Volume between two cones (1) Question will we always in legende the function 1 in \mathbb{R}^3 ? Answer NO. We just in legende 1 in order to compute volumes

Problem:

Compute the volume

- Above cone $C_1: z = \sqrt{x^2 + y^2}$
- Below cone $C_2 : z = 2 \sqrt{x^2 + y^2}$

< □ > < 同 > < 三 > < 三 >

 $C_{1} = (x^{2}+y^{2})^{2} = \pi$ Functions (2: 2= 2- (x4y2)2 = 2-2

Intersection When $r = 2 - \pi \Leftrightarrow 2n = 2 (\Rightarrow n = 1)$

Thus region of integration in the xy plane is $z \leq 1 \iff z^2 + y^2 \leq 1$ (disk)

Integral $2 - (x_4y_2)^{t_2}$ $V = \iint_{x^2+y^2 \le 1} \int_{(x^2+y^2)^{t_2}} dt dx dy$

= $\iint_{\{x^{2},y^{2} \leq i\}} (2 - 2(x^{2} + y^{2})^{2}) dx dy$ Still ugly looking -> polar cardinates

 $V = \iint_{\{x^{2},y^{2} \leq i\}} (2 - 2(x^{2} + y^{2})^{2}) dx dy$ In polar coordinates Region of integration: {(R,O); OSOSZA, OSNEN] Integral $V = 2 \int_{0}^{2\pi} \int_{0}^{2\pi} (1-r) r dr d\theta$ $= 2 \times 2\pi \int (2 - n^2) dr$ $\frac{\lambda^2}{2} - \frac{\lambda^2}{2} \Big|_{\lambda}$ $= 4\pi$ $=\frac{4}{6}\pi$

Volume between two cones (2)

Intersection of the 2 cones: Its projection on xy-plane is

$$x^2 + y^2 = 1$$

Strategy of integration:

In xy-plane, surface delimited by x² + y² = 1
 → Easy domain (circle)

Conclusion: an easy way to integrate is in this order,

$\mathrm{d} z \,\mathrm{d} y \,\mathrm{d} x$

Volume between two cones (3)

Integral computation: We get

$$V = \int_{x^2 + y^2 \le 1} \int_{\sqrt{x^2 + y^2}}^{2 - \sqrt{x^2 + y^2}} dz \, dy \, dx$$
$$= \int_{x^2 + y^2 \le 1} \left(2 - 2\sqrt{x^2 + y^2}\right) \, dy \, dx$$

Remark: Terrible integral in Cartesian coordinates! Volume between two cones (4)

Polar domain:

$$0 \le r \le 1, \qquad 0 \le \theta \le 2\pi$$

Volume in polar coordinates:

$$V = \int_0^{2\pi} \int_0^1 (2 - 2r) \mathbf{r} \, \mathrm{d}r \, \mathrm{d}\theta$$
$$= 2\pi \times \frac{1}{3}$$

We get

$$V=\frac{2\pi}{3}$$

Outline

Double integrals over rectangular regions

- 2 Double integrals over general regions
- 3 Double integrals in polar coordinates
- Triple integrals
- 5 Triple integrals in cylindrical and spherical coordinates
- 6 Integrals for mass calculations

Polar/Cartesian Z 22 M(x, y, z)Cartexian courd (x, y, z)9 >y Cylinchical Corra (I, O, Z) L

Definition of cylindrical coordinates

Notation for cylindrical coordinates: Similar to polar coordinates

 (r, θ, z)

Conversion Cartesian to cylindrical:

$$r^2 = x^2 + y^2$$
, $tan(\theta) = \frac{y}{x}$, $z = z$

Conversion cylindrical to Cartesian:

$$x = r \cos(\theta), \qquad y = r \sin(\theta), \qquad z = z$$

Cylindrical coordinates: illustration

Example of cylindrical coordinates

Point in Cartesian coordinates:

$$P(-3, 3\sqrt{3}, 1)$$

Problem:

Find cylindrical coordinates for P

Answer:

$$\left(6, \frac{2\pi}{3}, 1\right)$$

~		
5 n n		
a 🗆	1.0	
- O u		

Point P(-3, 3,3,7) in Contesian $R^2 = \lambda^2 + y^2 = (-3)^2 + (3)^2$ Rolar = 9+27 = 3 $\mathcal{R} = \sqrt{36} = 6$ <u>_</u>> 2 = 1 W)(O) $\cos(\theta) = \frac{x}{\pi}$ => (3) (8) Angle O $=\frac{x}{\lambda}$ $\cos(0) = -\frac{3}{6} = -\frac{1}{2}$ $Sin(0) = \frac{y}{r} = \frac{33}{6} = \frac{3}{2}$ $\Rightarrow \theta = \frac{2\pi}{2}$ Thus in polar, P(6, 23, 1)

Sets easily writte	en in cylindrical co	oordinates
Cylinder:	r = a	De- sy
Cylindrical shell:	$a \leq r \leq b$	
Vertical half plane:	$ heta= heta_0$	
Horizontal plane:	z = a	
Cone:	z = ar	¥
Samy T	Several variables	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Another domain in cylindrical coordinates (1)

Domain:

 $D = \left\{ (r, \theta, z); \ r^2 \le z \le 4 \right\}$

Problem:

Identify this domain

 $Domain \left\{ (1,0,t); R^2 \leq z \leq 4 \right\} \rightarrow simple b$ Surface $z = r^2 \iff z = x^2 + y^2$ If $y = y_0$, we have $z = z^2 + y_0$ s parabola If $z=z_0$, we have $x^2+y^2=z_0$ we get a paraboloid 2=4/

Another domain in cylindrical coordinates (2)

Lower bound on z: Given by the surface

$$z = r^2 \iff z = x^2 + y^2$$

This is a paraboloid

Upper bound on *z*: Given by the surface

$$z = 4$$

This is a horizontal plane

Integration in cylindrical coordinates

Basic formula: In cylindrical coordinates (r, θ, z) ,

$$\int \int \int_D f(x, y, z) \, \mathrm{d}V = \int \int \int_D f(r \cos(\theta), r \sin(\theta), z) \, r \mathrm{d}r \mathrm{d}\theta \mathrm{d}z$$

When to use cylindrical coordinates: If

The domain D is one of the cylinder type domains
 → mentioned before

2) f is a function of
$$x^2 + y^2$$
 , f is a function of t

Example of cylindrical integral (1)

Problem: Compute

$$I = \int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \, \mathrm{d}z \mathrm{d}y \mathrm{d}x$$

Preliminary remark:

Awful integral in Cartesian coordinates!

Domain of integration $-3 \le x \le 3$, $0 \le y \le (9 - x^2)^2$ $0 \leq z \leq q - \chi^2 - y^2$ half disk In cylindrical card $D = \{ O \le \lambda \le 3 \}$ 2 $0 \le \theta \le \pi$ 052 59-22 Y Integral $I = \int_{0}^{\pi} \int_{0}^{3} \int_{0}^{q-n^{2}} \mathcal{R} \times \mathcal{R} dz dr d\theta$ $= \pi \int_{0}^{3} (q_{-n^{2}}) x^{2} dx = \cdots = \frac{162 \pi}{7}$

Example of cylindrical integral (2)

Domain:

$$-3 \le x \le 3 \quad \text{and} \quad 0 \le y \le \sqrt{9 - x^2}$$
$$\iff 0 \le r \le 3 \quad \text{and} \quad 0 \le \theta \le \pi$$

Computing the integral: With cylindrical coordinates,

$$I = \int_0^\pi \int_0^3 \int_0^{9-r^2} r \,\mathrm{d}z \, r \,\mathrm{d}r \mathrm{d}\theta$$

We get

$$I = \frac{162\pi}{5}$$

Image: Image: