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Recalling functions of 1 variable (1)

Example of function:

y = f (x) =
√

9 − x2

Questions:
1 Domain of f ?
2 Range of f ?
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Recalling functions of 1 variable (2)

Recalling the function:

y = f (x) =
√

9 − x2

Domain:
x ∈ [−3, 3]

Range:
y ∈ [0, 3]
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Functions of 2 variables: example (1)

Example of function:

z = f (x , y) =
√

9 − x2 −
√

25 − y 2

Questions:
1 Domain of f ?
2 Range of f ?
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Functions of 2 variables: example (2)

Recalling the function:

z = f (x , y) =
√

9 − x2 −
√

25 − y 2

Domain:
(x , y) ∈ [−3, 3] × [−5, 5]

Range: Looking at lines x = ±3 and y = ±5, we get

y ∈ [−5, 3]

Samy T. Several variables Multivariate calculus 7 / 145



Contour and level curves

Contour curve:
Intersection of the surface (x , y , f (x , y)) and plane z = z0

Level curve:
Projection of contour curve on xy -plane

Definition 1.
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Contour and level curves: illustration
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Example of level curves (1)

Function:
f (x , y) = y − x2 − 1
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Example of level curves (2)
Function:

f (x , y) = y − x2 − 1

Level curves: For z0 ∈ R, we get the parabola

y = x2 + 1 + z0
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Example 2 of level curves (1)

Function:
f (x , y) = exp

(
−x2 − y 2

)
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Example 2 of level curves (2)
Function:

f (x , y) = exp
(
−x2 − y 2

)
Level curves: For z0 ∈ (0, 1], we get the circle

x2 + y 2 = − ln(z0)
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Example 3 of level curves (1)

Function:
f (x , y) = 2 + sin(x − y)
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Example 3 of level curves (2)

Function:
f (x , y) = 2 + sin(x − y)

Level curves:
For z0 ∈ [1, 3], we get a family of lines

Level curves for z0 = 2:

y = x − k π, k ∈ Z

Level curves for z0 = 1:

y = x − π

2 + 2k π, k ∈ Z
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Example 3 of level curves (3)
Function:

f (x , y) = 2 + sin(x − y)

Depiction of level curves:
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Application of functions of 2 variables (1)

Situation:
Fraction of students infected by FV is r on 9/12
We have n random encounters with students on 9/12

Function:
The probability of meeting at least one student with FV is

p(n, r) = 1 − (1 − r)n

This requires probability theory and is admitted
Question:
Draw level curves
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Application of functions of 2 variables (2)

Function:
p(n, r) = 1 − (1 − r)n

Useful values of z :
For p0 ∈ [0, 1], the curve p(n, r) = p0 is non empty

Level curves for p0 ∈ [0, 1]:

r = 1 − (1 − p)1/n

Samy T. Several variables Multivariate calculus 18 / 145



Application of functions of 2 variables (3)
Function:

p(n, r) = 1 − (1 − r)n

Depiction of level curves:
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Application of functions of 2 variables (4)
Function:

p(n, r) = 1 − (1 − r)n

Depiction of function:
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Continuity for functions of 1 variable (1)

Limit: The assertion
lim
x→a

f (x) = L

means that f (x) can be made as close to L as we wish
↪→ by making x close to a

Remark: If limx→a f (x) = L, then
the limit should not depend on the way x → a
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Continuity for functions of 1 variable (2)

Continuity: The function f is continuous at point a if

lim
x→a

f (x) = f (a)

Examples of continuous functions:
Polynomials
sin, cos, exponential
Rational functions (on their domain)
Log functions (on their domain)
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Continuity for functions of 2 variables (1)

Limit: The assertion

lim
(x ,y)→(a,b)

f (x , y) = L

means that f (x , y) can be made as close to L as we wish
↪→ by making (x , y) close to (a, b)

Remark: If lim(x ,y)→(a,b) f (x , y) = L, then
the limit should not depend on the way (x , y) → (a, b)
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Continuity for functions of 2 variables (2)

Continuity: The function f is continuous at point a if

lim
(x ,y)→(a,b)

f (x , y) = f (a, b)

Examples of continuous functions:
Polynomials
sin, cos, exponential
Rational functions (on their domain)
Log functions (on their domain)
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Logarithmic example (1)

Function:
ln
(

1 + y 2

x2

)

Problem: Continuity at point

(1, 0)
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Logarithmic example (2)

Continuity: f is the log of a rational function
↪→ Continuous wherever it is defined

Definition at point (1, 0): We have

f (1, 0) = 0

This is well defined

Conclusion: f is continuous at (1, 0), that is

lim
(x ,y)→(1,0)

f (x , y) = f (1, 0) = 0
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Rational function example (1)

Function:
f (x , y) = y 2 − 4x2

2x2 + y 2

Problem: Continuity at point

(0, 0)
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Rational function example (2)

Continuity: f is a rational function
↪→ Continuous wherever it is defined

Definition at point (0, 0): We have

f (0, 0) = 0
0

This is not well defined, therefore general result cannot be applied
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Rational function example (3)

Two paths: We have

Along x = 0, lim
(x ,y)→(0,0), x=0

y 2 − 4x2

2x2 + y 2 = 1

Along y = 0, lim
(x ,y)→(0,0), y=0

y 2 − 4x2

2x2 + y 2 = −2

We get 2 different limits

Conclusion:
f is not continuous at point (0, 0)
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Another rational function example (1)

Function:
f (x , y) = x2 − y 2

x + y

Problem: Continuity at point

(0, 0)
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Another rational function example (2)

Continuity: f is a rational function
↪→ Continuous wherever it is defined

Definition at point (0, 0): We have

f (0, 0) = 0
0

This is not well defined, therefore general result cannot be applied
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Another rational function example (3)

Two paths: We have

Along x = 0, lim
(x ,y)→(0,0), x=0

x2 − y 2

x + y = 0

Along y = 0, lim
(x ,y)→(0,0), y=0

x2 − y 2

x + y = 0

We get the same limit

Partial conclusion:
This is not enough!
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Another rational function example (4)
Next steps: Try different paths

y = x2, y = x3, etc
Those all give a 0 limit
This is still not enough

Key remark: If (x , y) ̸= (0, 0) we have

f (x , y) = x2 − y 2

x + y = x − y

The rhs above is continuous

Conclusion: We have

lim
(x ,y)→(0,0)

f (x , y) = 0
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Motivation
Derivative for functions of 1 variable: Captures the rate of change

f ′(x) = lim
h→0

f (x + h) − f (x)
h

Rate of change in the 2-d case: Can be different in x and y directions
↪→ Captured by partial derivatives
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Partial derivatives

Consider
f function of 2 variables

Then we set

fx(x , y) = lim
h→0

f (x + h, y) − f (x , y)
h

fy(x , y) = lim
h→0

f (x , y + h) − f (x , y)
h

Definition 2.
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Some remarks on partial derivatives

Frozen and live variables:
In order to compute fx(x , y)
↪→ the x variable is alive and the y variable is frozen
In order to compute fy(x , y)
↪→ the y variable is alive and the x variable is frozen

Funny notation: For partial derivatives we also use

∂f
∂x (x , y) = fx(x , y), ∂f

∂y (x , y) = fy(x , y)
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Example of computation (1)

Function:
f (x , y) = x8y 5 + x3y
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Example of computation (2)

Recall:
f (x , y) = x8y 5 + x3y

Partial derivative fx :
fx = 8x7y 5 + 3x2y

Partial derivative fy :
fy = 5x8y 4 + x3
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Second example of computation (1)

Function:
f (x , y) = ex sin(y)
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Second example of computation (2)

Recall:
f (x , y) = ex sin(y)

Partial derivative fx :
fx = ex sin(y)

Partial derivative fy :
fy = ex cos(y)
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Second derivatives
Second derivative fxx , fyy :

fxx = (fx)x = ∂2f
∂x2 , fyy = (fy)y = ∂2f

∂y 2

Second derivative fxy :

fxy = (fx)y = ∂2f
∂x∂y

Second derivative fyx :

fyx = (fy)x = ∂2f
∂y∂x
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Example of second derivatives

Function:
f (x , y) = ex sin(y)

Second derivative fxx :

fxx = (fx)x = ex sin(y)

Second derivative fxy :

fxy = (fx)y = ex cos(y)
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Order of derivatives

On our running example: We have

fyx = (fy)x = ex cos(y) = fxy

General result (Clairaut’s theorem):
For a smooth f , the order of the derivatives does not matter

fyx = fxy
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Example of order of derivatives (1)

Function:
f (x , y) = ex2y

Problem: Check that
fyx = fxy
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Example of order of derivatives (2)

Recall:
f (x , y) = ex2y

Partial derivative fx :
fx = 2xy ex2y

Partial derivative fy :
fy = x2 ex2y

Mixed derivatives:

fyx = fxy = 2x
(
x2y + 1

)
ex2y
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Functions of 3 variables (1)

Basic rule: Functions of 3 variables are handled
↪→ in the same way as functions of 2 variables

Example:
f (x , y , z) = xyz

First derivatives:

fx = yz , fy = xz , fz = xy

Samy T. Several variables Multivariate calculus 48 / 145



Functions of 3 variables (2)

Second derivatives: We have for instance

fxy = fyx = z

Third derivatives: The only non zero derivatives are

fxyz = fxzy = · · · = fzyx = 1
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Chain rule for functions of 1 variable

Situation: We have
y = f (x)
x = g(t)

Chain rule:
dy
dt = dy

dx
dx
dt
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Chain rule with 1 independent variable

Let
z = z(x , y)
x = x(t) and y = y(t)
z , x , y differentiable

Then
dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt

Theorem 3.
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Tree representation of chain rule (2d)
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Tree representation of chain rule (3d)
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Example of computation (1)
Functions: We consider

z = x2 − 3y 2 + 20, x = 2 cos(t), y = 2 sin(t)

Derivative: We find

dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt

= −16 sin(2t)

Particular value: It t = π
4 , then

dz
dt

(
π

4

)
= −16
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Example of computation (2)
Other possible strategy:

1 Express z(x(t), y(t)) as a function F (t)
2 Differentiate as usual

Problem: this becomes impractical very soon.
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Implicit differentiation

Let F (x , y) be such that
F differentiable
The equation F (x , y) = 0 defines y = y(x)
x 7→ y(x) differentiable
Fy ̸= 0

Then we have
dy
dx = −Fx

Fy

Theorem 4.
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Example of implicit differentiation (1)

Equation:
ey sin(x) = x + xy

Problem: Find
dy
dx
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Example of implicit differentiation (2)

Reformulation of the equation: F (x , y) = 0 with

F (x , y) = ey sin(x) − x − xy

Implicit differentiation:

dy
dx = −Fx

Fy
= −ey cos(x) − 1 − y

ey sin(x) − x
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Implicit differentiation with 3 variables (1)

Implicit equation: We consider
F (x , y , z) = xy + yz + xz
Equation: F (x , y) = 3
The equation defines z = z(x , y)

Problem: Find
∂z
∂y
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Implicit differentiation with 3 variables (2)

Implicit differentiation:

∂z
∂y = −Fy

Fz
= −x + z

y + x
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Objective
Aim: Understand variations of a function
↪→ In directions which are not parallel to the axes
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Directional derivative

Let
f differentiable function at (a, b)
u = ⟨u1, u2⟩ unit vector in xy -plane

Then the directional derivative of f
in the direction of u at (a, b) is

Duf (a, b) = lim
h→0

f (a + hu1, b + hu2) − f (a, b)
h

Definition 5.
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Computation of the directional derivative

Let
f differentiable function at (a, b)
u = ⟨u1, u2⟩ unit vector in xy -plane

Then the directional derivative of f
in the direction of u at (a, b) is given by

Duf (a, b) = fx(a, b)u1 + fy(a, b)u2

Proposition 6.

Remark: One can also write

Duf (a, b) = ⟨fx(a, b), fy(a, b)⟩ · ⟨u1, u2⟩
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Example of directional derivative (1)

Function: Paraboloid of the form

z = f (x , y) = 1
4
(
x2 + 2y 2

)
+ 2

Unit vector:
u =

〈
1√
2

,
1√
2

〉

Problem: Compute the directional derivative

Duf (3, 2)
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Example of directional derivative (2)

Function: Paraboloid of the form

z = f (x , y) = 1
4
(
x2 + 2y 2

)
+ 2

Unit vector:
u =

〈
1√
2

,
1√
2

〉

Directional derivative: We get

Duf (3, 2) =
〈3

2 , 2
〉

·
〈

1√
2

,
1√
2

〉
= 7

2
√

2
≃ 2.47
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Example of directional derivative (3)
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Gradient

Let
f differentiable function at (x , y)

Then the gradient of f at (x , y) is

∇f (x , y) = ⟨fx(x , y), fy(x , y)⟩

Definition 7.
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Example of gradient (1)

Function:
f (x , y) = 3 − x2

10 + xy 2

10

Problem:
1 Compute ∇f (3, −1)
2 Compute the directional derivative of f

↪→ at (3, −1) in the direction of the vector ⟨3, 4⟩
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Example of gradient (2)

Gradient:
∇f (x , y) =

〈
−x

5 + y 2

10 ,
xy
5

〉
Thus

∇f (3, −1) =
〈

−1
2 , −3

5

〉
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Example of gradient (3)

Directional derivative: Unit vector in direction of ⟨3, 4⟩ is

u =
〈3

5 ,
4
5

〉
Thus directional derivative in direction of ⟨3, 4⟩ is

Duf (x , y) = ∇f (x , y) · u

We get

Duf (3, −1) = −39
50
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Interpretation of gradient

Remark: If
u is a unit vector
θ ≡ angle between u and ∇f (x , y)

Then
Duf (x , y) = |∇f (x , y)| cos(θ)

Information given by the gradient
1 |∇f (x , y)| is the maximal possible directional derivative
2 The direction u = ∇f (x ,y)

|∇f (x ,y)| is the one of maximal ascent
3 The direction u = − ∇f (x ,y)

|∇f (x ,y)| is the one of maximal desccent
4 If u ⊥ ∇f (x , y), the directional derivative is 0
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Interpretation of gradient: illustration
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Example of steepest descent (1)

Function:
f (x , y) = 4 + x2 + 3y 2

Questions:
1 If you are located on the paraboloid at the point (2, −1

2 , 35
4 )

↪→ In which direction should you move in order to ascend on the
surface at the maximum rate?

2 If you are located on the paraboloid at the point (2, −1
2 , 35

4 )
↪→ In which direction should you move in order to descend on
the surface at the maximum rate?

3 At the point (3, 1, 16), in what direction(s) is there no change
in the function values?
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Example of steepest descent (2)

Gradient:
∇f (x , y) = ⟨2x , 6y⟩

Thus
∇f

(
2, −1

2

)
= ⟨4, −3⟩

Steepest ascent direction: We get

u =
〈4

5 , −3
5

〉
,

with rate of ascent ∣∣∣∣∇f
(

2, −1
2

)∣∣∣∣ = 5
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Example of steepest descent (3)

Steepest descent direction: We get

v = −u =
〈

−4
5 ,

3
5

〉
,

with rate of descent

−
∣∣∣∣∇f

(
2, −1

2

)∣∣∣∣ = −5
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Example of steepest descent (4)
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Example of steepest descent (5)

Gradient at point (3, 1): Recall that

∇f (x , y) = ⟨2x , 6y⟩

Thus
∇f (3, 1) = ⟨6, 6⟩

Direction of 0 change: Any direction ⊥ ⟨6, 6⟩
↪→ Unit vectors given by

u = 1√
2

⟨1, −1⟩ ,
1√
2

⟨−1, 1⟩
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Example of steepest descent (6)
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Gradient and level curves

Let
f differentiable function at (x , y)
Hypothesis: ∇f (a, b) ̸= 0

Then:

The line tangent to the level curve of f at (a, b)
is

orthogonal to ∇f (a, b)

Theorem 8.
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Hyperboloid example (1)

Function:
z = f (x , y) =

√
1 + 2x2 + y 2

Questions:
1 Verify that the gradient at (1, 1) is orthogonal to the

corresponding level curve at that point.
2 Find an equation of the line tangent to the level curve at (1, 1)
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Hyperboloid example (2)

Samy T. Several variables Multivariate calculus 83 / 145



Hyperboloid example (3)

Point on surface:
Given by (1, 1, 2) =⇒ On level curve z = 2

Equation for level curve: Ellipse of the form

1 + 2x2 + y 2 = 4 ⇐⇒ 2x2 + y 2 = 3

Implicit derivative:
dy
dx = −Fx

Fy
= −2x

y
Thus

dy
dx (1) = −2

Samy T. Several variables Multivariate calculus 84 / 145



Hyperboloid example (4)
Tangent vector: Proportional to

t = ⟨1, −2⟩

Gradient of f :

∇f (x , y) =
〈

2x√
1 + 2x2 + y 2 ,

y√
1 + 2x2 + y 2

〉

Thus
∇f (1, 1) =

〈
1,

1
2

〉
Orthogonality: We have

t · ∇f (1, 1) = 0
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Hyperboloid example (5)

Tangent line to level curve: At point (1, 1) we get

fx(1, 1)(x − 1) + fy(1, 1)(y − 1) = 0,

that is
y = −2x + 3
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Generalization to 3 variables
Situation:

We have a function w = f (x , y , z)
Each w0 results in a level surface

f (x , y , z) = w0

Gradient on level surface:
Will be ⊥ to level surface
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Example of tangent plane (1)

Function:
f (x , y , z) = xyz

Gradient:
∇f (x , y , z) = ⟨yz , xz , xy⟩

Thus
∇f (1, 2, 3) = ⟨6, 3, 2⟩
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Example of tangent plane (2)

Plane tangent to level surface:

⟨6, 3, 2⟩ · ⟨x − 1, y − 2, z − 3⟩ = 0

We get
6x + 3y + 2z = 18
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Linear approximation for functions of 1 variable
Situation: We have

y = f (x)

Tangent vector at a:
t = (1, f ′(a))

Linear approximation: Near a we have

f (x) ≃ f (a) + f ′(a)(x − a)
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Tangent plane for F (x , y , z) = 0

Let F (x , y , z) be such that
F differentiable at P(a, b, c)
∇F ̸= 0
S is the surface F (x , y , z) = 0

Then the tangent plane at (a, b, c) is given by

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

Definition 9.
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Interpretation of tangent plane
Tangent plane as collection of tangent vectors: If

S is the surface F (x , y , z) = 0
r is a curve passing through (a, b, c) at time t

Then r′(t) ∈ tangent plane
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Example of tangent plane (1)

Surface: Ellipsoid of the form

F (x , y , z) = x2

9 + y 2

25 + z2 − 1 = 0

Questions:
1 Tangent plane at (0, 4, 3

5)
2 What tangent planes to S are horizontal?
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Example of tangent plane (2)

Gradient: We have

∇F (x , y , z) =
〈2x

9 ,
2y
25 , 2z

〉
Thus

∇F (0, 4,
3
5) =

〈
0,

8
25 ,

6
5

〉

Tangent plane:
4y + 15z = 25
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Example of tangent plane (3)
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Example of tangent plane (4)

Horizontal plane: When the normal vector is of the form

n = (0, 0, c), with c ̸= 0

Horizontal tangent plane: When the normal vector ∇F is of the form

∇F (x , y , z) = (0, 0, c) ⇐⇒ Fx = 0, Fy = 0, Fz ̸= 0

Solutions: Horizontal tangent plane for

(0, 0, 1) and (0, 0, −1)
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Tangent plane for z = f (x , y)

Let f (x , y) be such that
f differentiable at (a, b)
S is the surface z = f (x , y)

Then the tangent plane to S at (a, b, f (a, b)) is given by

z = fx(a, b) (x − a) + fy(a, b) (y − b) + f (a, b)

Definition 10.
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Example of tangent plane for z = f (x , y) (1)

Surface: Paraboloid of the form

z = f (x , y) = 32 − 3x2 − 4y 2

Question:
Tangent plane at (2, 1, 16)
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Example of tangent plane for z = f (x , y) (2)

Partial derivatives: We have

fx = 6x , fy = −8y

Thus
fx(2, 1) = −12, fy(2, 1) = −8

Tangent plane:
z = −12x − 8y + 48
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Linear approx for functions of 1 variable (Repeat)
Situation: We have

y = f (x)

Tangent vector at a:
t = (1, f ′(a))

Linear approximation: Near a we have

f (x) ≃ f (a) + f ′(a)(x − a)
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Linear approximation for functions of 2 variables

Let f (x , y) be such that
f differentiable at (a, b)
S is the surface z = f (x , y)

Then the linear approximation to S at (a, b, f (a, b)) is given by

L(x , y) = fx(a, b) (x − a) + fy(a, b) (y − b) + f (a, b)

Definition 11.

Remark: Another popular form of the linear approximation is

∆z ≃ fxdx + fydy
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Example of infinitesimal change (1)

Function:
z = f (x , y) = x2y

Question: Evaluate the percentage of change in z if
x is increased by 1%
y is decreased by 3%
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Example of infinitesimal change (2)
Small change in z :

dz ≃ fxdx + fydy = 2xydx + x2dy

Small percentage change in z :

dz
z = 2xy

z dx + x2

z dy = 2
x dx + 1

y dy

If dx
x = .01 and dy

y = −.03:

dz
z = −.01 = −1%
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Outline

1 Graphs and level curves

2 Limits and continuity

3 Partial derivatives

4 The chain rule

5 Directional derivatives and the gradient

6 Tangent plane and linear approximation

7 Maximum and minimum problems

8 Lagrange multipliers
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Max and min for functions of 1 variable

Situation: We have
y = f (x)

Critical point: (c , f (c)) whenever

f ′(c) = 0

Second derivative test: If (c , f (c)) is critical then
1 If f ′′(c) > 0, there is a local minimum
2 If f ′′(c) < 0, there is a local maximum
3 If f ′′(c) = 0, the test is inconclusive
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Critical points for functions of 2 variables

Let
f function of 2 variables
(a, b) interior point in the domain of f

Then (a, b) is a critical point of f if

fx(a, b) = 0, and fy(a, b) = 0,

or if one of the partial derivatives fx , fy does not exist at (a, b)

Definition 12.
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Second derivative test

For f twice diff. function, define the discriminant of f as

D(x , y) = fxx(x , y)fyy(x , y) − (fxy(x , y))2

Then for a critical point (a, b) the following holds true:
1 If D(a, b) > 0 and fxx(a, b) < 0, we have a local max
2 If D(a, b) > 0 and fxx(a, b) > 0, we have a local min
3 If D(a, b) < 0, we have a saddle point
4 If D(a, b) = 0, the test is inconclusive

Theorem 13.
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Saddle point for an hyperboloid
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Hyperboloids in architecture
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Hyperboloids in the food industry
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Example of critical points analysis (1)

Function:
f (x , y) = x2 + 2y 2 − 4x + 4y + 6

Problem:
Use second derivative test to classify the critical points of f
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Example of critical points analysis (2)

Partial derivatives:

fx = 2x − 4, fy = 4y + 4

Critical point:
(2, −1)

Critical value of f :
f (2, −1) = 0
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Example of critical points analysis (3)

Second derivatives:

fxx = 2, fxy = fyx = 0, fyy = 4

Discriminant:
D(x , y) = 8 > 0

Second derivative test: We have

D(2, −1) > 0, fxx(2, −1) > 0 =⇒ Local minimum at (2, −1)
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Example of critical points analysis (4)
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Second example (1)

Function:
f (x , y) = xy(x − 2)(y + 3)

Problem:
Use second derivative test to classify the critical points of f

Samy T. Several variables Multivariate calculus 116 / 145



Second example (2)

Partial derivatives:

fx = 2y(x − 1)(y + 3), fy = x(x − 2)(2y + 3)

Critical points:

(0, 0), (2, 0), (1, −3
2), (0, −3), (2, −3),
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Second example (3)

Second derivatives:

fxx = 2y(y + 3), fxy = 2(2y + 3)(x − 1), fyy = 2x(x − 2)

Analysis of critical points:

(x , y) D(x , y) fxx Conclusion
(0, 0) −36 0 Saddle point
(2, 0) −36 0 Saddle point
(1, −3/2) 9 −9/2 Local maximum
(0, −3) −36 0 Saddle point
(2, −3) −36 0 Saddle point

Samy T. Several variables Multivariate calculus 118 / 145



Second example (4)
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Absolute maximum

Let
f continuous function of 2 variables
R closed region of R2

In order to find the maximum of f in R , we proceed as follows:
1 Determine the values of f at all critical points in R .
2 Find the maximum and minimum values of f on the

boundary of R .
3 The greatest function value found in Steps 1 and 2 is the

absolute maximum value of f on R.

Proposition 14.
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Example of global maximum (1)

Function:
z = f (x , y) = x2 + y 2 − 2x − 4y

Region:

R = {(x , y); (x , y) within triangle with vertices (0, 0), (0, 4), (4, 0)}

Question:
Find global maximum of f on region R
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Example of global maximum (2)

Partial derivatives:

fx = 2x − 2, fy = 2y − 4

Critical point:
(1, 2), with f (1, 2) = −5
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Example of global maximum (3)

Boundary 1: On y = 0, 0 ≤ x ≤ 4 we have

f (x , y) = x2 − 2x ≡ g(x), g ′(x) = 2(x − 1)

Points of interest on boundary 1: We get

(0, 0), (1, 0), (0, 4)

and
f (0, 0) = 0, f (1, 0) = −1, f (4, 0) = 8
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Example of global maximum (4)

Boundary 2: On y = 4 − x , 0 ≤ x ≤ 4 we have

f (x , y) = 2x2 − 6x ≡ h(x), h′(x) = 4x − 6

Points of interest on boundary 2: We get

(0, 4),
(3

2 ,
5
2

)
, (4, 0)

and
f (0, 4) = 0, f

(3
2 ,

5
2

)
= −9

2 , f (4, 0) = 8
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Example of global maximum (5)

Boundary 3: On x = 0, 0 ≤ y ≤ 4 we have

f (x , y) = y 2 − 4y ≡ k(y), k ′(y) = 2(y − 2)

Points of interest on boundary 3: We get

(0, 0), (0, 2), (0, 4)

and
f (0, 0) = 0, f (0, 2) = −4, f (0, 4) = 0
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Example of global maximum (6)
Summary of points of interest:

f (0, 0) = 0, f (1, 0) = −1, f (4, 0) = 8

f (0, 4) = 0, f
(3

2 ,
5
2

)
= −9

2 , f (4, 0) = 8

f (0, 0) = 0, f (0, 2) = −4, f (0, 4) = 0, f (1, 2) = −5

Absolute minimum: at (1, 2) and

f (1, 2) = −5

Absolute maximum: at (4, 0) and

f (4, 0) = 8
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Outline

1 Graphs and level curves

2 Limits and continuity

3 Partial derivatives

4 The chain rule

5 Directional derivatives and the gradient

6 Tangent plane and linear approximation

7 Maximum and minimum problems

8 Lagrange multipliers
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Global aim

Objective function:
f = f (x , y)

Constraint: We are moving on a curve of the form

g(x , y) = 0

Optimization problem: Find

max f (x , y), subject to g(x , y) = 0

Samy T. Several variables Multivariate calculus 128 / 145



Optimization problem: illustration
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Lagrange multipliers intuition (1)

Samy T. Several variables Multivariate calculus 130 / 145



Lagrange multipliers intuition (2)
Some observations from the picture:

1 P(a, b) on the level curve of f
=⇒ Tangent to level curve ⊥ ∇f (a, b)

2 P(a, b) gives a maximum of f on curve C
=⇒ Tangent to level curve ∥ Tangent to constraint curve

3 Constraint is g(x , y) = 0
=⇒ Tangent to constraint curve ⊥ ∇g(a, b)

Conclusion (Lagrange’s idea):
At the maximum under constraint we have

∇f (a, b) ∥ ∇g(a, b)
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Lagrange multipliers procedure

Optimization problem: Find

max f (x , y), subject to g(x , y) = 0

Recipe:
1 Find the values of x , y and λ such that

∇f (x , y) = λ∇g(x , y), and g(x , y) = 0

2 Select the largest and smallest corresponding function values.
↪→ We get absolute max and min values of f s.t constraint.
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Example of Lagrange multipliers (1)

Optimization problem: Find

max f (x , y), with f (x , y) = x2 + y 2 + 2,

subject to the constraint

g(x , y) = x2 + xy + y 2 − 4 = 0
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Example of Lagrange multipliers (2)

Computing the gradients: We get

∇f (x , y) = ⟨2x , 2y⟩ , ∇g(x , y) = ⟨2x + y , x + 2y⟩

Lagrange constraint 1:

fx = λgx ⇐⇒ 2x = λ (2x + y) (1)

Lagrange constraint 2:

fy = λgy ⇐⇒ 2y = λ (x + 2y) (2)
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Example of Lagrange multipliers (3)

System for x , y : Gathering (1) and (2), we get

2(λ − 1)x + λy = 0, λx + 2(λ − 1)y = 0

This has solution (0, 0) unless

λ = 2, or λ = 2
3
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Example of Lagrange multipliers (4)

Case λ = 2: We get x = −y . The constraint

x2 + xy + y 2 − 4 = 0

becomes
x2 − 4 = 0

Solutions:
x = 2, and x = −2

Corresponding values of f : We have

f (2, −2) = f (−2, 2) = 10
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Example of Lagrange multipliers (5)
Case λ = 2

3 : We get x = y . The constraint

x2 + xy + y 2 − 4 = 0

becomes
3x2 − 4 = 0

Solutions:
x = 2√

3
, and x = − 2√

3

Corresponding values of f : We have

f
(

2√
3

,
2√
3

)
= f

(
− 2√

3
, − 2√

3

)
= 14

3
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Example of Lagrange multipliers (6)

Absolute maximum:
For function f on the curve C defined by g = 0,

Maximum = 10, obtained for (2, −2) , (−2, 2)

Absolute minimum:
For function f on the curve C defined by g = 0,

Minimum = 14
3 , obtained for

(
2√
3

,
2√
3

)
,

(
− 2√

3
, − 2√

3

)
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Example of Lagrange multipliers (7)
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Optimization in dimension 3 (1)

Problem: Find the point on the sphere

x2 + y 2 + z2 = 1,

closest to the point
(1, 2, 3)
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Optimization in dimension 3 (2)

Related minimization problem:
Find

min f (x , y), with f (x , y) = (x − 1)2 + (y − 2)2 + (z − 3)2,

subject to the constraint

g(x , y) = x2 + y 2 + z2 − 1 = 0
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Optimization in dimension 3 (3)

Computing the gradients: We get

∇f (x , y) = ⟨2(x − 1), 2(y − 2), 2(z − 3)⟩
∇g(x , y) = ⟨2x , 2y , 2z⟩

Lagrange constraint: We have

∇f (x , y) = λ ∇g(x , y)
⇐⇒

(λ − 1)x = −1, (λ − 1)y = −2, (λ − 1)z = −3
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Optimization in dimension 3 (4)

Solutions of Lagrange constraints:
The Lagrange system has unique solution whenever λ ̸= 1. We get

x = − 1
λ − 1 , y = − 2

λ − 1 = 2x , z = − 1
λ − 1 = 3x

Reporting in constraint g : We have

y = 2x , z = 3x , g(x , y) = 0,

Thus we get
14x2 = 1
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Optimization in dimension 3 (5)

Solutions:
x = 1√

14
, and x = − 1√

14

Corresponding values of f : We have

f
(

1√
14

,
2√
14

,
3√
14

)
≃ 7.51

f
(

− 1√
14

, − 2√
14

, − 3√
14

)
≃ 22.48
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Optimization in dimension 3 (6)

Absolute maximum:
Maximal distance from (1, 2, 3) to a point on the sphere is

Maximum = 4.74, obtained for
(

− 1√
14

, − 2√
14

, − 3√
14

)

Absolute minimum:
Minimal distance from (1, 2, 3) to a point on the sphere is

Minimum = 2.74 =
√

7.51, obtained for
(

1√
14

,
2√
14

,
3√
14

)
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