in the direction of the negative y-axis. Determine the location of the ball when it is
at its maximum height.

A.

(
50 + 5

√
100 + 2gh

g
,
10 +

√
100 + 2gh

g

)
B.

(
100

g
,
10 +

√
100 + 2gh

g

)
C.

(
50 + 5

√
100 + 2gh

g
,
100 + 3gh + 10

√
100 + 2gh

4g

)
D.

(
100

g
,
50 + gh

g

)
E.

(
100

g
,
100 + 3gh + 10

√
100 + 2gh

4g

)
F.

(
50 + 5

√
100 + 2gh

g
,
50 + gh

g

)
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7. The line ` passes through the points (1, 1, 1) and (2, 0, 1). The plane Q contains the points
(0, 0, 0), (1, 2, 2), and (1, 0, 1). Find the intersection point of ` and Q.

A. (0, 2, 1)

B. (−1, 4, 1)

C. (2,−2, 1)

D. (−2, 4, 1)

E. (4,−2, 1)

F. (3,−1, 1)

8. Find the arclength function for

~r(t) = 〈cos t + t sin t, sin t− t cos t, t2〉,

giving the length of the curve measured from (1, 0, 0) in the direction of positive orientation.

A. s(t) =
1

3
(1 + t2)3/2 − 1

3

B. s(t) =

∫ t

0

√
1 + u2 + u4 du

C. s(t) =

√
5

2
t2

D. s(t) =
√

5 t

E. s(t) =
2
√

2

3
(1 + t)3/2 − 2

√
2

3

F. s(t) =
t
√

1 + t2 + ln |t +
√

1 + t2|
2
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9. Compute the directional derivative of f(x, y, z) = x2y + yz2 at (1, 1, 1) in the direction
2

3
~i +

1

3
~j +

2

3
~k.

A. 3

B.
8

3
C. 8

D. 2

E. 10

F.
10

3

10. Which of these equations has a graph like the pictured elliptic cone, with vertex at the origin
and opening in the direction of the x-axis.

A. y2 − 4z2 − 16x2 = 1

B. y2 + 4z2 − 16x2 = 1

C. y2 + 4z2 + 16x2 = 1

D. y2 − 4z2 + 16x2 = 0

E. y2 + 4z2 − 16x2 = 0

F. y2 − 4z2 + 16x2 = 1
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11. Classify all critical points of f(x, y) =
x3

3
− y3

3
+ 2xy, and choose the correct summary from

the answer choices below.

A. Two local maximums.

B. One local maximum and one saddle point.

C. One local maximum and one local minimum.

D. One local minimum and one saddle point.

E. Two local minimums.

F. Two saddle points.

12. Suppose f is a function of x, y, and z, with fx(1, 1, 1) = 1, fy(1, 1, 1) = 2, and fz(1, 1, 1) = 3.

If x = x(t) = t2, y = y(t) = t3, and z = z(t) = t4, find
df

dt
when t = 1.

A. 54

B. 6

C. 20

D. 144

E. 9

F. 24
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