Functions of several variables

Samy Tindel

Purdue University
Multivariate calculus - MA 261

Mostly taken from Calculus, Early Transcendentals by Briggs - Cochran - Gillett - Schulz

PURDUE

Outline

(1) Graphs and level curves
(2) Limits and continuity
(3) Partial derivatives

4 The chain rule
(5) Directional derivatives and the gradient

6 Tangent plane and linear approximation
(7) Maximum and minimum problems
(8) Lagrange multipliers

Outline

(1) Graphs and level curves
(2) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems
(3) Lagrange multipliers

Recalling functions of 1 variable (1)

Example of function:

$$
y=f(x)=\sqrt{9-x^{2}}
$$

Questions:
(1) Domain of f ?
(2) Range of f ?

Recalling functions of 1 variable (2)

Recalling the function:

$$
y=f(x)=\sqrt{9-x^{2}}
$$

Domain:

$$
x \in[-3,3]
$$

Range:

$$
y \in[0,3]
$$

Functions of 2 variables: example (1)

Example of function:

$$
z=f(x, y)=\sqrt{9-x^{2}}-\sqrt{25-y^{2}}
$$

Questions:
(1) Domain of f ?
(2) Range of f ?

Functions of 2 variables: example (2)

Recalling the function:

$$
z=f(x, y)=\sqrt{9-x^{2}}-\sqrt{25-y^{2}}
$$

Domain:

$$
(x, y) \in[-3,3] \times[-5,5]
$$

Range: Looking at lines $x= \pm 3$ and $y= \pm 5$, we get

$$
y \in[-5,3]
$$

Contour and level curves

Definition 1.

Contour curve:
Intersection of the surface $(x, y, f(x, y))$ and plane $z=z_{0}$
Level curve:
Projection of contour curve on $x y$-plane

Contour and level curves: illustration

Example of level curves (1)

Function:

$$
f(x, y)=y-x^{2}-1
$$

Example of level curves (2)

Function:

$$
f(x, y)=y-x^{2}-1
$$

Level curves: For $z_{0} \in \mathbb{R}$, we get the parabola

$$
y=x^{2}+1+z_{0}
$$

Example 2 of level curves (1)

Function:

$$
f(x, y)=\exp \left(-x^{2}-y^{2}\right)
$$

Example 2 of level curves (2)

Function:

$$
f(x, y)=\exp \left(-x^{2}-y^{2}\right)
$$

Level curves: For $z_{0} \in(0,1]$, we get the circle

$$
x^{2}+y^{2}=-\ln \left(z_{0}\right)
$$

Example 3 of level curves (1)

Function:

$$
f(x, y)=2+\sin (x-y)
$$

Example 3 of level curves (2)

Function:

$$
f(x, y)=2+\sin (x-y)
$$

Level curves:
For $z_{0} \in[1,3]$, we get a family of lines
Level curves for $z_{0}=2$:

$$
y=x-k \pi, \quad k \in \mathbb{Z}
$$

Level curves for $z_{0}=1$:

$$
y=x-\frac{\pi}{2}+2 k \pi, \quad k \in \mathbb{Z}
$$

Example 3 of level curves (3)

Function:

$$
f(x, y)=2+\sin (x-y)
$$

Depiction of level curves:

Application of functions of 2 variables (1)

Situation:

- Fraction of students infected by FV is r on $9 / 12$
- We have n random encounters with students on $9 / 12$

Function:
The probability of meeting at least one student with FV is

$$
p(n, r)=1-(1-r)^{n}
$$

This requires probability theory and is admitted
Question:
Draw level curves

Application of functions of 2 variables (2)

Function:

$$
p(n, r)=1-(1-r)^{n}
$$

Useful values of z :
For $p_{0} \in[0,1]$, the curve $p(n, r)=p_{0}$ is non empty
Level curves for $p_{0} \in[0,1]$:

$$
r=1-(1-p)^{1 / n}
$$

Application of functions of 2 variables (3)

Function:

$$
p(n, r)=1-(1-r)^{n}
$$

Depiction of level curves:

Application of functions of 2 variables (4)

Function:

$$
p(n, r)=1-(1-r)^{n}
$$

Depiction of function:

Outline

(1) Graphs and level curves
(2) Limits and continuity
(3) Partial derivatives

4 The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems
(8) Lagrange multipliers

Continuity for functions of 1 variable (1)

Limit: The assertion

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that $f(x)$ can be made as close to L as we wish \hookrightarrow by making x close to a

Remark: If $\lim _{x \rightarrow a} f(x)=L$, then the limit should not depend on the way $x \rightarrow a$

Continuity for functions of 1 variable (2)

Continuity: The function f is continuous at point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Examples of continuous functions:

- Polynomials
- sin, cos, exponential
- Rational functions (on their domain)
- Log functions (on their domain)

Continuity for functions of 2 variables (1)

Limit: The assertion

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

means that $f(x, y)$ can be made as close to L as we wish \hookrightarrow by making (x, y) close to (a, b)

Remark: If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, then the limit should not depend on the way $(x, y) \rightarrow(a, b)$

Continuity for functions of 2 variables (2)

Continuity: The function f is continuous at point a if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Examples of continuous functions:

- Polynomials
- sin, cos, exponential
- Rational functions (on their domain)
- Log functions (on their domain)

Logarithmic example (1)

Function:

$$
\ln \left(\frac{1+y^{2}}{x^{2}}\right)
$$

Problem: Continuity at point
$(1,0)$

Logarithmic example (2)

Continuity: f is the log of a rational function \hookrightarrow Continuous wherever it is defined

Definition at point (1,0): We have

$$
f(1,0)=0
$$

This is well defined
Conclusion: f is continuous at $(1,0)$, that is

$$
\lim _{(x, y) \rightarrow(1,0)} f(x, y)=f(1,0)=0
$$

Rational function example (1)

Function:

$$
f(x, y)=\frac{y^{2}-4 x^{2}}{2 x^{2}+y^{2}}
$$

Problem: Continuity at point

$$
(0,0)
$$

Rational function example (2)

Continuity: f is a rational function
\hookrightarrow Continuous wherever it is defined

Definition at point $(0,0)$: We have

$$
f(0,0)=\frac{0}{0}
$$

This is not well defined, therefore general result cannot be applied

Rational function example (3)

Two paths: We have

$$
\begin{array}{lr}
\text { Along } x=0, & \lim _{(x, y) \rightarrow(0,0), x=0} \frac{y^{2}-4 x^{2}}{2 x^{2}+y^{2}}=1 \\
\text { Along } y=0, & \lim _{(x, y) \rightarrow(0,0), y=0} \frac{y^{2}-4 x^{2}}{2 x^{2}+y^{2}}=-2
\end{array}
$$

We get 2 different limits
Conclusion:
f is not continuous at point $(0,0)$

Another rational function example (1)

Function:

$$
f(x, y)=\frac{x^{2}-y^{2}}{x+y}
$$

Problem: Continuity at point

$$
(0,0)
$$

Another rational function example (2)

Continuity: f is a rational function
\hookrightarrow Continuous wherever it is defined
Definition at point $(0,0)$: We have

$$
f(0,0)=\frac{0}{0}
$$

This is not well defined, therefore general result cannot be applied

Another rational function example (3)

Two paths: We have

$$
\begin{array}{lr}
\text { Along } x=0, & \lim _{(x, y) \rightarrow(0,0), x=0} \frac{x^{2}-y^{2}}{x+y}=0 \\
\text { Along } y=0, & \lim _{(x, y) \rightarrow(0,0), y=0} \frac{x^{2}-y^{2}}{x+y}=0
\end{array}
$$

We get the same limit
Partial conclusion:
This is not enough!

Another rational function example (4)

Next steps: Try different paths

- $y=x^{2}, y=x^{3}$, etc
- Those all give a 0 limit
- This is still not enough

Key remark: If $(x, y) \neq(0,0)$ we have

$$
f(x, y)=\frac{x^{2}-y^{2}}{x+y}=x-y
$$

The rhs above is continuous
Conclusion: We have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

Outline

(1) Graphs and level curves
(2) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems

- Lagrange multipliers

Motivation

Derivative for functions of 1 variable: Captures the rate of change

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Rate of change in the 2-d case: Can be different in x and y directions \hookrightarrow Captured by partial derivatives

Partial derivatives

Definition 2.

Consider

- f function of 2 variables

Then we set

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Some remarks on partial derivatives

Frozen and live variables:

- In order to compute $f_{x}(x, y)$
\hookrightarrow the x variable is alive and the y variable is frozen
- In order to compute $f_{y}(x, y)$
\hookrightarrow the y variable is alive and the x variable is frozen

Funny notation: For partial derivatives we also use

$$
\frac{\partial f}{\partial x}(x, y)=f_{x}(x, y), \quad \frac{\partial f}{\partial y}(x, y)=f_{y}(x, y)
$$

Example of computation (1)

Function:

$$
f(x, y)=x^{8} y^{5}+x^{3} y
$$

Example of computation (2)

Recall:

$$
f(x, y)=x^{8} y^{5}+x^{3} y
$$

Partial derivative f_{x} :

$$
f_{x}=8 x^{7} y^{5}+3 x^{2} y
$$

Partial derivative f_{y} :

$$
f_{y}=5 x^{8} y^{4}+x^{3}
$$

Second example of computation (1)

Function:

$$
f(x, y)=e^{x} \sin (y)
$$

Second example of computation (2)

Recall:

$$
f(x, y)=e^{x} \sin (y)
$$

Partial derivative f_{x} :

$$
f_{x}=e^{x} \sin (y)
$$

Partial derivative f_{y} :

$$
f_{y}=e^{x} \cos (y)
$$

Second derivatives

Second derivative $f_{x x}, f_{y y}$:

$$
f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial^{2} f}{\partial y^{2}}
$$

Second derivative $f_{x y}$:

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial^{2} f}{\partial x \partial y}
$$

Second derivative $f_{y x}$:

$$
f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial^{2} f}{\partial y \partial x}
$$

Example of second derivatives

Function:

$$
f(x, y)=e^{x} \sin (y)
$$

Second derivative $f_{x x}$:

$$
f_{x x}=\left(f_{x}\right)_{x}=e^{x} \sin (y)
$$

Second derivative $f_{x y}$:

$$
f_{x y}=\left(f_{x}\right)_{y}=e^{x} \cos (y)
$$

Order of derivatives

On our running example: We have

$$
f_{y x}=\left(f_{y}\right)_{x}=e^{x} \cos (y)=f_{x y}
$$

General result (Clairaut's theorem):
For a smooth f, the order of the derivatives does not matter

$$
f_{y x}=f_{x y}
$$

Example of order of derivatives (1)

Function:

$$
f(x, y)=e^{x^{2} y}
$$

Problem: Check that

$$
f_{y x}=f_{x y}
$$

Example of order of derivatives (2)

Recall:

$$
f(x, y)=e^{x^{2} y}
$$

Partial derivative f_{x} :

$$
f_{x}=2 x y e^{x^{2} y}
$$

Partial derivative f_{y} :

$$
f_{y}=x^{2} e^{x^{2} y}
$$

Mixed derivatives:

$$
f_{y x}=f_{x y}=2 x\left(x^{2} y+1\right) e^{x^{2} y}
$$

Functions of 3 variables (1)

Basic rule: Functions of 3 variables are handled \hookrightarrow in the same way as functions of 2 variables

Example:

$$
f(x, y, z)=x y z
$$

First derivatives:

$$
f_{x}=y z, \quad f_{y}=x z, \quad f_{z}=x y
$$

Functions of 3 variables (2)

Second derivatives: We have for instance

$$
f_{x y}=f_{y x}=z
$$

Third derivatives: The only non zero derivatives are

$$
f_{x y z}=f_{x z y}=\cdots=f_{z y x}=1
$$

Outline

(1) Graphs and level curves

(5) Limits and continuity
(3) Partial derivatives

4 The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(-) Maximum and minimum problems
(8) Lagrange multipliers

Chain rule for functions of 1 variable

Situation: We have

- $y=f(x)$
- $x=g(t)$

Chain rule:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Chain rule with 1 independent variable

Theorem 3.

Let

- $z=z(x, y)$
- $x=x(t)$ and $y=y(t)$
- z, x, y differentiable

Then

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\frac{\partial z}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial z}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

Tree representation of chain rule (2d)

Tree representation of chain rule (3d)

Example of computation (1)

Functions: We consider

$$
z=x^{2}-3 y^{2}+20, \quad x=2 \cos (t), \quad y=2 \sin (t)
$$

Derivative: We find

$$
\begin{aligned}
\frac{\mathrm{d} z}{\mathrm{~d} t} & =\frac{\partial z}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial z}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& =-16 \sin (2 t)
\end{aligned}
$$

Particular value: It $t=\frac{\pi}{4}$, then

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}\left(\frac{\pi}{4}\right)=-16
$$

Example of computation (2)

Other possible strategy:
(1) Express $z(x(t), y(t))$ as a function $F(t)$
(2) Differentiate as usual

Problem: this becomes impractical very soon.

Implicit differentiation

Theorem 4.

Let $F(x, y)$ be such that

- F differentiable
- The equation $F(x, y)=0$ defines $y=y(x)$
- $x \mapsto y(x)$ differentiable
- $F_{y} \neq 0$

Then we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}}
$$

Example of implicit differentiation (1)

Equation:

$$
e^{y} \sin (x)=x+x y
$$

Problem: Find

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

Example of implicit differentiation (2)

Reformulation of the equation: $F(x, y)=0$ with

$$
F(x, y)=e^{y} \sin (x)-x-x y
$$

Implicit differentiation:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}}=-\frac{e^{y} \cos (x)-1-y}{e^{y} \sin (x)-x}
$$

Implicit differentiation with 3 variables (1)

Implicit equation: We consider

- $F(x, y, z)=x y+y z+x z$
- Equation: $F(x, y)=3$
- The equation defines $z=z(x, y)$

Problem: Find

$$
\frac{\partial z}{\partial y}
$$

Implicit differentiation with 3 variables (2)

Implicit differentiation:

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x+z}{y+x}
$$

Outline

(1) Graphs and level curves
(5) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems

- Lagrange multipliers

Objective

Aim: Understand variations of a function \hookrightarrow In directions which are not parallel to the axes

Directional derivative

Definition 5.

Let

- f differentiable function at (a, b)
- $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ unit vector in $x y$-plane

Then the directional derivative of f in the direction of \mathbf{u} at (a, b) is

$$
D_{\mathrm{u}} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}
$$

Computation of the directional derivative

Proposition 6.

Let

- f differentiable function at (a, b)
- $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ unit vector in $x y$-plane

Then the directional derivative of f in the direction of \mathbf{u} at (a, b) is given by

$$
D_{\mathrm{u}} f(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}
$$

Remark: One can also write

$$
D_{\mathbf{u}} f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
$$

Example of directional derivative (1)

Function: Paraboloid of the form

$$
z=f(x, y)=\frac{1}{4}\left(x^{2}+2 y^{2}\right)+2
$$

Unit vector:

$$
\mathbf{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
$$

Problem: Compute the directional derivative

$$
D_{\mathbf{u}} f(3,2)
$$

Example of directional derivative (2)

Function: Paraboloid of the form

$$
z=f(x, y)=\frac{1}{4}\left(x^{2}+2 y^{2}\right)+2
$$

Unit vector:

$$
\mathbf{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
$$

Directional derivative: We get

$$
D_{\mathbf{u}} f(3,2)=\left\langle\frac{3}{2}, 2\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\frac{7}{2 \sqrt{2}} \simeq 2.47
$$

Example of directional derivative (3)

Gradient

Definition 7.

Let

- f differentiable function at (x, y)

Then the gradient of f at (x, y) is

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

Example of gradient (1)

Function:

$$
f(x, y)=3-\frac{x^{2}}{10}+\frac{x y^{2}}{10}
$$

Problem:
(1) Compute $\nabla f(3,-1)$
(2) Compute the directional derivative of f \hookrightarrow at $(3,-1)$ in the direction of the vector $\langle 3,4\rangle$

Example of gradient (2)

Gradient:

$$
\nabla f(x, y)=\left\langle-\frac{x}{5}+\frac{y^{2}}{10}, \frac{x y}{5}\right\rangle
$$

Thus

$$
\nabla f(3,-1)=\left\langle-\frac{1}{2},-\frac{3}{5}\right\rangle
$$

Example of gradient (3)

Directional derivative: Unit vector in direction of $\langle 3,4\rangle$ is

$$
\mathbf{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle
$$

Thus directional derivative in direction of $\langle 3,4\rangle$ is

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

We get

$$
D_{\mathbf{u}} f(3,-1)=-\frac{39}{50}
$$

Interpretation of gradient

Remark: If

- \mathbf{u} is a unit vector
- $\theta \equiv$ angle between \mathbf{u} and $\nabla f(x, y)$

Then

$$
D_{\mathbf{u}} f(x, y)=|\nabla f(x, y)| \cos (\theta)
$$

Information given by the gradient
(1) $|\nabla f(x, y)|$ is the maximal possible directional derivative
(2) The direction $\mathbf{u}=\frac{\nabla f(x, y)}{|\nabla f(x, y)|}$ is the one of maximal ascent
(3) The direction $\mathbf{u}=-\frac{\nabla f(x, y)}{|\nabla f(x, y)|}$ is the one of maximal desccent
(9) If $\mathbf{u} \perp \nabla f(x, y)$, the directional derivative is 0

Interpretation of gradient: illustration

Example of steepest descent (1)

Function:

$$
f(x, y)=4+x^{2}+3 y^{2}
$$

Questions:
(1) If you are located on the paraboloid at the point $\left(2,-\frac{1}{2}, \frac{35}{4}\right)$ \hookrightarrow In which direction should you move in order to ascend on the surface at the maximum rate?
(2) If you are located on the paraboloid at the point $\left(2,-\frac{1}{2}, \frac{35}{4}\right)$ \hookrightarrow In which direction should you move in order to descend on the surface at the maximum rate?
(3) At the point $(3,1,16)$, in what direction(s) is there no change in the function values?

Example of steepest descent (2)

Gradient:

$$
\nabla f(x, y)=\langle 2 x, 6 y\rangle
$$

Thus

$$
\nabla f\left(2,-\frac{1}{2}\right)=\langle 4,-3\rangle
$$

Steepest ascent direction: We get

$$
\mathbf{u}=\left\langle\frac{4}{5},-\frac{3}{5}\right\rangle
$$

with rate of ascent

$$
\left|\nabla f\left(2,-\frac{1}{2}\right)\right|=5
$$

Example of steepest descent (3)

Steepest descent direction: We get

$$
\mathbf{v}=-\mathbf{u}=\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle
$$

with rate of descent

$$
-\left|\nabla f\left(2,-\frac{1}{2}\right)\right|=-5
$$

Example of steepest descent (4)

Example of steepest descent (5)

Gradient at point $(3,1)$: Recall that

$$
\nabla f(x, y)=\langle 2 x, 6 y\rangle
$$

Thus

$$
\nabla f(3,1)=\langle 6,6\rangle
$$

Direction of 0 change: Any direction $\perp\langle 6,6\rangle$
\hookrightarrow Unit vectors given by

$$
\mathbf{u}=\frac{1}{\sqrt{2}}\langle 1,-1\rangle, \quad \frac{1}{\sqrt{2}}\langle-1,1\rangle
$$

Example of steepest descent (6)

Gradient and level curves

Theorem 8.
Let

- f differentiable function at (x, y)
- Hypothesis: $\nabla f(a, b) \neq 0$

Then:
The line tangent to the level curve of f at (a, b) is

$$
\text { orthogonal to } \nabla f(a, b)
$$

Hyperboloid example (1)

Function:

$$
z=f(x, y)=\sqrt{1+2 x^{2}+y^{2}}
$$

Questions:
(1) Verify that the gradient at $(1,1)$ is orthogonal to the corresponding level curve at that point.
(2) Find an equation of the line tangent to the level curve at $(1,1)$

Hyperboloid example (2)

Hyperboloid example (3)

Point on surface:
Given by $(1,1,2) \Longrightarrow$ On level curve $z=2$
Equation for level curve: Ellipse of the form

$$
1+2 x^{2}+y^{2}=4 \quad \Longleftrightarrow \quad 2 x^{2}+y^{2}=3
$$

Implicit derivative:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}}=-\frac{2 x}{y}
$$

Thus

$$
\frac{d y}{d x}(1)=-2
$$

Hyperboloid example (4)

Tangent vector: Proportional to

$$
\mathbf{t}=\langle 1,-2\rangle
$$

Gradient of f :

$$
\nabla f(x, y)=\left\langle\frac{2 x}{\sqrt{1+2 x^{2}+y^{2}}}, \frac{y}{\sqrt{1+2 x^{2}+y^{2}}}\right\rangle
$$

Thus

$$
\nabla f(1,1)=\left\langle 1, \frac{1}{2}\right\rangle
$$

Orthogonality: We have

$$
\mathbf{t} \cdot \nabla f(1,1)=0
$$

Hyperboloid example (5)

Tangent line to level curve: At point $(1,1)$ we get

$$
f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)=0
$$

that is

$$
y=-2 x+3
$$

Generalization to 3 variables

Situation:

- We have a function $w=f(x, y, z)$
- Each w_{0} results in a level surface

$$
f(x, y, z)=w_{0}
$$

Gradient on level surface:

Will be \perp to level surface

Example of tangent plane (1)

Function:

$$
f(x, y, z)=x y z
$$

Gradient:

$$
\nabla f(x, y, z)=\langle y z, x z, x y\rangle
$$

Thus

$$
\nabla f(1,2,3)=\langle 6,3,2\rangle
$$

Example of tangent plane (2)

Plane tangent to level surface:

$$
\langle 6,3,2\rangle \cdot\langle x-1, y-2, z-3\rangle=0
$$

We get

$$
6 x+3 y+2 z=18
$$

Outline

(1) Graphs and level curves
(5) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient

6 Tangent plane and linear approximation
(7) Maximum and minimum problems
(8) Lagrange multipliers

Linear approximation for functions of 1 variable

 Situation: We have- $y=f(x)$

Tangent vector at a :

$$
\mathbf{t}=\left(1, f^{\prime}(a)\right)
$$

Linear approximation: Near a we have

$$
f(x) \simeq f(a)+f^{\prime}(a)(x-a)
$$

Tangent plane for $F(x, y, z)=0$

Definition 9.

Let $F(x, y, z)$ be such that

- F differentiable at $P(a, b, c)$
- $\nabla F \neq 0$
- S is the surface $F(x, y, z)=0$

Then the tangent plane at (a, b, c) is given by

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

Interpretation of tangent plane

Tangent plane as collection of tangent vectors: If

- S is the surface $F(x, y, z)=0$
- \boldsymbol{r} is a curve passing through (a, b, c) at time t

Then $\mathbf{r}^{\prime}(t) \in$ tangent plane

$$
\begin{aligned}
& \text { Vector tangent to } C \\
& \text { at } P_{0} \text { is orthogonal } \\
& \text { to } \nabla F\left(P_{0}\right) \text {. }
\end{aligned}
$$

Tangent plane formed by tangent vectors for all curves C on the surface passing through P_{0}

Example of tangent plane (1)

Surface: Ellipsoid of the form

$$
F(x, y, z)=\frac{x^{2}}{9}+\frac{y^{2}}{25}+z^{2}-1=0
$$

Questions:
(1) Tangent plane at $\left(0,4, \frac{3}{5}\right)$
(2) What tangent planes to S are horizontal?

Example of tangent plane (2)

Gradient: We have

$$
\nabla F(x, y, z)=\left\langle\frac{2 x}{9}, \frac{2 y}{25}, 2 z\right\rangle
$$

Thus

$$
\nabla F\left(0,4, \frac{3}{5}\right)=\left\langle 0, \frac{8}{25}, \frac{6}{5}\right\rangle
$$

Tangent plane:

$$
4 y+15 z=25
$$

Example of tangent plane (3)

Example of tangent plane (4)

Horizontal plane: When the normal vector is of the form

$$
\mathbf{n}=(0,0, c), \quad \text { with } \quad c \neq 0
$$

Horizontal tangent plane: When the normal vector ∇F is of the form

$$
\nabla F(x, y, z)=(0,0, c) \quad \Longleftrightarrow \quad F_{x}=0, F_{y}=0, F_{z} \neq 0
$$

Solutions: Horizontal tangent plane for

$$
(0,0,1) \text { and }(0,0,-1)
$$

Tangent plane for $z=f(x, y)$

Definition 10.

Let $f(x, y)$ be such that

- f differentiable at (a, b)
- S is the surface $z=f(x, y)$

Then the tangent plane to S at $(a, b, f(a, b))$ is given by

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example of tangent plane for $z=f(x, y)(1)$

Surface: Paraboloid of the form

$$
z=f(x, y)=32-3 x^{2}-4 y^{2}
$$

Question:

- Tangent plane at $(2,1,16)$

Example of tangent plane for $z=f(x, y)(2)$

Partial derivatives: We have

$$
f_{x}=6 x, \quad f_{y}=-8 y
$$

Thus

$$
f_{x}(2,1)=-12, \quad f_{y}(2,1)=-8
$$

Tangent plane:

$$
z=-12 x-8 y+48
$$

Linear approx for functions of 1 variable (Repeat)

 Situation: We have- $y=f(x)$

Tangent vector at a :

$$
\mathbf{t}=\left(1, f^{\prime}(a)\right)
$$

Linear approximation: Near a we have

$$
f(x) \simeq f(a)+f^{\prime}(a)(x-a)
$$

Linear approximation for functions of 2 variables

Definition 11.

Let $f(x, y)$ be such that

- f differentiable at (a, b)
- S is the surface $z=f(x, y)$

Then the linear approximation to S at $(a, b, f(a, b))$ is given by

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Remark: Another popular form of the linear approximation is

$$
\Delta z \simeq f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y
$$

Example of infinitesimal change (1)

Function:

$$
z=f(x, y)=x^{2} y
$$

Question: Evaluate the percentage of change in z if

- x is increased by 1%
- y is decreased by 3%

Example of infinitesimal change (2)

Small change in z :

$$
\mathrm{d} z \simeq f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y=2 x y \mathrm{~d} x+x^{2} \mathrm{~d} y
$$

Small percentage change in z :

$$
\frac{\mathrm{d} z}{z}=\frac{2 x y}{z} \mathrm{~d} x+\frac{x^{2}}{z} \mathrm{~d} y=\frac{2}{x} \mathrm{~d} x+\frac{1}{y} \mathrm{~d} y
$$

If $\frac{\mathrm{d} x}{x}=.01$ and $\frac{\mathrm{d} y}{y}=-.03$:

$$
\frac{\mathrm{d} z}{z}=-.01=-1 \%
$$

Outline

(1) Graphs and level curves
(5) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems
(8) Lagrange multipliers

Max and min for functions of 1 variable

Situation: We have

- $y=f(x)$

Critical point: $(c, f(c))$ whenever

$$
f^{\prime}(c)=0
$$

Second derivative test: If $(c, f(c))$ is critical then
(1) If $f^{\prime \prime}(c)>0$, there is a local minimum
(2) If $f^{\prime \prime}(c)<0$, there is a local maximum
(3) If $f^{\prime \prime}(c)=0$, the test is inconclusive

Critical points for functions of 2 variables

Definition 12.

Let

- f function of 2 variables
- (a, b) interior point in the domain of f

Then (a, b) is a critical point of f if

$$
f_{x}(a, b)=0, \quad \text { and } \quad f_{y}(a, b)=0
$$

or if one of the partial derivatives f_{x}, f_{y} does not exist at (a, b)

Second derivative test

Theorem 13.

For f twice diff. function, define the discriminant of f as

$$
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2}
$$

Then for a critical point (a, b) the following holds true:
(1) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, we have a local max
(2) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, we have a local min
(3) If $D(a, b)<0$, we have a saddle point
(- If $D(a, b)=0$, the test is inconclusive

Saddle point for an hyperboloid

Hyperboloids in architecture

Hyperboloids in the food industry

Example of critical points analysis (1)

Function:

$$
f(x, y)=x^{2}+2 y^{2}-4 x+4 y+6
$$

Problem:
Use second derivative test to classify the critical points of f

Example of critical points analysis (2)

Partial derivatives:

$$
f_{x}=2 x-4, \quad f_{y}=4 y+4
$$

Critical point:

$$
(2,-1)
$$

Critical value of f :

$$
f(2,-1)=0
$$

Example of critical points analysis (3)

Second derivatives:

$$
f_{x x}=2, \quad f_{x y}=f_{y x}=0, \quad f_{y y}=4
$$

Discriminant:

$$
D(x, y)=8>0
$$

Second derivative test: We have

$$
D(2,-1)>0, f_{x x}(2,-1)>0 \quad \Longrightarrow \quad \text { Local minimum at }(2,-1)
$$

Example of critical points analysis (4)

Second example (1)

Function:

$$
f(x, y)=x y(x-2)(y+3)
$$

Problem:
Use second derivative test to classify the critical points of f

Second example (2)

Partial derivatives:

$$
f_{x}=2 y(x-1)(y+3), \quad f_{y}=x(x-2)(2 y+3)
$$

Critical points:

$$
(0,0), \quad(2,0), \quad\left(1,-\frac{3}{2}\right), \quad(0,-3), \quad(2,-3)
$$

Second example (3)

Second derivatives:

$$
f_{x x}=2 y(y+3), \quad f_{x y}=2(2 y+3)(x-1), \quad f_{y y}=2 x(x-2)
$$

Analysis of critical points:

(x, y)	$D(x, y)$	$f_{x x}$	Conclusion
$(0,0)$	-36	0	Saddle point
$(2,0)$	-36	0	Saddle point
$(1,-3 / 2)$	9	$-9 / 2$	Local maximum
$(0,-3)$	-36	0	Saddle point
$(2,-3)$	-36	0	Saddle point

Second example (4)

Saddle points at $(0,-3)$,
$(0,0),(2,-3)$, and $(2,0)$

Absolute maximum

Proposition 14.

Let

- f continuous function of 2 variables
- R closed region of \mathbb{R}^{2}

In order to find the maximum of f in R, we proceed as follows:
(1) Determine the values of f at all critical points in R.
(2) Find the maximum and minimum values of f on the boundary of R.
(3) The greatest function value found in Steps 1 and 2 is the absolute maximum value of f on R .

Example of global maximum (1)

Function:

$$
z=f(x, y)=x^{2}+y^{2}-2 x-4 y
$$

Region:
$R=\{(x, y) ;(x, y)$ within triangle with vertices $(0,0),(0,4),(4,0)\}$

Question:
Find global maximum of f on region R

Example of global maximum (2)

Partial derivatives:

$$
f_{x}=2 x-2, \quad f_{y}=2 y-4
$$

Critical point:

$$
(1,2), \quad \text { with } \quad f(1,2)=-5
$$

Example of global maximum (3)

Boundary 1: On $y=0,0 \leq x \leq 4$ we have

$$
f(x, y)=x^{2}-2 x \equiv g(x), \quad g^{\prime}(x)=2(x-1)
$$

Points of interest on boundary 1: We get

$$
(0,0), \quad(1,0), \quad(0,4)
$$

and

$$
f(0,0)=0, \quad f(1,0)=-1, \quad f(4,0)=8
$$

Example of global maximum (4)

Boundary 2: On $y=4-x, 0 \leq x \leq 4$ we have

$$
f(x, y)=2 x^{2}-6 x \equiv h(x), \quad h^{\prime}(x)=4 x-6
$$

Points of interest on boundary 2: We get

$$
(0,4), \quad\left(\frac{3}{2}, \frac{5}{2}\right), \quad(4,0)
$$

and

$$
f(0,4)=0, \quad f\left(\frac{3}{2}, \frac{5}{2}\right)=-\frac{9}{2}, \quad f(4,0)=8
$$

Example of global maximum (5)

Boundary 3: On $x=0,0 \leq y \leq 4$ we have

$$
f(x, y)=y^{2}-4 y \equiv k(y), \quad k^{\prime}(y)=2(y-2)
$$

Points of interest on boundary 3: We get

$$
(0,0), \quad(0,2), \quad(0,4)
$$

and

$$
f(0,0)=0, \quad f(0,2)=-4, \quad f(0,4)=0
$$

Example of global maximum (6)

Summary of points of interest:

$$
\begin{array}{ll}
f(0,0)=0, & f(1,0)=-1, \quad f(4,0)=8 \\
f(0,4)=0, & f\left(\frac{3}{2}, \frac{5}{2}\right)=-\frac{9}{2}, \\
f(0,0)=0, & f(0,2)=-4, \quad f(0,4)=0, \quad f(1,2)=-5
\end{array}
$$

Absolute minimum: at $(1,2)$ and

$$
f(1,2)=-5
$$

Absolute maximum: at $(4,0)$ and

$$
f(4,0)=8
$$

Outline

(1) Graphs and level curves
(5) Limits and continuity
(3) Partial derivatives
(4) The chain rule
(5) Directional derivatives and the gradient
(6) Tangent plane and linear approximation
(7) Maximum and minimum problems
(8) Lagrange multipliers

Global aim

Objective function:

$$
f=f(x, y)
$$

Constraint: We are moving on a curve of the form

$$
g(x, y)=0
$$

Optimization problem: Find

$$
\max f(x, y), \quad \text { subject to } g(x, y)=0
$$

Optimization problem: illustration

> Find the maximum and minimum values of z as (x, y) varies over C.

Lagrange multipliers intuition (1)

Lagrange multipliers intuition (2)

Some observations from the picture:
(1) $P(a, b)$ on the level curve of f \Longrightarrow Tangent to level curve $\perp \nabla f(a, b)$
(2) $P(a, b)$ gives a maximum of f on curve C \Longrightarrow Tangent to level curve || Tangent to constraint curve
(3) Constraint is $g(x, y)=0$ \Longrightarrow Tangent to constraint curve $\perp \nabla g(a, b)$

Conclusion (Lagrange's idea):
At the maximum under constraint we have

$$
\nabla f(a, b) \| \nabla g(a, b)
$$

Lagrange multipliers procedure

Optimization problem: Find

$$
\max f(x, y), \quad \text { subject to } g(x, y)=0
$$

Recipe:
(1) Find the values of x, y and λ such that

$$
\nabla f(x, y)=\lambda \nabla g(x, y), \quad \text { and } \quad g(x, y)=0
$$

(2) Select the largest and smallest corresponding function values. \hookrightarrow We get absolute max and min values of f s.t constraint.

Example of Lagrange multipliers (1)

Optimization problem: Find

$$
\max f(x, y), \quad \text { with } \quad f(x, y)=x^{2}+y^{2}+2,
$$

subject to the constraint

$$
g(x, y)=x^{2}+x y+y^{2}-4=0
$$

Example of Lagrange multipliers (2)

Computing the gradients: We get

$$
\nabla f(x, y)=\langle 2 x, 2 y\rangle, \quad \nabla g(x, y)=\langle 2 x+y, x+2 y\rangle
$$

Lagrange constraint 1 :

$$
\begin{equation*}
f_{x}=\lambda g_{x} \quad \Longleftrightarrow \quad 2 x=\lambda(2 x+y) \tag{1}
\end{equation*}
$$

Lagrange constraint 2 :

$$
\begin{equation*}
f_{y}=\lambda g_{y} \quad \Longleftrightarrow \quad 2 y=\lambda(x+2 y) \tag{2}
\end{equation*}
$$

Example of Lagrange multipliers (3)

System for x, y : Gathering (1) and (2), we get

$$
2(\lambda-1) x+\lambda y=0, \quad \lambda x+2(\lambda-1) y=0
$$

This has solution $(0,0)$ unless

$$
\lambda=2, \quad \text { or } \quad \lambda=\frac{2}{3}
$$

Example of Lagrange multipliers (4)

Case $\lambda=2$: We get $x=-y$. The constraint

$$
x^{2}+x y+y^{2}-4=0
$$

becomes

$$
x^{2}-4=0
$$

Solutions:

$$
x=2, \quad \text { and } \quad x=-2
$$

Corresponding values of f : We have

$$
f(2,-2)=f(-2,2)=10
$$

Example of Lagrange multipliers (5)

Case $\lambda=\frac{2}{3}$: We get $x=y$. The constraint

$$
x^{2}+x y+y^{2}-4=0
$$

becomes

$$
3 x^{2}-4=0
$$

Solutions:

$$
x=\frac{2}{\sqrt{3}}, \quad \text { and } \quad x=-\frac{2}{\sqrt{3}}
$$

Corresponding values of f : We have

$$
f\left(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)=f\left(-\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}\right)=\frac{14}{3}
$$

Example of Lagrange multipliers (6)

Absolute maximum:
For function f on the curve C defined by $g=0$,

$$
\text { Maximum }=10, \quad \text { obtained for } \quad(2,-2),(-2,2)
$$

Absolute minimum:
For function f on the curve C defined by $g=0$,
Minimum $=\frac{14}{3}, \quad$ obtained for $\quad\left(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right),\left(-\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}\right)$

Example of Lagrange multipliers (7)

Optimization in dimension 3 (1)

Problem: Find the point on the sphere

$$
x^{2}+y^{2}+z^{2}=1
$$

closest to the point

$$
(1,2,3)
$$

Optimization in dimension 3 (2)

Related minimization problem:
Find

$$
\min f(x, y), \quad \text { with } \quad f(x, y)=(x-1)^{2}+(y-2)^{2}+(z-3)^{2},
$$

subject to the constraint

$$
g(x, y)=x^{2}+y^{2}+z^{2}-1=0
$$

Optimization in dimension 3 (3)

Computing the gradients: We get

$$
\begin{aligned}
\nabla f(x, y) & =\langle 2(x-1), 2(y-2), 2(z-3)\rangle \\
\nabla g(x, y) & =\langle 2 x, 2 y, 2 z\rangle
\end{aligned}
$$

Lagrange constraint: We have

$$
\begin{gathered}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
\Longleftrightarrow \\
(\lambda-1) x=-1, \quad(\lambda-1) y=-2, \quad(\lambda-1) z=-3
\end{gathered}
$$

Optimization in dimension 3 (4)

Solutions of Lagrange constraints:
The Lagrange system has unique solution whenever $\lambda \neq 1$. We get

$$
x=-\frac{1}{\lambda-1}, \quad y=-\frac{2}{\lambda-1}=2 x, \quad z=-\frac{1}{\lambda-1}=3 x
$$

Reporting in constraint g : We have

$$
y=2 x, \quad z=3 x, \quad g(x, y)=0
$$

Thus we get

$$
14 x^{2}=1
$$

Optimization in dimension 3 (5)

Solutions:

$$
x=\frac{1}{\sqrt{14}}, \quad \text { and } \quad x=-\frac{1}{\sqrt{14}}
$$

Corresponding values of f : We have

$$
\begin{aligned}
f\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right) & \simeq 7.51 \\
f\left(-\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}\right) & \simeq 22.48
\end{aligned}
$$

Optimization in dimension 3 (6)

Absolute maximum:
Maximal distance from $(1,2,3)$ to a point on the sphere is

$$
\text { Maximum }=4.74, \quad \text { obtained for } \quad\left(-\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}\right)
$$

Absolute minimum:
Minimal distance from $(1,2,3)$ to a point on the sphere is
Minimum $=2.74=\sqrt{7.51}, \quad$ obtained for $\quad\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

