Average temperature (1)

Situation:

• Circular plate

$$R = \left\{ x^2 + y^2 = 1 \right\}$$

• Temperature distribution in the plane:

$$T(x,y) = 100\left(x^2 + 2y^2\right)$$

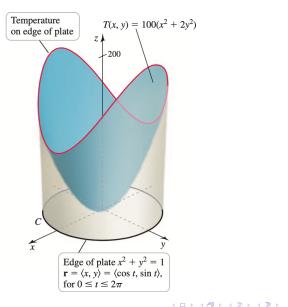
Problem:

Compute the average temperature on the edge of the plate

Sam	

 $\vec{\lambda}(t)$ Curve $\{ \langle \omega_{S}(t), \omega_{T}(t) \rangle, 0 \leq t \leq 2\pi \int \Xi C$ Temperature $T(x,y) = 100(x^{2}+2y^{2})$ $\overline{\mathfrak{N}}'(t) = \langle -\mathfrak{N}\mathfrak{n}(t), \mathfrak{cos}(t) \rangle$ Average temp. $\overline{T} = \frac{1}{\text{length}(C)} \int_{C} T(x,y) \, dy \quad |\overline{n}'(t)| = \frac{1}{100} \frac{1}{$ $= \frac{1}{2\pi} \int_{0}^{2\pi} 100 \left(\cos^{2}(t) + 2 \sin^{2}(t) \right) \frac{1}{12^{2}} \int_{0}^{2\pi} t^{2}(t) dt$ $=\frac{50}{\pi}\int_{0}^{2\pi}(1+\sin^{2}(t)) dt$ $= \frac{50}{\pi} \int_{0}^{2\pi} \frac{1+(\frac{1-\cos(2t)}{2})}{1+(\frac{1-\cos(2t)}{2})} dt$ = $\frac{50}{\pi} \int_{0}^{2\pi} (\frac{3}{2} - \frac{1}{2}\cos(2t)) dt = 150 = \overline{T}$

Average temperature (2)



Multivariate calculus 26 / 196

э

Average temperature (3)

Parametric description of C: $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$

Arc length: $|\mathbf{r}'(t)| = 1$

Line integral:

$$\int_{C} T(x, y) \, \mathrm{d}s = 100 \int_{0}^{2\pi} \left(x(t)^{2} + 2y(t)^{2} \right) |\mathbf{r}'(t)| \, \mathrm{d}t$$
$$= 100 \int_{0}^{2\pi} \left(\cos^{2}(t) + 2\sin^{2}(t) \right) \, \mathrm{d}t$$
$$= 100 \int_{0}^{2\pi} \left(1 + \sin^{2}(t) \right) \, \mathrm{d}t$$

Thus

$$\int_C T(x,y) \, \mathrm{d}s = 300\pi$$

(日)

Ξ.

Average temperature (4)

Recall:

$$\int_C T(x,y) \, \mathrm{d}s = 300\pi$$

Average temperature: Given by

$$\overline{T} = \frac{\int_C T(x, y) \, \mathrm{d}s}{\mathsf{Length}(C)}$$

We get

$$\overline{T} = \frac{300\pi}{2\pi} = 150$$

Samy	

э

Computation of line integrals in \mathbb{R}^3

Theorem 3.

We consider

- Curve C defined by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$
- Time interval [a, b]
- Arc length s of r
- Function f defined on \mathbb{R}^3

Then we have

$$\int_{C} f \, \mathrm{d}s = \int_{a}^{b} f\left(x(t), y(t), z(t)\right) \, |\mathbf{r}'(t)| \mathrm{d}t$$

Example of line integral in \mathbb{R}^3 (1)

Situation:

• Two points in \mathbb{R}^3

$$P(1,0,0), \qquad Q(0,1,1)$$

• Function:

$$f(x,y,z)=xy+2z$$

Problem: Compute $\int_C f(x, y) ds$ in the following cases:

- C is the segment from P to Q
- \bigcirc C is the segment from Q to P

<u>Curve</u> Segment from P(1,0,0) 10 Q(0,1,1) We have $\overrightarrow{PQ} = \langle -1, 1, 1 \rangle$ Segment: $\langle 1, 0, 0 \rangle + t \langle -1, 1, 1 \rangle$, $t \in TO, 13$ $= \langle I-t, t, t \rangle = \overline{\lambda}(t), t \in [0,1]$ Thus $\bar{\chi}'(t) = \langle -1, 1, 1 \rangle$ $|\bar{\mathcal{R}}'(t)| = \sqrt{3}$ Line integral $f(x,y) = \int_{C} f(x,y) ds = \int_{C}$ $= \sqrt{3} \ \binom{3}{3t} - \frac{t^{2}}{2t} = \sqrt{3} \ (\frac{3}{2} - \frac{1}{3})$

 $I = \frac{7\sqrt{3}}{6}$

<u>Curve</u>:) egment from Q(0,1,1) to P(1,0,0) we get $\overline{\chi}'(t) = \langle t, l-t, l-t \rangle$ $|\overline{\mathcal{X}}'(t)| = \sqrt{3}$ we find (check) $I' = \int_{0}^{t} f(x(t), y(t), z(t)) \left[\vec{z}'(t) \right] dt$ $\frac{T' - \frac{7}{6}}{6}$ Conclusion The value of $\int_{C} f(x,y,z) ds$, $f(x,y,z) \in \mathbb{R}$ does not depend on the parametrization of C. This is always true if f real-valued

Example of line integral in \mathbb{R}^3 (2)

Parametric equation for segment from P to Q:

$$\mathbf{r}(t) = \langle 1-t, t, t \rangle, \qquad t \in [0, 1]$$

Arc length:

 $|\mathbf{r}'(t)| = \sqrt{3}$

Samy	

Image: Image:

Example of line integral in \mathbb{R}^3 (3)

Line integral:

$$\int_{C} f(x, y) ds = \int_{C} (xy + 2z) ds$$

= $\int_{0}^{1} ((1 - t)t + 2t) \sqrt{3} dt$
= $\sqrt{3} \int_{0}^{1} (3t - t^{2}) dt$
= $\sqrt{3} \left(\frac{3}{2} - \frac{1}{3}\right)$

Thus we get

$$\int_C f(x,y)\,\mathrm{d}s = \frac{7\sqrt{3}}{6}$$

3

イロト イポト イヨト イヨト

Example of line integral in \mathbb{R}^3 (4)

Parametric equation for segment from Q to P:

$$\mathbf{r}(t) = \langle t, 1-t, 1-t \rangle$$

Arc length: $|\mathbf{r}'(t)| = \sqrt{3}$

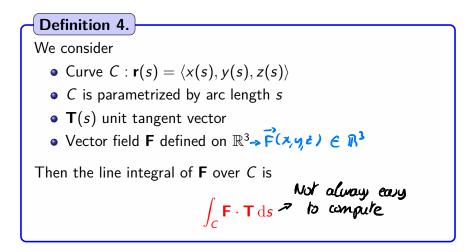
Line integral: One can check that we also have

$$\int_C f(x,y)\,\mathrm{d}s = \frac{7\sqrt{3}}{6}$$

General conclusion:

The value of $\int_C f(x, y) ds$ does not depend on the parametrization of *C*

Line integral of a vector field



Motivation: Line integrals crucial to compute work of a force F

Samy	

Computing line integrals

We consider

- Curve $C: \mathbf{r}(t) = \langle x(t), y(t), z \rangle$
- C is parametrized by $t \in [a, b]$
- Vector field **F** defined on $\mathbb{R}^{\times 2}$

Then the line integral of \mathbf{F} over C is given by

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}s = \int_{C} \mathbf{F}(t) \cdot \mathbf{r}'(t) \, \mathrm{d}t$$

Example of line integral for a vector field (1)

Situation:

• Two points in \mathbb{R}^2 :

• Vector field:

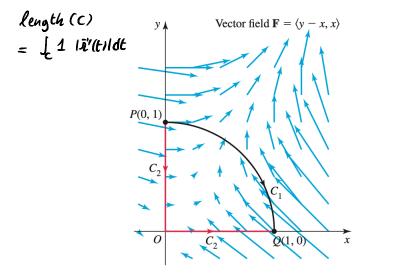
$$\mathbf{F}(x,y) = \langle y - x, \, x \rangle$$

Problem: Compute $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ in the following cases:

- C_1 quarter-circle from P to Q
- $\circ -C_1$ quarter-circle from Q to P
- Solution C₂ path defined by segments P(0,1)-O(0,0)-Q(1,0)

 $F(x,y) = \langle y - x, x \rangle$ 2'(t) (0,l)Curve $C = \langle \langle sin(t), cos(t) \rangle; o \leq t \in \mathbb{Z} \langle$ $\overline{\mathcal{N}}'(t) = \langle \cos(t), -\sin(t) \rangle$ (1,0) Line integral $I = / \vec{F} \cdot \vec{T} ds$ $= \int_{0}^{\pi/2} \langle \cos(t) - \sin(t), \sin(t) \rangle \langle \cos(t), -\sin(t) \rangle dt$ $= \int_{0}^{\pi/2} \left[\cos^{2}(t) - \sin(t) \cos(t) - \sin^{2}(t) \right] dt$ $= \int_{0}^{\pi/2} \left[\cos^{2}(t) - \sin^{2}(t) - \sin(t) \cos(t) \right] dt$ $= \sqrt{\pi^2} \left[\cos(2t) - \frac{1}{2} \sin(2t) \right] dt$ I =

Example of line integral for a vector field (2)



Example of line integral for a vector field (3)

Parametric equation for C_1 :

$$\mathbf{r}(t) = \langle \sin(t), \cos(t) \rangle$$

Parametric equation for F: Along C_1 we have

$$\mathbf{F} = \langle y - x, x \rangle = \langle \cos(t) - \sin(t), \sin(t) \rangle$$

Dot product: We have

 $\mathbf{F}(t) \cdot \mathbf{r}'(t) = \cos^2(t) - \sin^2(t) - \sin(t)\cos(t) = \cos(2t) - \frac{1}{2}\sin(2t)$

Example of line integral for a vector field (4)

Line integral:

$$\int_{C_1} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}s = \int_{C_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) \, \mathrm{d}t$$
$$= \int_0^{\pi/2} \left(\cos(2t) - \frac{1}{2} \sin(2t) \right) \, \mathrm{d}t$$
$$= \left. \frac{1}{2} \sin(2t) + \frac{1}{4} \cos(2t) \right|_0^{\pi/2}$$

Thus we get

$$\int_{C_1} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d} \boldsymbol{s} = -\frac{1}{2}$$

э

イロト イポト イヨト イヨト

If we move along - C.: r'(t) $-C_{1}$: $\left(cos(t), sin(t) \right); o \leq t \leq \frac{\pi}{2} \right)$ one finds $c_3 \langle v_0 \rangle = \int_C \vec{F} \cdot \vec{T} \, ds = +\frac{1}{2}$

Check at home

 $\int_{C_{1}} \vec{F} \cdot \vec{T} \, ds + \int_{C_{3}} \vec{F} \cdot \vec{T} \, ds = \int_{C_{1}} \vec{F} \cdot \vec{T} \, ds = -\frac{1}{2}$

This is not always true, but true for a large class of vector field

Example of line integral for a vector field (5)

Line integral along $-C_1$: We find

$$\int_{-C_1} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}s = \frac{1}{2} = -\int_{C_1} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}s$$

Changing the orientation of C_1 changes the sign of the line integral

Line integral along C_2 : We find

$$\int_{\mathcal{C}_2} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}\boldsymbol{s} = -\frac{1}{2} = \int_{\mathcal{C}_1} \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}\boldsymbol{s}$$

Question: is this true for a large class of F?