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Outline

@ Graphs and level curves

© Limits and continuity

© Partial derivatives

@ The chain rule

© Directional derivatives and the gradient
e Tangent plane and linear approximation
@ Maximum and minimum problems

© Lagrange multipliers
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Outline

@ Graphs and level curves
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Recalling functions of 1 variable (1)

Example of function:

y=1f(x)=v9—x2

Questions:
@ Domain of ?
© Range of f?
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Recalling functions of 1 variable (2)

Recalling the function:

y:f(x):\/ﬁ)—ix2

Domain:
x € [-3,3]

Range:
y€l[0,3]
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Functions of 2 variables: example (1)

Example of function:

z="f(x,y) =VvV9—x?—/25— y?

Questions:
@ Domain of f7?
© Range of 7
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Functions of 2 variables: example (2)

Recalling the function:

z="1f(x,y) = V9 —x?—/25—y?

Domain:
(x,y) € [-3,3] x [-5,5]

Range: Looking at lines x = £3 and y = £5, we get

S [_57 3]
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Contour and level curves

~ Definition 1. \

Contour curve:
Intersection of the surface (x,y, f(x,y)) and plane z = z

Level curve:
Projection of contour curve on xy-plane
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Contour and level curves: illustration

y
Level curves of f

fey) =z
ﬁm
&
fxy) =z,
2= f(x) \y‘
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Example of level curves (1)

Function:

f(X,y):y—Xz—l
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Example of level curves (2)
Function:

f(x,y):y—x2—1
Level curves: For zg € R, we get the parabola

y=x’4+1+2

Samy T.

Contour curves are formed
by the intersection of the

surface and horizontal
planes z = z;.
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Example 2 of level curves (1)

Function:

f(x,y) =exp (—x2 — y2>

o = = £ DA
SEIAN Several variables



Example 2 of level curves (2)

Function:
f(x,y) = exp (—x* = y?)

Level curves: For zy € (0, 1], we get the circle

o = = E = 9acn
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Example 3 of level curves (1)
Function:

f(x,y) =24+sin(x —y)

z=2+sin(x—y)
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Example 3 of level curves (2)

Function:
f(x,y) =2+sin(x — y)

Level curves:
For zy € [1, 3], we get a family of lines

Level curves for zy = 2:
y=x—kn, keZ
Level curves for zy = 1:

y:x—g—l—2k7r, keZ
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Function:

Example 3 of level curves (3)

Depiction of level curves:

f(x,y) =2+sin(x —y)
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Application of functions of 2 variables (1)

Situation:
@ Fraction of students infected by FV is r on 9/12

@ We have n random encounters with students on 9/12

Function:
The probability of meeting at least one student with FV is

p(n,r):l—(l—r)"

This requires probability theory and is admitted

Question:
Draw level curves
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Application of functions of 2 variables (2)

Function:
p(n,r)=1—(1—r)"

Useful values of z:
For po € [0, 1], the curve p(n, r) = py is non empty

Level curves for py € [0, 1]:

r=1-—(1-p)¥"
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Function:

Depiction of level curves:

Application of functions of 2 variables (3)

p(n,r)=1— (1 1)

Level curves of p

SEIAN
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Function:

Depiction of function:

Application of functions of 2 variables (4)

p(n,r)=1— (1 1)’

p=1—(1-n"

P

=

8
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Outline

© Limits and continuity
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Continuity for functions of 1 variable (1)

Limit: The assertion
lim f(x) =L

X—ra

means that f(x) can be made as close to L as we wish
— by making x close to a

Remark: If lim,_,, f(x) = L, then
the limit should not depend on the way x — a
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Continuity for functions of 1 variable (2)

Continuity: The function f is continuous at point a if

lim f(x) = f(a)

X—ra

Examples of continuous functions:
@ Polynomials
@ sin, cos, exponential
@ Rational functions (on their domain)

@ Log functions (on their domain)
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Continuity for functions of 2 variables (1)

Limit: The assertion

lim f(x,y)=1L
(x.y)—(a,b) bey)

means that f(x,y) can be made as close to L as we wish
— by making (x,y) close to (a, b)

Remark: If lim(x ) (a,6) f(X,y) = L, then
the limit should not depend on the way (x,y) — (a, b)
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Continuity for functions of 2 variables (2)

Continuity: The function f is continuous at point a if

lim f(x,y)=f(a,b
peim  fOy) =f(a.b)

Examples of continuous functions:
@ Polynomials
@ sin, cos, exponential
e Rational functions (on their domain)

e Log functions (on their domain)
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Logarithmic example (1)

Function:

1 2
In ( Ty
Problem: Continuity at point

(1,0)

=] =) = £ 9OHQC
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Logarithmic example (2)

Continuity: f is the log of a rational function
— Continuous wherever it is defined
Definition at point (1,0): We have

f(1,0)=0
This is well defined

Conclusion: f is continuous at (1,0), that is

lim f(x,y)=1f(1,0)=0

(x,y)—(1,0)
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Function:

Rational function example (1)

y — 4axX

2X2 + y2

(0,0)
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Rational function example (2)

Continuity: f is a rational function
— Continuous wherever it is defined

Definition at point (0,0): We have

70.0)=¢

This is not well defined, therefore general result cannot be applied
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Rational function example (3)

Two paths: We have

Along x =0, lim y oA
(x,y)—(0,0),x=0 2x2 + y2
Along y = 0, im ",

(x,y)—(0,0), y=0 2X2 + y2

We get 2 different limits

Conclusion:
f is not continuous at point (0,0)
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Function:

Another rational function example (1)

X2 — )2

f(x,y)=
(x,y) =~ gy
Problem: Continuity at point

(0,0)

=] =) = £ 9OHQC
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Another rational function example (2)

Continuity: f is a rational function
— Continuous wherever it is defined

Definition at point (0,0): We have

70.0)=¢

This is not well defined, therefore general result cannot be applied
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Another rational function example (3)

Two paths: We have

Along x =0, lim Al A 0
(x,y)—(0,0),x=0 X + y
2_ .2
Along y =0, lim Al A
(X,y)—)(0,0),y:O X + y

We get the same limit

Partial conclusion:
This is not enough!

Samy T. SEVEEIRVEELIES Multivariate calculus 33/145



Another rational function example (4)
Next steps: Try different paths

o y=x%y=x3 etc
@ Those all give a 0 limit

@ This is still not enough

Key remark: If (x,y) # (0,0) we have

2 2

X" =y
f(x,y)= =x—
(x,y) =~ gy y
The rhs above is continuous
Conclusion: We have
lim f(x,y)=0
(x,y)—(0,0) ()
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Outline

© Partial derivatives
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Motivation

f'(x) = lim

Derivative for functions of 1 variable: Captures the rate of change

f(x+ h) —f(x)

h
— Captured by partial derivatives

Rate of change in the 2-d case: Can be different in x and y directions
Z
P(0, 0, £(0, 0))

Samy T.

SEVEEIRVEELIES

DA




Partial derivatives

~ Definition 2. N

Consider
@ f function of 2 variables

Then we set
L f(X—l—h,_y)—f(X’y)
&(me) - flll_% h
f h)—f
f(x,y) = lim (0¥ R = Fxy)

h—0 h
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Some remarks on partial derivatives

Frozen and live variables:

@ In order to compute £ (x,y)
— the x variable is alive and the y variable is frozen

@ In order to compute f,(x,y)
— the y variable is alive and the x variable is frozen

Funny notation: For partial derivatives we also use

of of
a(xvy)_f;((xay% @(me)_fy(xay)
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Example of computation (1)

Function:

fx.y) =Xy + %y

o = = £ DA
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Example of computation (2)

Recall:
f(x,y) =x°y* +x%

Partial derivative f£,:
fo =8x"y® 4+ 3x%y

Partial derivative f,:
f;, — 5X8y4 +X3

Samy T. SEVEEIRVEELIES Multivariate calculus 40 /145



Function:

Second example of computation (1)

f(x,y) =€ sin(y)

o = = £ DA
SEIAN Several variables



Second example of computation (2)

Recall:
f(x,y) = € sin(y)

Partial derivative f£,:
f, = € sin(y)

Partial derivative f,:
f, = ¢ cos(y)
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Second derivatives

Second derivative f, f,,:

P P
foo = (B)x = 5.2 fyy:(fy)yza—yz

Second derivative f,:

Second derivative f,:

0*f
f;’X = (f;/)x = Dy Ox
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Example of second derivatives

Function:
f(x,y) = € sin(y)

Second derivative f,:

foe = (£, = €" sin(y)

Second derivative f,:

fy = (), = €* cos(y)
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Order of derivatives

On our running example: We have

fie = (f), = € cos(y) = £y

General result (Clairaut’s theorem):
For a smooth f, the order of the derivatives does not matter

fox =ty
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Function:

Example of order of derivatives (1)

Problem: Check that

o = = £ DA
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Example of order of derivatives (2)

Recall:
2

f(x,y) =€

Partial derivative f£,:
2
f. =2xy e

Partial derivative f,:

Mixed derivatives:
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Functions of 3 variables (1)

Basic rule: Functions of 3 variables are handled
< in the same way as functions of 2 variables

Example:

f(x,y,z) = xyz
First derivatives:

ﬁ(zyzv f;/:XZa fz:X.y
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Functions of 3 variables (2)
Second derivatives: We have for instance

fy =fx =2

Third derivatives: The only non zero derivatives are
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Outline

e The chain rule
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Situation: We have

Chain rule for functions of 1 variable

e y=f(x)

o x =g(t)

Chain rule:

dy _ dy dx
dt  dx dt

=] =) = £ 9OHQC
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Chain rule with 1 independent variable

~ Theorem 3.

Let
° z=2z(x,y)

e x = x(t) and y = y(t)
@ z, x, y differentiable

Then
dz _ 0z dx 0z dy
dt  Ox dt = Oy dt
vt e e e —
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Tree representation of chain rule (2d)

oz oz

Ox dy
X y
dx dy

dt dt

t t
di _ dzdr |

dt  Oxdt

Oz dy

Oy dtJ
SEIAN
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Tree representation of chain rule (3d)

dw _ Owdx
dt

4 Owdy | ow dz
Ox dt 0Oy dt 0z dt

=] & = E DA
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Example of computation (1)

Functions: We consider

z=x>-3y?+20, x=2cos(t), y=2sin(t)

Derivative: We find

dz 0z dx n 0z dy
dt Ox dt Oy dt
= —16sin(2t)

Particular value: It t = 7, then
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Example of computation (2)

Other possible strategy:
© Express z(x(t), y(t)) as a function F(t)
@ Differentiate as usual

Problem: this becomes impractical very soon.

At(V2V2, 16), |

d _
="l

z=x—-3>+20

C:<2cost,2sint>
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Implicit differentiation

—~ Theorem 4.

Let F(x,y) be such that
o F differentiable
@ The equation F(x,y) = 0 defines y = y(x)
@ x — y(x) differentiable
o F, #0

Then we have
by __F

dx F,
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Example of implicit differentiation (1)

Equation:
e’sin(x) = x + xy
Problem: Find
dy
dx

o = = £ DA
SEIAN Several variables



Example of implicit differentiation (2)

Reformulation of the equation: F(x,y) = 0 with

F(x,y) = €' sin(x) — x — xy

Implicit differentiation:

dy R €cos(x)—1-—y
dx  F, e¥sin(x) — x
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Implicit differentiation with 3 variables (1)

Implicit equation: We consider
o F(x,y,z) =xy+yz+xz
e Equation: F(x,y) =3
@ The equation defines z = z(x, y)

Problem: Find
0z

y
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Implicit differentiation:

Implicit differentiation with 3 variables (2)

9z _ F _
dy  F,

o = = £ DA
SEIAN Several variables



Outline

© Directional derivatives and the gradient
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Objective

Aim: Understand variations of a function
< In directions which are not parallel to the axes

We seek the

rate of change
of fat Fin the
direction of u.

7= f(xy)

Fyla, b)

SEIAN Several variables

u}
)
I

il
it
S
»
i)




Directional derivative

— Definition 5. | \
Let
o f differentiable function at (a, b)

@ u = (uy, up) unit vector in xy-plane

Then the directional derivative of f
in the direction of u at (a, b) is

- f(a+ huy, b+ huy) — f(a, b)

Duf(a, b) = lim ;
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Computation of the directional derivative

,—[Proposition 6.}
Let
e f differentiable function at (a, b)

@ u = (uy, up) unit vector in xy-plane

Then the directional derivative of f
in the direction of u at (a, b) is given by

D,f(a, b) = f.(a, b)us + f,(a, b)u>

\. J

Remark: One can also write

Duf(a7 b) - <ﬂ<(a7 b)? fy(av b)> : <u17 Ll2>
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Example of directional derivative (1)

Function: Paraboloid of the form
_ _ 15 2
z—f(x,y)—z(x +2y)—|—2
Unit vector:
1 1
u=(—,—
V2 V2
Problem: Compute the directional derivative

D,f(3,2)
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Example of directional derivative (2)
Function: Paraboloid of the form

z="f(x,y)= (X2+2y2) +2

I

Unit vector:

c
I
—
Sl
N
Sl
N
~—

Directional derivative: We get

3 1 1 7
Duf(3,2 :<,2>. = )= —— ~ 247
(3.2) 2 <2 2> 2v/2
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Example of directional derivative (3)

=5GP+ 2% +2

Plane 0

containing
uorv
perpendicular
to xy-plane

=3P+ 2 +2

The line in Q tangent to the

intersection curve C in the direction
of u has slope D f~ 2.47.

The line in Q tangent to the
intersection curve C in the direction
of v has slope D f~ —0.98.
=] 5 = E DAy
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Gradient

— Definition 7. | \
Let
e f differentiable function at (x,y)

Then the gradient of f at (x,y) is

Vi(x,y) = (f(x,x), f,(x, )
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Example of gradient (1)

Function:

Problem:
@ Compute VF£(3,—1)
© Compute the directional derivative of f
< at (3, —1) in the direction of the vector (3,4)
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Example of gradient (2)

Gradient:

2
X
£ —
Vit = (-
Thus

o = = £ DA
SEIAN Several variables



Example of gradient (3)

Directional derivative: Unit vector in direction of (3,4) is

(53

u= (-, -

55

Thus directional derivative in direction of (3,4) is
Duf(x,y) = Vf(x,y) -u

We get

Duf(3,~1) = —%
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Interpretation of gradient

Remark: If
@ u is a unit vector
@ 0 = angle between u and V£ (x,y)

Then
Duf(x,y) = |[Vf(x,y)| cos(f)

Information given by the gradient
Q |V£(x,y)| is the maximal possible directional derivative

© The direction u = |§?§§’§§| is the one of maximal ascent

© The direction u = —é;g’i;l is the one of maximal desccent

Q If u L Vf(x,y), the directional derivative is 0
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Interpretation of gradient: illustration

Vf(a, b) lies

in the same plane
z as the domain of f.

z=f(x )
"

(a, b, f(a, b))
°

—Vf(a, b) points
in the direction of
steepest descent

on surface.

Direction of
zero change /

‘ Vf(a, b) points in the direction
of steepest ascent on surface.

=] F
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Example of steepest descent (1)

Function:
f(x,y) =4+ x>+ 3y?
Questions:
@ If you are located on the paraboloid at the point (2, —1, %)

— In which direction should you move in order to ascend on the
surface at the maximum rate?

@ If you are located on the paraboloid at the point (2, —1, 3)
— In which direction should you move in order to descend on

the surface at the maximum rate?

@ At the point (3, 1, 16), in what direction(s) is there no change
in the function values?
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Example of steepest descent (2)

Gradient:
VE(x,y) = (2x, by)
Thus

vf <2, —%) — (4, -3)

Steepest ascent direction: We get
(5:-5)
u= (-, ——
5" 5/
1
vf (2, ——)’ —5
7 (2.3
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Example of steepest descent (3)

Steepest descent direction: We get

with rate of descent

1
‘\W@"i)\ =0
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Example of steepest descent (4)

ZT z=4+x% + 3y?

Steepest
ascent

teepest

I
I
I
I
: \descent 2

N |
SR

X\\

dlrectlon
of steepest ascent.

of steepest descent.

m]

SEIAN Several variables

- ) d1rect1on]
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Example of steepest descent (5)

Gradient at point (3,1): Recall that

Vf(x,y) = (2x, 6y)

Thus
V£ (3,1) = (6, 6)

Direction of 0 change: Any direction L (6, 6)
— Unit vectors given by

1
u=—(1, -1),

\/5 <_17 1>

1
V2
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Example of steepest descent (6)

z=4+x>+3)?

z=16

No change in z
along this
curve
Level curve

along which
z=16

X

/ VfG. 1)\
Direction of

Direction of
zero change in z zero change in z
=] 5 = E DAy
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Gradient and level curves

~ Theorem 8. N

Let
e f differentiable function at (x,y)
@ Hypothesis: Vf(a,b) #0

Then:

The line tangent to the level curve of f at (a, b)
is
orthogonal to V£ (a, b)
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Hyperboloid example (1)

Function:

z="1(x,y) =/1+2x2+ y?

Questions:

Q \Verify that the gradient at (1, 1) is orthogonal to the
corresponding level curve at that point.

@ Find an equation of the line tangent to the level curve at (1,1)

Samy T. SEVEEIRVEELIES Multivariate calculus 82 /145



SEIAN

Hyperboloid example (2)

Tangent to
level curve

at(1,1)

X
‘t-Vf=0

Vfis orthogonal to level curves.

J
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Hyperboloid example (3)

Point on surface:
Given by (1,1,2) = On level curve z =2

Equation for level curve: Ellipse of the form

142x°+y? =4 <« 2x*+y?’=3

Implicit derivative:
dy £ 2x

dx Fy, y
Thus
dy

dx(l) -2
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Hyperboloid example (4)

Tangent vector: Proportional to
t=(1,-2)

Gradient of f:
2
w(x,y):< - y >

VI+2x2+y?" T+ 2x2 + y2

Thus

VA(L1) = <1, %>

Orthogonality: We have
t-VF(1,1)=0
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Hyperboloid example (5)

Tangent line to level curve: At point (1,1) we get
F(LL)(x — 1)+ (L 1)(y — 1) =0,

that is
y=-2x+3
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Generalization to 3 variables
Situation:

@ We have a function w = f(x,y, z)
@ Each wy results in a level surface

f(x,y,z) = w
Gradient on level surface:

Will be L to level surface

[Gradiem vector at (a, b, ¢) i

s
orthogonal to level surface. }
z

Vf(a, b, c)

y
=] & = E DA
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Example of tangent plane (1)

Function:
f(x,y,z) = xyz
Gradient:
Vf(x,y,z) = (yz,xz,xy)
Thus

V£(1,2,3) = (6,3,2)
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Example of tangent plane (2)

Plane tangent to level surface:
6,3,2) - (x—1,y—2,z—3)=0

We get
6x + 3y +2z =18

Samy T. SEVEEIRVEELIES Multivariate calculus 89 /145



Outline

@ Tangent plane and linear approximation
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Linear approximation for functions of 1 variable
Situation: We have

° y=f(x)

Tangent vector at a:
t=(1f'(a))

Linear approximation: Near a we have

f(x)~f(a)+ f'(a)(x — a)

(a,f(@))

y=fx

/]

|
|
|
|
&
*
a

X
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Tangent plane for F(x,y,z) =0

— Definition 9. | \
Let F(x,y,z) be such that
e F differentiable at P(a, b, c)
o VF#£0
e S is the surface F(x,y,z) =0

Then the tangent plane at (a, b, ¢) is given by

Fi(a, b, c)(x —a) + F,(a,b,c)(y — b) + F.(a,b,c)(z—c) =0

\. J
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Interpretation of tangent plane

Tangent plane as collection of tangent vectors: If
@ S is the surface F(x,y,z) =0
@ ris a curve passing through (a, b, ¢) at time t
Then r'(t) € tangent plane

VEP) VF(P,) normal to tangent plane

F(x,y,2)=0 F(x,y,2)=0
e Tangent vector r'(f) N
~
p Cr@ = &), y0), 20)
0

/
( Vector tangent to C ] ( Tangent plane formed
at P is orthogonal by tangent vectors for

| to VF(R). all curves C on the

L surface passing through P
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Example of tangent plane (1)

Surface: Ellipsoid of the form

2 2
%+y—+zz—1:0

F(x,y,z) = >

Questions:
© Tangent plane at (0,4, 3)
@ What tangent planes to S are horizontal?
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Example of tangent plane (2)

Gradient: We have

VF(x,y,z) = <2X 2 2z>

925’

Thus 3 8 6
F(0,4, =) = - =
VF(©, ’5) <O’25’5>

Tangent plane:
4y + 15z =25

SEIAN Several variables

Multivariate calculus
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Example of tangent plane (3)

3
X
F(x,y,z)=3+2—5+z2—1=0
o D = T 9ae



Example of tangent plane (4)

Horizontal plane: When the normal vector is of the form

n=(0,0,c), with c#0

Horizontal tangent plane: When the normal vector VF is of the form

VF(x,y,z) =(0,0,c) <= F,=0, F,=0, F,#0

Solutions: Horizontal tangent plane for

(0,0,1) and (0,0,—1)
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Tangent plane for z = f(x, y)

r—[Definition 10.] \
Let f(x,y) be such that
e f differentiable at (a, b)
@ S is the surface z = f(x,y)
Then the tangent plane to S at (a, b, f(a, b)) is given by

z="f(a,b)(x—a)+f,(a,b)(y —b)+f(a,b)
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Example of tangent plane for z = f(x, y) (1)

Surface: Paraboloid of the form

z=f(x,y) =32 —3x> —4y?

Question:
e Tangent plane at (2,1, 16)
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Example of tangent plane for z = f(x, y) (2)

Partial derivatives: We have

f, = 6bx, f, = =8y

Thus
£(2,1) = —12, f,(2,1) = -8

Tangent plane:
z=—12x — 8y + 48
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Linear approx for functions of 1 variable (Repeat)
Situation: We have

° y=f(x)

Tangent vector at a:
t=(1,f'(a))

Linear approximation: Near a we have

f(x)~f(a)+ f'(a)(x — a)

(a,f(@))

y=fx

/]

|
|
|
|
Y
*
a X
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Linear approximation for functions of 2 variables

r—[Definition 11.]
Let f(x, y) be such that
o f differentiable at (a, b)
@ S is the surface z = f(x,y)

Then the linear approximation to S at (a, b, f(a, b)) is given by

L(x,y) = f(a,b)(x — a) + f,(a, b) (y — b) + f(a, b)

\. J

Remark: Another popular form of the linear approximation is

Az ~ fdx + f,dy
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Example of infinitesimal change (1)

Function:
z="f(x,y) = x2y

Question: Evaluate the percentage of change in z if
@ x is increased by 1%
@ y is decreased by 3%
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Example of infinitesimal change (2)
Small change in z:
dz ~ fdx + f,dy = 2xydx + x*dy

Small percentage change in z:
2

dz 2 2 1
C o+ Ddy=Sdx+ —dy
z z z X y

If & = .01 and ¥ = —.03:

2 __o1=_19%
V4
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Outline

@ Maximum and minimum problems

=] & = E DA
SEIAN Several variables



Max and min for functions of 1 variable
Situation: We have
° y=f(x)
Critical point: (c, f(c)) whenever
f'(c)=0

Second derivative test: If (¢, f(c)) is critical then
Q If f’(c) > 0, there is a local minimum
@ If f’(c) < 0, there is a local maximum
@ If f’(c) =0, the test is inconclusive

Samy T. SEVEEIRVEELIES

Multivariate calculus 106 /145



Critical points for functions of 2 variables

r—[Definition 12.] w
Let
@ f function of 2 variables

@ (a, b) interior point in the domain of f

Then (a, b) is a critical point of f if

f(a,b) =0, and f,(a,b)=0,

or if one of the partial derivatives £, f, does not exist at (a, b)

\.
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Second derivative test

r—[Theorem 13.]

For f twice diff. function, define the discriminant of f as

D(x,y) = fu(%,¥)Ey (x,¥) = (Fiy (X, ))?

Then for a critical point (a, b) the following holds true:
Q If D(a, b) > 0 and f,(a, b) < 0, we have a local max
Q@ IfD
Q@ IfD
QIfD

a,b) > 0 and f(a, b) > 0, we have a local min

—~~ Y~~~

b)
a, b) < 0, we have a saddle point
b) =

a, b) = 0, the test is inconclusive
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Saddle point for an hyperboloid

The hyperbolic paraboloid
z = x> — y* has a saddle
point at (0, 0).
o = = = DA




! 7 1 1} 2
§ 4 e - =
o =) - E DA
SEIAN Several variables

Hyperboloids in architecture




Hyperboloids in the food industry
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Example of critical points analysis (1)

Function:
F(x,y) =x*+2y*> —4x + 4y +6

Problem:
Use second derivative test to classify the critical points of f
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Example of critical points analysis (2)

Partial derivatives:

fo=2x —4, f, =4y +4

Critical point:

Critical value of f:
f(2,-1)=0
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Example of critical points analysis (3)

Second derivatives:

Discriminant:
D(x,y)=8>0

Second derivative test: We have

D(2,-1) >0, fx(2,—-1) >0 == Local minimum at (2, —1)
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Example of critical points analysis (4)

z=x*+2 —dx+4y+6

Z

£ bl Y
Local minimum at (2, —1)
where f = j; =0
=] & = E DA
Samy T. Several variables



Second example (1)

Function:
f(x,y) = xy(x = 2)(y +3)

Problem:
Use second derivative test to classify the critical points of f
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Second example (2)

Partial derivatives:

fo=2y(x=1)(y +3), £ =x(x—=2)(2y +3)

Critical points:

(O? 0)7 (270)7 (17_2)7 (07_3)7 (27_3)7
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Second example (3)

Second derivatives:

Fex

=2y(y+3), £y =22y +3)(x-1), £y =2x(x-2)
Analysis of critical points:
(x,y) D(x,y) | f« Conclusion
(0,0) —36 0 Saddle point
(2,0) —36 0 Saddle point
(1,-3/2) 9 —9/2 | Local maximum
(0,-3) —36 0 Saddle point
(2,-3) —36 0 Saddle point
g e e ¥



Second example (4)

Saddle points at (0, —3), Y

(0,0), (2, —3), and (2, 0) Saddle p% M Kﬂe point
! >

o ' X
| Local
maximum

One local maximum

surrounded by four | Z =¥ —2)(y +3)
saddle points. Saddle point @ Saddle point

Samy T. SEVEEIRVEELIES Multivariate calculus 119 /145



Absolute maximum

,—[Proposition 14.] \
Let
@ f continuous function of 2 variables

@ R closed region of R?

In order to find the maximum of f in R, we proceed as follows:
@ Determine the values of f at all critical points in R.

@ Find the maximum and minimum values of f on the
boundary of R.

© The greatest function value found in Steps 1 and 2 is the
absolute maximum value of f on R.
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Example of global maximum (1)

Function:
z=Ff(x,y) =x>+y* —2x — 4y
Region:

R = {(x,y); (x,y) within triangle with vertices (0, 0), (0,4), (4,0)}

Question:
Find global maximum of f on region R
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Example of global maximum (2)

Partial derivatives:
Critical point:

y —4
(1,2),

with f(1,2) = -5

=] =) = £ 9OHQC
SEIAN Several variables



Example of global maximum (3)

Boundary 1: On y =0, 0 < x < 4 we have
fx,y) =x"—2x=g(x),  g'(x)=2(x—-1)

Points of interest on boundary 1: We get

(0,0), (1,0), (0,4)

and
f(0,0) =0, f(1,0) = -1, f(4,0) =38
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Samy T. SEVEEIRVEELIES

Example of global maximum (4)

Boundary 2: On y =4 — x, 0 < x < 4 we have

f(x,y) = 2x* — 6x = h(x), H(x)=4x —6
Points of interest on boundary 2: We get

and

35 9
fon=0  F(5o)=-5  f40=s

Multivariate calculus
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Example of global maximum (5)

Boundary 3: On x =0, 0 < y < 4 we have
fx,y) =y’ —4y=kly), Kl)=2(-2)
Points of interest on boundary 3: We get
(0,0), (0,2), (0,4)

and
£(0,0) =0, f(0,2) = —4, f(0,4)=0
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Example of global maximum (6)

Summary of points of interest:

£0,00=0,  f(1,00=-1,  £(4,0)=8
F0,4)=0, f (g g) = f40)=8
f0,00=0,  f(0,2)=—4,  f(0,4)=0, F(1,2)=-5

Absolute minimum: at (1,2) and

f(1,2) = =5

Absolute maximum: at (4,0) and

f(4,0) =8
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Outline

© Lagrange multipliers

=] & = E DA
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Global aim

Objective function:
f=f(xy)

Constraint: We are moving on a curve of the form

g(x,y)=0

Optimization problem: Find

max f(x,y), subjectto g(x,y)=0
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Optimization problem: illustration

Find the maximum and minimum

values of z as (x, y) varies over C.

1

Constraint
x curve

Samy T.

SEVEEIRVEELIES




Lagrange multipliers intuition (1)

f attains its maximum

value on the constraint Level curves of f

curve at P.
Vf(P) YA
Ve(P) | —"2=3
P(a, b)

ST T ot

Tangent curve
to C at P Cgxy=0

Vf(P) is parallel
to Vg(P) at P.
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Lagrange multipliers intuition (2)

Some observations from the picture:

@ P(a,b) on the level curve of f
— Tangent to level curve L Vf(a,b)

@ P(a, b) gives a maximum of f on curve C
= Tangent to level curve || Tangent to constraint curve

@ Constraint is g(x,y) =0
— Tangent to constraint curve | Vg(a, b)

Conclusion (Lagrange's idea):
At the maximum under constraint we have

Vf(a,b) || Vg(a,b)
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Lagrange multipliers procedure

Optimization problem: Find

max f(x,y), subjectto g(x,y)=0

Recipe:
@ Find the values of x, y and A such that

Vf(x,y) =AVg(x,y), and g(x,y) =0

@ Select the largest and smallest corresponding function values.
— We get absolute max and min values of f s.t constraint.
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Example of Lagrange multipliers (1)

Optimization problem: Find
max f(x,y), with f(x,y)=x>+y>+2,
subject to the constraint

glx,y)=x>+xy +y*—4=0
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Example of Lagrange multipliers (2)

Computing the gradients: We get

Vi(x,y) = (2x,2y), Vg(x,y) = 2x +y,x +2y)

Lagrange constraint 1:

=X <= 2x=X(2x+Yy) (1)

Lagrange constraint 2:

fp=Xg, <= 2y=A(x+2y) (2)
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Example of Lagrange multipliers (3)

System for x, y: Gathering (1) and (2), we get
20 —1)x+ Ay =0, AXx+2A—=1)y=0

This has solution (0, 0) unless
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Example of Lagrange multipliers (4)

Case A = 2: We get x = —y. The constraint
X4+ xy+y*—4=0

becomes
x> —4=0

Solutions:
x=2, and x= -2

Corresponding values of f: We have

F(2,-2) = f(=2,2) =10
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Example of Lagrange multipliers (5)

Case A = 2: We get x = y. The constraint
X2+xy+y>—4=0
becomes
3> =4 =0

Solutions:
2

X=—, and x = —

\/§>

Corresponding values of f: We have

Sl

(3 (53)-

Samy T. SEVEEIRVEELIES
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Example of Lagrange multipliers (6)

Absolute maximum:
For function f on the curve C defined by g =0,

Maximum = 10, obtained for (2,-2), (—2,2)

Absolute minimum:
For function f on the curve C defined by g =0,

Minimum 14 obtained for ( 2 2 ) ( 2 2 )
mnimu = 5 I e R Y-S Y
3 V33 V3 V3
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Example of Lagrange multipliers (7)

fay=x+y +2

Maximum and minimum
values of f occur at
|z =10 points of C where the

level curve is tangent
to the constraint curve.

Level curves of
fOy) =x2+y* +2

<

Function values
corresponding to Level curve
constraint curve C.

foy =%

|

At maximum and
minimum points,

the level curve is

tangent to the
constraint curve.

. e
‘ Level curve Q‘Q/ x
',

—f(x ) =10

Level curve
fx,y) =10

Level curve . .
@ y) = 14 Constraint curve Constraint curve
=73 Cgy)=x>+xy+y>—4=0

Ciglny) =2 +ay+)>—4=0

SEIAN

SEVEEIRVEELIES




Optimization in dimension 3 (1)

Problem: Find the point on the sphere
X+ y?+ 22 =1,

closest to the point
(1,2,3)
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Optimization in dimension 3 (2)

Related minimization problem:
Find

min f(x,y), with f(x,y)=(x —1)>+(y —2)* + (z — 3)%,
subject to the constraint

gx,y)=x"+y*+22-1=0
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Optimization in dimension 3 (3)

Computing the gradients

. We get
Vif(x,y) (2(x —1),2(y —2),2(z - 3))
Vg(x,y) (2x,2y,2z)

Lagrange constraint: We have

Vf(x,y) = AVg(x,y)
<

A=1)x=-1, A\-1)y=-2, (A-1)z=-3
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Optimization in dimension 3 (4)

Solutions of Lagrange constraints:
The Lagrange system has unique solution whenever A # 1. We get

Reporting in constraint g: We have
.y:2X7 z:3X7 g(X7.y):07

Thus we get
14x* =1
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Optimization in dimension 3 (5)

Solutions:
1 1
X=—, and XxX=——

VId V14

Corresponding values of f: We have

1 2 3
f , , ~ 751
<\/14 V14 \/14>
1 2 3
fl— , , ~ 2248
( V14 V14 \/14>

Samy T. SEVEEIRVEELIES Multivariate calculus 144 /145



Optimization in dimension 3 (6)

Absolute maximum:
Maximal distance from (1,2, 3) to a point on the sphere is

1 2 3
Maximum = 4.74, obtained for — ,— ,—
Aame | ( V&' V14 m)

Absolute minimum:
Minimal distance from (1,2, 3) to a point on the sphere is

1 2 3
Minimum = 2.74 = v/7.51, obtained for ; ;
(\/14 V14 \/14>
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