Application of functions of 2 variables (1) Situation:

- Fraction of students infected by FV is r on 9/12
- We have *n* random encounters with students on 9/12

Function:

The probability of meeting at least one student with FV is

 $p(n,r) = 1 - (1-r)^n$

This requires probability theory and is admitted

Question: Draw level curves

Function $p(n,r) = 1 - (H-R)^n RE[0,1]$ po. We wish to have Level curve : Fix Note: po shall be in $p(n, \pi) = p_0$ the lange of p(n,r) This hange is [3,1] $(=)) - ((-n)^n = p_0$ () ()-1)ⁿ = 1−Po (=) $|-\mathcal{N}| = (1-p_0)^n$ $2 = 2(n) = 1 - (1 - p_0)^n$

CTROPHING the level curves $\mathcal{L} = \mathcal{L}(n) = 1 - (1 - p_0)^{n}$ トル As $n \rightarrow 0^+$, $\frac{1}{n}$ $+\infty$ **─**> (1-po)ta ->>> 0 E (0,1) $\mathcal{I}(n) = 1 - (1 - \beta)^{\frac{1}{2}} \xrightarrow{n - 3 - 20}$, 'n \bigcirc $n \rightarrow \infty$ (1-po) t → 1 R(n) = 1-(1-ps) -> 0

Application of functions of 2 variables (2)

Function:

$$p(n,r)=1-(1-r)^n$$

Useful values of z: For $p_0 \in [0, 1]$, the curve $p(n, r) = p_0$ is non empty

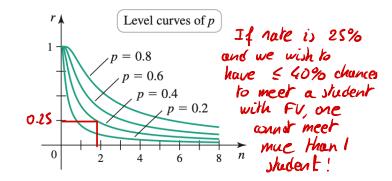
Level curves for $p_0 \in [0, 1]$:

$$r = 1 - (1 - p)^{1/n}$$

Application of functions of 2 variables (3) Function:

$$p(n,r)=1-(1-r)^n$$

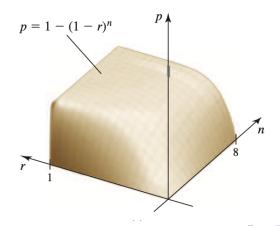
Depiction of level curves:



Application of functions of 2 variables (4) Function:

$$p(n,r)=1-(1-r)^n$$

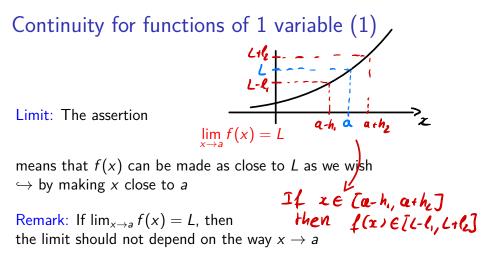
Depiction of function:



Outline

Graphs and level curves

- 2 Limits and continuity
 - 3 Partial derivatives
 - 4 The chain rule
 - 5 Directional derivatives and the gradient
- Tangent plane and linear approximation
- 🕖 Maximum and minimum problems
- 8 Lagrange multipliers



Continuity for functions of 1 variable (2)

Continuity: The function f is continuous at point a if

 $\lim_{x\to a}f(x)=f(a)$

Examples of continuous functions:

- Polynomials
- sin, cos, exponential
- Rational functions (on their domain) -
- Log functions (on their domain)

$$\frac{E \times d \text{ national function}}{\sum_{x^2 + S} 7x^5 - 3x^2 + 4}$$

Continuity for functions of 2 variables (1) (2,9)-> (a,6) (x,y). -> (a.6) Limit: The assertion $\lim_{(x,y)\to(a,b)}f(x,y)=L$ means that f(x, y) can be made as close to L as we wish \hookrightarrow by making (x, y) close to (a, b)**Remark**: If $\lim_{(x,y)\to(a,b)} f(x,y) = L$, then the limit should not depend on the way $(x, y) \rightarrow (a, b)$ for xER, there is just I way to have x -> a. In R² there are plenty Rmk: of ways to have (2,4) -> (a,6)

Continuity for functions of 2 variables (2)

Continuity: The function f is continuous at point a if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

Examples of continuous functions:

- Polynomials $x^2 y^{s} 4 x y^2$
- sin, cos, exponential sin(12+y)
- Rational functions (on their domain)
- Log functions (on their domain) log (sin (x-y))

$$e^{-z^{2}+y}$$

$$\frac{z^{5}-y}{y^{3}+4z}$$

Logarithmic example (1)

Function:

$$\ln\left(\frac{1+y^2}{x^2}\right)$$

Problem: Continuity at point

(1, 0)

Image: Image:

Function: $f(x,y) = ln\left(\frac{1+y^2}{x^2}\right)$ Continuity: f is continuous at any point (x,y) such that $\frac{1+y^2}{x^2} > 0 \quad (and well-defined, i.e. x \neq 0)$ At point (1,0) $\frac{1+y^2}{x^2} = \frac{1+0^2}{x^2} = 1 > 0$ Thus of continuous at (1,0)

Logarithmic example (2)

Continuity: f is the log of a rational function \hookrightarrow Continuous wherever it is defined

Definition at point (1, 0): We have

f(1,0) = 0

This is well defined

Conclusion: f is continuous at (1,0), that is

 $\lim_{(x,y)\to(1,0)} f(x,y) = f(1,0) = 0$

Rational function example (1)

Function:

$$f(x,y) = \frac{y^2 - 4x^2}{2x^2 + y^2}$$

Problem: Continuity at point

(0, 0)

Samy	

 $f(x,y) = \frac{y^2 - 4x^2}{y^2 - 4x^2}$ Function 2x2 + y2

f is continuous at any part $(x,y) j.t. <math>2x^2 + y^2 \neq 0$ Continuity

At (0,0), we do have $2x^{2}+y^{2}=0$. We cannot conclude Problem

Mneaver at (0,0), $f(x,y) = \frac{9}{9} \rightarrow undelemined$

We are going to last at limits along different paths

Function $f(x,y) = \frac{y^2 - 4\chi^2}{2\chi^2 + y^2}$ y=0 Limit along line x=0 $f(0,y) = \frac{y^2 - 0}{0 + y^2} = 1$ Limit along line y=0 $f(x,0) = \frac{0 - 4x^{2}}{2x^{2} + 0} = -2$

we get 2 different limits for 2 different paths => 1 is not continuous at (0,0)

Rational function example (2)

Continuity: f is a rational function \hookrightarrow Continuous wherever it is defined

Definition at point (0, 0): We have

$$f(0,0)=\frac{0}{0}$$

This is not well defined, therefore general result cannot be applied

Rational function example (3)

Two paths: We have

Along
$$x = 0$$
, $\lim_{(x,y)\to(0,0), x=0} \frac{y^2 - 4x^2}{2x^2 + y^2} = 1$
Along $y = 0$, $\lim_{(x,y)\to(0,0), y=0} \frac{y^2 - 4x^2}{2x^2 + y^2} = -2$

We get 2 different limits

Conclusion: f is not continuous at point (0,0)

Another rational function example (1)

Function:

$$f(x,y) = \frac{x^2 - y^2}{x + y}$$

Problem: Continuity at point

(0,0)

We will see: $\stackrel{?}{\ominus}$, but fi continuous at (0,0)