Outline

Graphs and level curves

- 2 Limits and continuity
- 3 Partial derivatives
- The chain rule
- 5 Directional derivatives and the gradient
- 6 Tangent plane and linear approximation
- 🕖 Maximum and minimum problems
- 8 Lagrange multipliers

Recalling functions of 1 variable (1)

Example of function:

$$y = f(x) = \sqrt{9 - x^2}$$

Questions:

Ange of f?

3 × < 3 ×

Image: A matrix

Function: $f(z) = \sqrt{9-z^2}$ 20main: -3 ≤ 2 ≤ 3 Otherwise stated, we wish $q - \chi^{2} \geq 0 \iff \chi^{2} \leq q$ $\Rightarrow -3 \le x \le 3$ Kange: [0,3] Details: Large values of f if x2 is small $\begin{array}{rcl} & \Pi ax \ f(x) \ = & f(0) = & \Pi^2 = 3 \\ & \Pi cn \ f(x) \ = & f(\pm 3) \ = & \Pi^{-q^2} = 0 \end{array}$ Thus Range: [0,3]

Recalling functions of 1 variable (2)

Recalling the function:

$$y = f(x) = \sqrt{9 - x^2}$$

Domain:

$$x \in [-3, 3]$$

Range:

 $y \in [0, 3]$

A B M A B M

< □ > < 同 >

Functions of 2 variables: example (1)

Example of function:

$$z = f(x, y) = \sqrt{9 - x^2} - \sqrt{25 - y^2}$$

Questions:

Ange of f?

ヨト イヨト

Image: A matrix

Function: $f(x,y) = \sqrt{9-x^2} - \sqrt{25-y^2}$ Domain: In ader for f to be defined, we need 25-y²≥0 $q - \chi^2 \ge 0$ and (=) -3 ≤ x ≤ 3 -5 EY E 5 [-3,3] × [-5,5] (rectangle) Domain S <

Function: $f(x,y) = \sqrt{9-x^2} - \sqrt{25-y^2}$ Range: f = a - 6 with $a, b \ge 0$. Thus f is longe when a islange, b small f " small " a is small, b large Hence a large b small $\pi ax f = f(0, \pm 5) = 3$ $\operatorname{Rin} f = f(\pm 3, 0) = -5$ Range = [-5,3]

Functions of 2 variables: example (2)

Recalling the function:

$$z = f(x, y) = \sqrt{9 - x^2} - \sqrt{25 - y^2}$$

Domain:

$$(x, y) \in [-3, 3] \times [-5, 5]$$

Range: Looking at lines $x = \pm 3$ and $y = \pm 5$, we get

<<p>(日)

Contour and level curves

Definition 1.

Contour curve:

Intersection of the surface (x, y, f(x, y)) and plane $z = z_0$

Level curve:

Projection of contour curve on xy-plane

Contour and level curves: illustration

Example of level curves (1)

Function:

 $f(x,y) = y - x^2 - 1$

3

イロト イボト イヨト イヨト

Function: $f(x,y) = y - x^2 - 1$ Creneric level curve: Fix z=z. We get an equation for (2, y). paralola $y - \chi^2 - 1 = z_q \iff$ $y = z^2 + 1$ + 20 J 20 = 0 (0,1) 10,0)

Example of level curves (2) Function:

$$f(x,y) = y - x^2 - 1$$

Level curves: For $z_0 \in \mathbb{R}$, we get the parabola

$$y = x^2 + 1 + z_0$$

~	_
Some v	
. Januv	

< □ > < □ > < □ > < □ > < □ > < □ >

Example 2 of level curves (1)

Function:

$$f(x,y) = \exp\left(-x^2 - y^2\right)$$

A B M A B M

< □ > < 同 >

э

Function: $f(x,y) = e^{-\alpha (x+y^2)}$: Defined for all $(x,y) \in \mathbb{R}^2$ Domain Nange: $\chi^2 + \chi^2$ takes all values in \mathbb{R}_{+} - $(\chi^2 + \chi^2)$ " " " \mathbb{R}_{-} 11 R p-(x2+y2) // // // // (0,1] Level anves: we should only consider $P_{-}^{-(\chi^{2}\sigma_{y}^{2})} = 20$ fu zo E (0,1]

Eq. for a level curve. Consider 25 E(0,1] Then $f(x,y) = z_0$ - 20 EP $-(x^{2}+y^{2}) = ln(t_{0})$ $\chi^{2}+y^{2} = -ln(t_{0})$ (=)-> 20 clor to 0 ンエ Zaclore

Example 2 of level curves (2) Function:

$$f(x,y) = \exp\left(-x^2 - y^2\right)$$

Level curves: For $z_0 \in (0,1]$, we get the circle

$$x^2 + y^2 = -\ln(z_0)$$

-		_
~	2 222	
	anns	
	u,	

- 4 回 ト - 4 回 ト

Example 3 of level curves (1)

Function:

$$f(x,y) = 2 + \sin(x-y)$$

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 47 ▶

Function: f(x,y) = 2 + sin(x-y)Range: $xn \in [-1, 1]$ nange Thus $f(x,y) \in [1, 3]$ Level curve: Fr Zo E(1,3] $f(x,y) = z_0 \implies 2 + in(x-y) = z_0$ rightarrow 1(1-y) = 20-2Take $t_0 = 2$. Then eq. becomes $y(x-y) = 0 \iff x-y = kT$ $\implies y = x-kT, k \in \mathbb{Z}$ (family of lines)

Example 3 of level curves (2)

Function:

$$f(x,y) = 2 + \sin(x-y)$$

Level curves: For $z_0 \in [1, 3]$, we get a family of lines

Level curves for $z_0 = 2$:

$$y = x - k \pi, \quad k \in \mathbb{Z}$$

Level curves for $z_0 = 1$:

$$y = x - \frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}$$

э

Example 3 of level curves (3) Function:

$$f(x,y) = 2 + \sin(x-y)$$

Depiction of level curves:

- (日)