Vector calculus

Samy Tindel

Purdue University

Multivariate calculus - MA 261

Mostly taken from Calculus, Early Transcendentals
by Briggs - Cochran - Gillett - Schulz

PURDUE

UNIVERSITY

Samy T. Vector calculus Multivariate calculus 1/ 196



Outline

@ Vector fields

© Line integrals

© Conservative vector fields
@ Green's theorem

© Divergence and curl

@ Surface integrals
@ Parametrization of a surface

@ Surface integrals of scalar-valued functions

@ Surface integrals of vector fields
@ Stokes' theorem
© Divergence theorem

Samy T. Vector calculus

Multivariate calculus

2/ 196



Outline

@ Vector fields
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Definition of vector field

Multivariate function: Recall that
@ z = f(x,y) was a function of 2 variables
e Foreach (x,y), ze R

@ This is called a scalar field

Vector field in R2:
o Of the form F(x,y) = (f(x,y),g(x,y))
@ For each (x,y), F € R?, namely F is a vector
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Example of vector field

Definition of the vector field:

F(x,y) = (x,y)

Examples of values:
F(1,1) = (1,1)

F(0,2)
F(-1,-2) = (-1,-2)

I
—~
=

N
~
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Shear field (1)

Definition of the vector field:
Problem:

F(x,y) = (0,x)
Give a representation of F
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Shear field (2)

Recall:
F(x,y) = (0,x)

Information about the vector field:
Q@ F(x,y) independent of y
@ F(x,y) points in the y direction
@ If x >0, F(x,y) points upward
Q If x <0, F(x,y) points downward

© Magnitude of F(x,y) gets larger
< as we move away from the origin
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Shear field (3)

Shear vector field y

F = (0, x) *::*
N
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Rotation field (1)

Definition fo the vector field:
Problem:

F(x,y) = (-y,x)

Give a representation of F
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Rotation field (2)

Recall:
F(X,y) - <7)/7X>

Information about the vector field:

Magnitude increases as x — o0 or y — 00
If y =0 and x > 0, F(x, y) points upward
If y=0and x <0, F(x,y)

If x =0 and y > 0, F(x, y) points in negative x direction
If x=0and y <0, F(x,y)

Draw a few more points
— We get a rotation field

points downward

points in positive x direction
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Rotation field (3)

by

Rotation vector field _|
F=(-yx
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Radial vector fields

—~ Definition 1.)

We set

r=(x,y)
Then

General definition: A radial vector field is of the form
F=17(x,y)r, with f(x,y)eR
Fields of special interest:

r

F—
v]P
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Normal and tangent vectors (1)

Situation: We consider
@ Function g(x,y) = x>+ y?

e Circle C: {(x,y); g(x,y) = a*}
o Field F = =

Irl
Problem: For (x,y) € C, prove that

F(x,y) L tangent line to C at (x,y)
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Normal and tangent vectors (2)

Recall: From level curves considerations, we have

Vg(x,y) L tangent line to C at (x,y)

Computing the gradient: We get

(2x,2y) L tangent line to C at (x,y)

Conclusion: Since (2x,2y) = 2r, we end up with

r L tangent line to C at (x,y)
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Vector field in R3

Definition of vector fields in R3:
e Of the form F(x,y,z) = (f(x,y,2),8(x,y,z), h(x,y, z))
@ For each (x,y,z), F € R® namely F is a vector

Radial vector fields: Of the form
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Example of vector field in R3 (1)

Definition of the vector field:

F(x,y,z) = <X,y, e_z>

Problem:
Give a representation of F
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Example of vector field in R3 (2)

Recall:
F(X7)/) - <X7y7 e_z>

Information about the vector field:
Q xy-trace: F = (x,y,1)
— Radial in the plane, with component 1 in vertical direction
@ In horizontal plane z = z5: F = (x,y,e %)
— Radial in the plane, with smaller component in vert. direction
Q@ Asz— oo F— (x,y,0)
— Radial in the plane, with 0 component in vertical direction
o

Magnitude increases as we move away from vertical axis
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Example of vector field in R® (3)

View from the side
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© Line integrals
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Motivation

Physical situation: Assume we want to compute
@ Work of gravitational field F
@ Along the (curved) path C of a satellite

Needed quantity: integral of F along C
— How to compute that?
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Approximation procedure

Notation: We consider
o Curve r(t) = (x(t), y(t))
@ Partition a =ty < --- < t, = b of time interval [a, b]
@ Arc length s of r

@ Function f defined on R2

Approximation:
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Approximation procedure: illustrati

Recall:
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Computation of line integrals in R?

—~ Theorem 2. N

We consider
@ Curve C defined by r(t) = (x(t), y(t))
e Time interval [a, b]

@ Arc length s of r

@ Function f defined on R?

Then we have

[ as= [ £ (x(e).y(e) IP(0)1ar
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Computation of line integrals

Recipe:
@ Find parametric description of C
= r(t) = (x(t), y(t)) for t € [a, b]

@ Compute |r'(t)| = /x3(t) + y3(t)

© Make substitutions for x and y and evaluate ordinary integral

/abf(x(t%y(t)) V' (t)|dt
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Average temperature (1)

Situation:

o Circular plate
R = {x2 +y? = 1}

@ Temperature distribution in the plane:

T(x,y) =100 (x* + 2y?)

Problem:

Compute the average temperature on the edge of the plate
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Average temperature (2)

Temperature
on edge of plate

T(x, y) = 10002 + 2%

Samy T.

Edge of plate x> + y*> = 1

r = (x,y) = (cos t,sin 1),
for0 <t =2m

Vector calculus

DA




Average temperature (3)
Parametric description of C: r(t) = (cos(t),sin(t))
Arc length: |¥'(t)| =1
Line integral:
27r
/ T(x,y)ds = 100/ x(2) + 2y(£)?) P (1)) dt
c
27r
- 100/ cos (t)+2sin2(t)) dt
0
100 /277 (1 +sin%(2)) dt
= [
0

Thus
/ T(x,y)ds = 3007
C
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Average temperature (4)

Recall:
/C T(x,y)ds = 3007

Average temperature: Given by

T _ fC T(X7y)ds
Length(C)
We get
7397 _ 150
2T
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Computation of line integrals in R®

—~ Theorem 3. N

We consider
@ Curve C defined by r(t) = (x(t), y(t), z(t))
e Time interval [a, b]

@ Arc length s of r

e Function f defined on R3

Then we have

[ ras= [*(xtt), y(0) 20) (o)t
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Example of line integral in R3 (1)

Situation:

@ Two points in R?
P(1,0,0), Q(0,1,1)

@ Function:
f(x,y,z) =xy +2z

Problem: Compute [ f(x,y)ds in the following cases:
@ C is the segment from P to Q
@ C is the segment from Q to P
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Example of line integral in R3 (2)

Parametric equation for segment from P to Q:

r(t) =(1—t,t,t), t €0,1]

Arc length:

¥(t) =3
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Example of line integral in R> (3)
Line integral:
/Cf(x,y)ds = /C(xy+22) ds
- /01((1—t)t+2t)\/§dt
= \/3/0 (3t— ) dt

3 1
- V3(3-3)
Thus we get
3

/C fx.y)ds = =

Samy T. Vector calculus Multivariate calculus 32 /196



Example of line integral in R> (4)

Parametric equation for segment from @ to P:

r(t)=(t,1—t,1—1t)

Arc length: |¢'(t)] = /3
Line integral: One can check that we also have

/Cf(x,y)ds: 7_\6/§

General conclusion:

The value of [-f(x,y)ds
does not depend on the parametrization of C
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Line integral of a vector field

— Definition 4. |

We consider
@ Curve C :r(s) = (x(s),y(s), z(s))
@ C is parametrized by arc length s
e T(s) unit tangent vector
@ Vector field F defined on R3

Then the line integral of F over C is

/F-Tds
C

\.

Motivation: Line integrals crucial to compute work of a force F
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Computing line integrals

~ Theorem 5. \

We consider
o Curve C:r(t) = (x(t),y(t),z(t))
o C is parametrized by t € [a, b]
@ Vector field F defined on R3

Then the line integral of F over C is given by

| F-Tas= [ F)-r(e)ae
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Example of line integral for a vector field (1)

Situation:

@ Two points in R?:
P(0,1), Q(1,0)

@ Vector field:
F(X7y) = <.y_X7 X>

Problem: Compute [~F - T ds in the following cases:
@ (; quarter-circle from P to @
@ —(; quarter-circle from Q to P
@ G, path defined by segments P(0,1)-0(0,0)-Q(1,0)
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Example of line integral for a vector field (2)

v Vector field F = {y — x, x)
L/ \
PO 1| \\

J el /:




Example of line integral for a vector field (3)
Parametric equation for C;:
r(t) = (sin(t), cos(t))
Parametric equation for F: Along C; we have
F=(y — x, x) = (cos(t) — sin(t), sin(t))
Dot product: We have

F(t) - ¥'(t) = cos?(t) — sin?(t) — sin(t) cos(t) = cos(2t) — ;sin(2t)
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Example of line integral for a vector field (4)

Line integral:

F-Tds = /CF(t)-r’(t)dt

= /Oﬂ/z (cos(Zt) — %sin(2t)> dt

G

1 s 1 ) /2
= — t — t
2sm( )+4cos( )0
Thus we get
1
F-Tds=—2
G 2
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Example of line integral for a vector field (5)

Line integral along —C;: We find

1
F-Tds=-=— F-Tds
-G 2 G

Changing the orientation of C; changes the sign of the line integral

Line integral along C5: We find
1
F-Tds=—-—-= ] F-Tds
C2 2 Cl

Question: is this true for a large class of F?
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© Conservative vector fields
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Main issues in this section

Two important questions:
@ When can we say that a vector field is the gradient of a function?
@ What is special with this kind of vector fields?
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Conservative vector field

— Definition 6. | \
Let
@ D domain of R?
@ F vector field defined on D

Then F is a conservative vector field if

There exists ¢ such that F = Vi on D
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Criterion for being conservative in R?

Notation: For ¢ : R? — R, set ¢, = %‘XE and ¢, = %}“@

~ Theorem 7. N

Consider a vector field in R C R?:

F=(fg)

Then there exists ¢ such that:

Vo = (px, p,) =F onR,

if and only if F satisfies:
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Computation of function ¢ in R?

Aim: If f, = g, find ¢ such that ¢, = f and ¢, = g.

Recipe in order to get ¢:
@ Write ¢ as antiderivative of f with respect to x:

p(x,y) = alx,y) + b(y). where a(x,y) = [ f(x,) dx
@ Get an equation for b by differentiating with respect to y:

oy =8 <= by)=glxy)—al(xy)

© Finally we get:
o(x,y) = a(x,y) + b(y).

Samy T. Vector calculus Multivariate calculus 45 / 196



Example of conservative vector field (1)

Vector field:
F={x+yx)

Problem:
@ Is F conservative?
@ If F is conservative, compute ¢ such that Vo = F
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Example of conservative vector field (2)
Recall:

Proof that F is conservative:

F=(x+yx)

f,=1
Thus F is conservative

:gX
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Example of conservative vector field (3)
Computing ¢: We have
1 2
Y= /f(x,y)dx+ b(y) = X + yx + b(y)

Computing b: We write

o, =x <= x+b(y)=x <<= b)=0
Expression for o: Since b(y) = c for a constant ¢, we get

1
o(x,y) = §x2 +yx+c
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Another example of conservative vector field (1)

Vector field:
F = (e* cos(y), —e*sin(y))

Problem:
@ Is F conservative?
@ If F is conservative, compute ¢ such that Vo = F
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Another example of conservative vector field (2)

Recall:
F = (e cos(y), —€*sin(y))

Proof that F is conservative:

f, = —e*sin(y) = g«

Thus F is conservative
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Another example of conservative vector field (3)
Computing ¢: We have

= / f(x,y)dx + b(y) = €* cos(y) + b(y)

Computing b: We write

o, = —€"sin(y) <= —€e"sin(y)+ b'(y) = —€"sin(y)
<~ b(y)=0

Expression for ¢: Since b(y) = c for a constant ¢, we get

o(x,y) = —€*sin(y) + ¢
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Criterion for being conservative in R3

—~ Theorem 8.

Consider a vector field in R C R3:

F={(fgh
Then there exists ¢ such that:
Vo = (px, ¢y, ¢z) =F on R,
if and only if F satisfies:

f;/:gxa fz:hxa gz:hy on R

Samy T. Vector calculus Multivariate calculus 52 / 196



Computation of function ¢ in R3

Aim: If F is conservative, find ¢
— such that p, = f, ¢, = g and ¢, = h.

Recipe in order to get ¢:
@ Write ¢ as antiderivative of f with respect to x:

p(x,y) = alx,y,2) + bly,2). where a(x,y.z) = [ f(x.y,2) dx
@ Get an equation for b by differentiating with respect to y:

gOy:g — by(%z):g(XayaZ)_ay(XJ;Z)

© lterate this procedure with 0,
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Example of conservative vector field in R (1)

Vector field:

F:< 2—zey,y3—xzey,z4—xey>

Problem:
@ Is F conservative?
@ If F is conservative, compute ¢ such that Vo = F
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Example of conservative vector field in R (2)

Recall:
F:<x2—zey,y3—xzey,z4—xey>

Proof that F is conservative:

f;/ =8« = —X e’
fz = hx = —¢
g =h = —xé&

Thus F is conservative
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Example of conservative vector field in R (3)

Computing ¢: We have
1
0= /f(x,y,z)dx+ b(y,z) = §x3 —xze’ + b(y, z)

Computing b: We write
o, =y’ —xze = -xze&'+b, =y’—xze

1
= b(y,2) =+ c(2)

We have thus obtained

1 1
Q= §x3 —xze' + Zy4 + ¢(2)
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Example of conservative vector field in R (4)

Computing c: We write
v, =2"—xe& = —xe&+d(z)=2"-x¢&

1
— ¢(2)= 525 +d
Expression for : For a constant d, we get

1 1 1
p(x,y,2) = §X3—xzey+1y4+gz5+d

Samy T. Vector calculus Multivariate calculus 57 / 196



Fundamental theorem for line integrals

—~ Theorem 9. N

Consider
@ A conservative vector field F on R C R3
@ ¢ such that Vo =F
@ A piecewise smooth oriented curve C C R from A to B

Then we have

/CF-Tds:/CF-drzso(B)—sﬁ(A)
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Verifying path independence (1)

Vector field:
F= <X7 *.V>

Curves: We consider
e ( quarter circle r(t) = (cos(t), sin(t)) for t € [0,7/2]
o G liner(t)=(1—t,t)fortel0,1]
e Both C; and G, go from A(1,0) to B(0,1)

Problem:
@ Compute [, F-dr and [, F - dr directly

@ Compute [, F-drand [, F-dr
— using the fundamental theorem for line integrals
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Verifying path independence (2)

Computation along C;: We have

r(t) = (cos(t), sin(t)), r'(t) = (—sin(t), cos(t))
Thus

F-dr — /0”/2 (cos(t), —sin(t)) - (— sin(t), cos(t)) dt

= /OW/z (—sin(2t)) dt

G

We get

F.-dr=-1
G

Samy T. Vector calculus Multivariate calculus 60 / 196



Verifying path independence (3)

Computation along G: We have

r(t)=(1—t,t), r(t)=(-1,1)

Thus
1
F.dr = /(1 tt) - (—1, 1) dt
G 0
1
- ~1) dt
|
We get
CF.dr=—1
G
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Verifying path independence (4)

Computing the potential : We have

1

px,y) =5 (*-y?) = Vep=F

Using the fundamental theorem for line integrals: We have

_Fedr= | Fodr=4(0.1) ~ (1,0)

Thus we get

F.-dr= F-dr=-1
G G
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2-dimensional curl

r—[Definition 10.] \
Let
o F = (f, g) vector field in R?

Then we define
Curl(F) =g« — f,

\. J

Another notation: In order to prepare the R3 version one can write
Curl(F) = (g« — f,) k

Interpretation: Curl(F) represents
— The amount of rotation in F
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Example of irrotational vector field

Vector field: F defined by

F=(x,y)

Curl of F: We get
Curl(F) =g« —f, =0

y

Interpretation: F has no rotational component
— F is said to be irrotational

Remark: Generally speaking, we have

F conservative = F irrotational
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Example of vector field with rotation

Vector field: F defined by
F= <ya _X>
Curl of F: We get

Curl(F) =g, — f, = =2

Interpretation:

F has a rotational component
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Types of curves

r—[Definition 11.} \
Let

e Curve C: [a, b] — R?

e C given as r(t)

Then

@ Cis a simple curve if
— r(t1) # r(t2) whenever a < t; < t, < b

@ C is a closed curve if
— r(a) = r(b)
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Simple and closed curves

D

[Closed SImple

[Not closed, s1mple

Samy T
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(Closed not s1mplej [Not closed, not s1mple]
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Types of domains

~ Definition 12.
Let
@ D domain of R?

Then
© D is a connected domain if
— it is possible to connect any two points of D by a
continuous curve lying in D
@ C is a simply connected domain if
— every closed simple curve in D can be deformed and
contracted to a point in D

SEIAN Vector calculus Multivariate calculus

69 / 196



Connected and simply connected domains

ThlS curve cannot be contracted
to a point and remain in R.

@‘

Connected Connected

stmply connected not simply connected
/R\Q ©/R \

Not connected, Not connected,

simply connected not simply connected
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General assumptions

Hypothesis for this section:

@ All curves C are closed and simple
< In counterclockwise direction

@ All domains R are connected and simply connected
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Green's theorem

r—[Theorem 13.] \
Let
e F = (f, g) vector field in R?

@ C simple closed curve, counterclockwise

o C delimits a region R

Then we have

%Cp.dr://RCurl(F)dA (1)
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George Green

Some facts about Green:

o Lifespan: 1793-1841, in England

@ Self taught in Math, originally a baker
@ Mathematician, Physicist

°

1st mathematical theory of
electromagnetism

Went to college when he was 40

Died 1 year later (alcoholism?)
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Interpretation of Green's theorem

Interpretation of the integral on C:
@ ¢-F -dris a circulation integral along the boundary C
@ It accumulates the component of F tangential to r

Interpretation of the integral on R:
o [ [z Curl(F)dA accumulates rotation of F in R

Interpretation of the identity: Some cancellations occur
— the surface integral is reduced to a curve integral
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Applying Green's theorem (1)

Vector field:
F=(y+2x*+1)

Curve: C defined as a counterclockwise loop by
e From (—1,1) to (1,1) along y = x>
@ Then from (1,1) back to (—1,1) along y = 2 — x2

fF.dr
C

Problem: Find

by two means:
© Line integral
© Green's theorem

Then compare both results
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Applying Green's theorem (2)

Line parametrization: We have C = C; U G, with

G:on(t) = <t, t2>, t from —1to 1
G:r(t) = <t, 2— t2>, t from 1to —1
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Applying Green's theorem (3)
Line integral along C;: We have

1
(Forae - /1<t2+2,t2—|—1>(1, 2t) dt
1

14

3

Line integral along C5: We have

1
For,dt :/ (4— 2 +2,22 +1) (1, ~21) dt
(@) 1
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Applying Green's theorem (4)

Total line integral: We have

/F-r’dt - F~r’1dt+/ For,dt
C G G
142
3 3
Thus 8
F-rdt=——
/c ' 3
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Applying Green's theorem (5)

Rhs of Green's theorem: If F = (f, g), the rhs of (1) is

[ [ (e~15)an

Application for our F: We have

F = (y+2xX°+1)
g&—f = 2x—-1
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Applying Green's theorem (6)

Area integral: We compute

1 r2—x2
//(gx—fy) dA = / / (2x — 1) dydx
R —1Jx
1 y:2—x2
= / 2xy —y
-1 y=x2

= 2/_11(2x—1)(1—x2) dx
8

dx

Thus
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Applying Green's theorem (7)

Verifying Greene's theorem: We have found

/CF-r’dt://R(gX—fy)dA:—

3
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Green theorem and area

r—[Theorem 14.} \

Let
@ C simple closed curve, counterclockwise

o C delimits a region R

Then we have

1
Area(R) = 5 %dey —ydx (2)
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Example of area computation (1)

Curve: C defined as a counterclockwise loop by
e From (—1,1) to (1,1) along y = x?
e Then from (1,1) back to (—1,1) along y = 2 — x?

Problem:

Find the area for the region enclosed by the curve
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Example of area computation (2)

Applying Theorem 14: We get

Area(R) = . ]{:xdy—ydx

%(/1_11.*(—215)dt1—/_11 (2- ) dt)

Thus we find
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Example of area computation (3)

Usual way to compute the area:
Area(R) = /_11 [(2 - x2) - xﬂ dx
! 2
= 2/_1 (1 — X ) dx

Thus we find 8
Area(R) = 3
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© Divergence and curl
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Aim

Main objective for remainder of the chapter:

@ Extend Green's theorem to d =3

Tools:
@ Notion of divergence

@ Surface integral
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Divergence

r—[Definition 15.] \

Consider a vector field in R3:

F=(f,gh

Then the divergence of F is

Div(F)=V-F=f,+g,+h,

\. J

Remark: In Definition 15 we have used the notation
v (200
Ox’ dy 0z
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Divergence for a radial field (1)
Expression for the field: We consider

F=(xy,z)

Flux for this field:
Looking outward

\\ / //

SEIAN Vector calculus

Multivariate calculus
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Divergence for a radial field (2)

Computation of the divergence: We have

V-F=f+g +h =3

Conclusion: In this case

Positive divergence =—  Outward flux
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Divergence for a spiral field (1)

Expression for the field: We consider
F=(-y,x,2)

Flux for this field:
Spiraling upward

¥
}

SEIAN Vector calculus




Divergence for a spiral field (2)

Computation of the divergence: We have

V-F=f+g +h=1

Conclusion: In this case
@ Rotational part of the field does not contribute to divergence
@ There is an upward flux in the z direction

@ We get a positive divergence
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Divergence of radial fields

r—[Theorem 16.}

Consider the vector field in R3 defined, for p > 0, by:
—
[P
Then the divergence of F is
V.F=3_F
[P

SEIAN Vector calculus Multivariate calculus
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Proof for p =1 (1)

Expression for F: We have, if p=1

(v,
(¢ +y2+2)

F—

12

Partial derivative: We compute f,, that is

P X B (x2 Tyt 22)1/2 — 2 (x2 Tyt z2)—1/2
8_x(X2 +y2? + 22)1/2 - x2 + y2 4 22
[r| — x|
r[?
|2 — x2
r[?
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Proof for p =1 (2)

Expression for the divergence: Summing the partial derivatives we get

3Ir2 —x?— 22— 22
.F =
v P
2|r[>
R
We have found, for p =1,
2 2
v.F= 2"
Le§
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Curl

r—[Definition 17.}

Consider a vector field in R3:

F=(f,gh

Then the curl of F is

> Qo x|

Curl(F) =V x F =

- Plo =y
0y Flow,
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Curl for a rotation field (1)

Definition of F: We set

F=axr, with a=(2-11)

Remark:

F represents a rotation with axis a

Problem: Compute
Curl(F)
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Curl for a rotation field (2)

Expression for F: We have

F = axr
T 7 k
=12 -1 1
X y z
= (—y—2z,x—2z,x+2y)
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Curl for a rotation field (3)

Expression for Curl: We have

7 7 k
_ 9 9 0
—y—2z x—2z x—+2y
= (4,-22)
Conclusion: We have found
Curl(F) = 2a
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Summary of properties for conservative v.f

r—[Theorem 18.] \

Consider a conservative vector field F in R3. Then we have

@ There exists a potential function ¢ such that F = Vi
Q@ [-F-dr=p(B)— ¢(A) for C going from A to B

Q@ ¢-F-dr =0 for a smooth closed curve C

@ Curl(F) =0 at all point in R®
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Outline

@ Surface integrals
@ Parametrization of a surface
@ Surface integrals of scalar-valued functions
@ Surface integrals of vector fields
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@ Surface integrals

@ Parametrization of a surface
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Parametrization of surfaces
Recall: Parametization of a curve in R3

Parametrization of a surface in R3:

r(u,v) = (x(u,v),y(u,v), z(u,v)), a<u<b, c<v<d

r(u, v) = (x(u, v), y(u, v), z(u, v))
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Parametrization of a plane (1)

Surface at stake: We consider

S= Plane3x+2y+z=6 (] First octant

Problem:

Parametrize S
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Parametrization of a plane (2)

First possible parametrization: We set

Expression for z:
z=6—3u—2v

Constraints on u, v: In the xy-plane, region delimited by
3u+2v =06, and First quadrant

We get
{0§u§2, O§v§3—;u}
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Parametrization of a plane (3)

Parametrization of the surface:
with

r(u,v) = (u, v, 6 —3u—2v),

=] =) = £ 9OHQC
SEIAN Vector calculus



Parametrization of a plane (4)

Another parametrization: We set

u=y, V=2

Parametrization of the surface:

2 1
r(u,v) = <2—§u—§v, u, v>,

with
0<u<3 0<v<6—2U

Conclusion: Parametrization is not unique
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Parametrization of a sphere (1)

Surface at stake: We consider

S = Sphere x>+ y*+2z* =9 () First octant (| {1 <z <3}

Problem:

Parametrize S
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Parametrization of a sphere (2)

First possible parametrization: We set

Expression for z:
1/2
z= (9—u2—v2) /

Constraints on u, v: In the xy-plane, region delimited by
>+ v?>=8, and First quadrant

We get
{ogugx/é, 0§v§\/8—u2}
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Parametrization of a sphere (3)

Parametrization of the surface:

r(u,v) = <u, v, <9 T — v2)1/2> :

with

0§u§\/§, 0<v<Vv8—u?
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Parametrization of a sphere (4)

Second parametrization:
We use cylindrical coordinates r,f, z and set

Expression for z:
1/2 1/2
z= (9—X2—y2> /2 (9—r2) /
Constraints on u, v: We get

{OSUS\@,OSVS;T}
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Parametrization of a sphere (5)

Parametrization of the surface:
with

<u<Ve,

0

<

r(u,v) = <ucos(v)7 usin(v), (9 — u2>1/2> ,
0

4

=] =) = £ 9OHQC
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Parametrization of a sphere (6)

Third parametrization:
We use spherical coordinates p, ¢, 0. Since p = 3, we set
u==0, v=yp
Expression for z:
z =3cos(v)

Constraints on u, v: We get

{0 <u< g, 0<v< cos_1(1/3)}
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Parametrization of a sphere (7)

Parametrization of the surface:
r(u,v) = (3sin(v) cos(u), 3sin(v)sin(u), 3cos(v)),

with
, 0<v<cosi(1/3)
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Parametrization of a cylinder (1)

Surface at stake: We consider

S = Cylinder y*+ 2> =16 | {1 <x <5}

Problem:

Parametrize S

Samy T. Vector calculus Multivariate calculus 115 / 196



Parametrization of a cylinder (2)

Possible parametrization:
Since S is a cylinder, use cylindrical yz-coordinates

y = rcos(f), z=rsin(f), with r=4

Constraint on 6:

Constraints on x:
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Parametrization of a cylinder (3)

Parametrization of the surface:
with

r(u,v) = (v, 4cos(u), 4sin(u)),

=] =) = £ 9OHQC
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Outline

@ Surface integrals

@ Surface integrals of scalar-valued functions

=] = = E DA C
Samy T. Vector calculus




Approximation procedure for surface integrals

Notation: We consider
e Surface r(u, v) = (x(u, v),y(u,v), z(u, v))
e Parameters in R = [a, b] X [c, d]
@ Partition of R into small rectangles Ry with left corner (uy, vk)
@ Area of the small element of surface: AS,
@ Function f defined on R3

Approximation:

n

S, = Z f (x(ug, vie), y(uk, vi), z(uk, vi)) ASk

k=1
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Approximation procedure: illustration

Recall:
Zf Uk,Vk (ukavk)az(ukavk)) Ask
z
oy P(xk, Yo Zk)
i r(u, v) = xu, v), y(u, v), 2(u, v)) s
| Parameterization S,
R, } Av
(uk’ Vk) Rk maps to S, o
i @, v,) maps to P. \
|
c—+ — y
1 Au 1
T T X
a b u

uv-parameter plane
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Computation of AS,

Tangent vectors: The tangent plane to S is generated by

t,=r, = (X0, Yu,2s), and t,=r, = (x,,2)

Recall: Area of parallelogram delimited by wy, ws, is

|W1 X W2|

Computation of AS,: We get

ASk ~ |tu X tv|
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Computation of surface integrals in R®

r—[Theorem 19.] \
We consider

e Surface r(u,v) = (x(u, v),y(u,v), z(u, v))
@ Parameters in R = [a, b] X [c, d]
@ Surface element S for r

@ Function f defined on R3

Then we have

[Sfds = /R f(x(u,v),y(u,v),z(u,v)) t, x t,|dA
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Computation of surface integrals

Recipe:
© Find parametric description of S
— v(u,v) = (x(u, v), y(u, v), 2(u, v)) for (u,v) € [a,b] x [c,d]

@ Compute |t, X t,|

© Make substitutions for x and y and evaluate double integral

/Rf(x(“’ v), y(u, v), 2(u, v)) [ty x t,[dA
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Surface area of partial cylinder (1)

Surface S at stake: Cylinder
{(r,0); r=4,0<0<2r}

between planes
z=0, and z=16—2x

Problem:

Find the area of S
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Surface area of partial cylinder (2)

Cylinder r = 4

- 1
* y
=] & = E DA
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Surface area of partial cylinder (3)
Description of the cylinder:
r(u,v) = (4cos(u), 4sin(u), v)
Relation between u and v: On the plane
z=16 —2x

we have
v =16 — 8 cos(u)

Region R:

R={0<u<2r,0<v<16—-8cos(u)}
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Surface area of partial cylinder (4)

Surface element: We have

i ik
t, xt, = |—4sin(u) 4cos(u) 0
0 0 1

= (4cos(u),4sin(u),0)

Thus

t, xt,|=4
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Surface area of partial cylinder (5)

Computation of the surface area:

/SldS - /R|tu><tv|dA

2w p16—8cos(u)
= / / 4dvdu
0 0
2w

= 4(16u — 8sin(u))

0

We get
/ 1dS = 1287
S
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Average temperature on a sphere (1)

Surface S at stake: Sphere

{(p,0,0); p=40<p<m 0<0<2m}

Temperature distribution: Cooler at the poles, warmer at the equator,

T(p,0) =10 + 50sin(y)

Problem:

Find the average temperature on S
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Average temperature on a sphere (2)

Description of the sphere:

r(u,v) = (4sin(u) cos(v), 4sin(u)sin(v), 4 cos(u))

Expression for the temperature: In terms of u, v,

T = f(u,v) =10 + 50sin(u)

Region R:
R={0<u<m0<v<2r}
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Average temperature on a sphere (3)

Surface element: We have
i j k
t, xt, = |4cos(u)cos(v) 4cos(u)sin(v) —4sin(u)
—4sm(u)sin(v) 4sin(u) cos(v) 0
2

= <sm (u) cos(v), sin?(u) sin(v), sin(u) cos(u)>

Thus

It, x t,| = 165sin(u)
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Average temperature on a sphere (4)

Computation of the average temperature:
/5(10 + 50sin(u))dS = / (10 + 50sin(u)) |t, x t,| dA
R
T 27
- / / (10 + 50sin(u)) - 16 sin(u) dvdu
o Jo

- 327r/07r(10+505in(u))sin(u)du
= 1607(4 + 57)

We get
1
_ 607 (4 + 5) _ 204257 ~ 103
4 - 16 2

~!
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Surface integrals in R3 in the explicit case

r—[Theorem 20.] \
We consider

@ Surface S explicitely given by z = g(x, y)
e Parameters in (x,y) € R
e Function f defined on R3

Then we have

de:/f,. , 24 22 + 1dA
. [ Fxy,8000) Y2+ 22+
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Surface area of a roof (1)

Surface S at stake: In the plane
z=12—4x -3y,

directly above the region R bounded by ellipse

+y?=1

Problem:

Find the area of S
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Surface area of a roof (2)

z=12 —4x — 3y
s

S is directly above R.)

SEIAN

Vector calculus




Surface area of a roof (3)

Region R:

Function f: Since we just compute an area, we take

f=1

Surface element: We have

z, = —4, z, = =3,

,/zx2+zy2+1:\/2—6
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Surface area of a roof (4)

Computation of the surface area:

f1ds = [ JZ+z+1da
= \/%/RdA
= /26 Area(R)

We get (area of an ellipse is m a b)

/1d5=2m/%
S
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Mass of a conical sheet (1)
Surface S at stake: Cone of the form

1/2
z=(x+y?) ",
together with the constraint

0<z<4
Mass density: Heavier close to the bottom, of the form
f(x,y,z)=8—z
Problem:

Find the total mass of S
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Mass of a conical sheet (2)
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Mass of a conical sheet (3)

Region R: Corresponding to z < 4 we get
R = {X2 + y2 < 4}
Function f: The mass density is
f=8—z=8-(x+y?)"

Surface element: We have z, = % and z, = %, thus

V2 +2+1=((x/22+ (y/2)* + 1)1/2 =V2
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Mass of a conical sheet (4)
Computation of the surface area:
f(x.y,2)dS = [ f(x,y,2)\/22+ 22+ 1dA
/S(xyz) R(xyz) zZ;+ 75 +

- V2 (8—(x2+y2>1/2> dA
= \/i/ozﬂ/:(8—r)rdrd9

27 I’3 4
= V2 / <4r2 — —) dé
0 3/ 1o
We get
2 2
/s f(x,y,z)dS = 5673“/_ ~ 379
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Summary of descriptions for common surfaces

Surface

Cylinder

Cone

Sphere

Paraboloid

Explicit Description z = g(x,y)

Equation

24y =,
O0=z=h

2=x+7
0=z=h

szryZJrzZ=a2

z=x2+y2,
0=z=h

Normal vector; magnitude
(-2, —2,1); [( -~z -

(x,5,0);a
(x/z,y/z,=1); V2

(x/z,y/z,1);a/z

y?

1)l

(2x,2y, —1); V1 + 4(x> + y?)

Parametric Description

Equation

r= (acosu,asinu,v),
O0=u=s=2m,0=v=h

I

r
0

(vcosu,vsinu,v),
u=2m,0=v=h

A

r

= (asinucosv,
asinusinv,acosu),

O0=u=7m0=<v=2mw

r= (Vcosu,vsinu,vz),
0=us=2m0=<v=Vh

Samy ctor calculus

Normal vector; magnitude
t, xtsle, x|

(acosu,asinu,0);a

(vcosu,vsinu, —v); V2v

(az sin? u cos v, a? sin® u sin v,

a?sinucosu); a®sinu

(2v2cos u, 2v* sinu, —v); vV1 + 42

Multivariate calculus
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@ Surface integrals

@ Surface integrals of vector fields
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Samy T.

Surface orientation (1)

Basic principle of orientation:

Normal vectors point in the outward direction

Vector calculus




Surface orientation (2)

Warning: Not every surface admits an orientation!

Start

= = = E E DA
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Flux

Common situation:
@ We have a vector field F in R3
@ F represents the flow of a fluid
@ We wish to compute the flow of F across a surface S

@ This is given by a surface integral

Unit normal n

Unit normal n Unit normal n i
F
F
()
» P 6=0 P,
N S

F-n=|F|cosf F-n=|F
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Surface integral of a vector field, parametric case

r—[Definition 21.}
Consider
e Vector field F = (f, g, h) in R®
@ Surface S defined for (u,v) € R by

r(u,v) = (x(u,v),y(u,v),z(u,v))

e t,, t, tangent vectors for S
— With t, x t, respecting the orientation of S

Then we set

/'/SF-ndsz//RF-(tuxtv)dA

\. J
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Example of surface integral (1)

Vector field: We consider
= (x,y,2)
Surface: Plane

S: 3x+2y+z=6 ﬂ First octant,

with normal vector pointing upward

//SF-ndS

Problem: Compute
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Example of surface integral (2)

Parametrization of S: We take
r(u,v) =(u,v,6 —3u—2v), (u,v)€eR,

with 3
R:{0§u§2,0§v§3—§u}

Normal vector: We have

t,=(1,0,-3), t,=(0,1,-2), t,xt,=(3,21)

Note:
t, X t, is conveniently oriented upward (positive z-component)
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Example of surface integral (3)

Surface integral: We get

//SF-ndS - //RF-(t,,xtv)dA

2 r3-3y
= [T wv6-3u—2v)(3,2,1) dudv
o Jo

2 3—:—;u
- 6// dudy
0 0
//F-nd5:18
S

We get
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Surface integral on a sphere (1)

Vector field: We consider

(x,y,2)
(x2 +y2 4 22)3/2

F=-—

Surface: Plane

S Sphere of radius a, normal outward,

Problem: Compute

//SF-ndS
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Surface integral on a sphere (2)

Parametrization of S: We take
r(u,v) = (asin(u) cos(v), asin(u)sin(v),acos(u)), (u,v) € R,

with
R={0<u<m0<v<2r}
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Surface integral on a sphere (3)

Normal vector: We have

t, = (acos(u)cos(v), acos(u)sin(v),—asin(u)),
t, = (—asin(u)sin(v), asin(u)cos(v),0),

Thus

t, xt, = <a2 sin®(u) cos(v), a*sin?(u) sin(v), a* cos(u) sin(u)>

Note: t, x t, is conveniently oriented outward
— Example: for u = 7 and v = 0 we have

f(u,v) =(2,0,0), t,xt, =(a%0,0)
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Surface integral on a sphere (4)
Surface integral: We get

//SF.ndsz//RP(tuxtv)dA

/027r /OW (asin(u) cos(v), asin(u)sin(v), acos(u))

a3

: <82 sin?(u) cos(v), a?sin?(u)sin(v), a* cos(u) sin(u)> dudv
- /027T /07r <5i”3(u) cos?(v) + sin®(u) sin?(v) + cos?(u) sin(u)) dudv

27 pm
= —/ / sin(u) dudv
o Jo

We get a negative flux (since F points inward):

'/../;F-ndSZ —47
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Surface integral of a vector field, explicit case

~ Definition 22.

Consider

e Vector field F = (f, g, h) in R3
@ Surface S defined for (x,y) € R by

z=s(x,y)

Then we have

//SF-ndS://R(—sz—gzy+h)dA
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@ Stokes' theorem
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The main theorem

r—[Theorem 23.] \
Consider

@ An oriented surface S in R3

@ S has a smooth boundary C

o F=(f, g, h) vector field in R3
o Curl(F) =V xF

Then we have

?{;F-dr: '//SCurl(F) ‘nds
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From Green to Stokes
From 2-d to 3-d:
C

m

Circulation form

of Green’s Theorem:

iQF-dr=Lf(VxF)-de

C

Stokes’ Theorem:

lij-dr=£f(VXF)-ndS

=] & = E DA
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Orientations

Compatibility of orientations: Stokes' theorem involves
@ An oriented surface

@ An oriented curve (counterclockwise)

The orientations have to be compatible through the right hand rule
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Verifying Stokes theorem (1)

Vector field:
F=(z—y,x,—x)

Surface: Hemisphere
S: X*+y’+22=4 () {z>0}
Corresponding curve: In xy-plane, circle oriented counterclockwise
C: xX*+y*=4

Problem:
Verify Stokes' theorem in this context
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Verifying Stokes theorem (2)

Axis of rotation
of Fis (0, 1, 1).

o = = E = 9acn




Verifying Stokes theorem (3)
Parametric equation for C:
r(t) = (2cos(t),2sin(t),0)

Parametric equation for F: Along C we have

F=(z—y,x,—x) =2(—sin(t),cos(t), — cos(t))

Dot product: We have

F(t) -v'(t) = (cos2(t) + sin2(t)) =4
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Verifying Stokes theorem (4)

Line integral:

fFTds = fF@)-r(o

= 4 dt
0

Thus we get

j{CF(t) F(t)dt = 8
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Verifying Stokes theorem (5)

Expression for Curl(F): We have

T 7 k
Curl(F) = a% % %
zZ—y X —X

Computation: We find that F is a rotation with axis (0,1, 1)

Curl(F) = (0,2,2)
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Verifying Stokes theorem (6)

Parametrization of S: We take
r(u,v) = (2sin(u) cos(v), 2sin(u)sin(v),2cos(u)), (u,v)€ R,

with
R={0<u<n/2,0<v<2r}
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Verifying Stokes theorem (7)

Normal vector: We have

t, = (2cos(u)cos(v), 2cos(u)sin(v),—2sin(u)),
t, = (—2sin(u)sin(v), 2sin(u) cos(v),0),
Thus

t, xt, = <4sin2(u) cos(v), 4sin?(u)sin(v), 4 cos(u) sin(u)>

SEIAN Vector calculus
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Verifying Stokes theorem (8)

Surface integral: We get

//SCurl( ndS = //Curl (t, x t,) dA
:/02”/;/2<o,2,2>

: <4sin2(u) cos(v), 4sin?(u)sin(v), 4 cos(u) sin(u)> dudv
= 8/027r /Oﬂ/z (sinz(u) sin(v) + sin(u) cos(u)) dudv
= 8/027r /07r/2 sin(u) cos(u) dudv

We get a positive flux (since F points outward):

/[5 Curl(F) - ndS = 8x
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Verifying Stokes theorem (9)

Verification: We have found

jch-dr://scurl(F)mdszsn
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Stokes theorem for a line integral (1)

Vector field:
F = <z, —z,x% — y2>

Surface: Plane in the first octant, with n pointing upward

S: z=8-4x-2y (] {x>0,y>0,z>0}

Corresponding curve:
Three lines delimiting S

Problem: In order to avoid a parametrization of C
— Evaluate ¢ F - dr as a surface integral
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Stokes theorem for a line integral (2)

Samy T.

R={(xy:0=x=20=<y=4-—2x)

Vector calculus




Stokes theorem for a line integral (3)

Expression for Curl(F): We have

TT k

a 9 )

CUF'(F) = Bx w 2
z —z x*— y2

Computation: We find
Curl(F)=(1—2y,1—2x,0)

SEIAN Vector calculus

Multivariate calculus
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Stokes theorem for a line integral (4)

Parametrization of S: We take the explicit version
z=8—-4x—-2y, (x,y) €ER,

with
R={0<x<20<y<4-2x}
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Stokes theorem for a line integral (5)

Normal vector: We write the plane as
4x +2y+2z=38

Thus
n=(421)

Formula used for the surface integral: Explicit case in Definition 22

//SF-ndS://R(—fzx—gzy+h)dA
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Stokes theorem for a line integral (6)

Surface integral: We get

/L&mwyn&
_ /02/04_2X (4,2,1) - (1 — 2y, 1 — 2x, 0) dxdy

2 r4-2x
:/ / (6 — 4x — 8y) dxdy
0 Jo

We obtain:

//SCurl(F) ndS = —838
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Stokes theorem for a line integral (7)

Computation of the line integral: We have

jéCF-dr—//scurl(F)-nds——838

Remark:
We get a negative flux (circulation is going clockwise)
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Stokes theorem for a surface integral (1)

Vector field:
F={(-y,x, 2

Surface: Part of a paraboloid within another paraboloid
S: z=4-x"-37 ) {z=23"+y},

with n pointing upward

Corresponding curve:
Intersection of the 2 paraboloids

Problem: In order to avoid a parametrization of S
— Evaluate [ [s Curl(F) - ndS as a line integral
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Stokes theorem for a surface integral (2)

Outward normal
vector for
Example 3a
z=4—x2-3y
C

Inward normal

vector for

Example 3b

Outward norma
vector for

Example 3¢

X
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Stokes theorem for a surface integral (3)

Equation for C: For the intersection of the paraboloids we get
4—x* -3y =3x"+y* = x*+y’=1
Parametric equation for x, y: We choose
x = cos(t), y =sin(t), 0<t<2n,
which is compatible with the orientation of S

Parametric equation for C: Writing z = 3x2 + y? we get

r(t) = <cos(t), sin(t), 3 cos®(t) + sinz(t)>
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Stokes theorem for a surface integral (4)

Parametric equation for F: Along C we have

F=(-y,x,z) = <—sin(t),cos(t), 3cos’(t) + sinz(t)>
Dot product: We have

F(t)-r'(t) = <— sin(t), cos(t), 3 cos?(t) + sinZ(t)>
- (—sin(t), cos(t), —4 cos(t) sin(t))

We get

F(t)-r(t) =1 —12cos’(t)sin(t) — 4sin’(t) cos(t)
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Stokes theorem for a surface integral (5)

Line integral:
%F‘Id ——]{Ft-’tdt
c * c (8)-r()

27
:/dt
0

fcr(t) F(t)dt = 27

Thus we get
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Stokes theorem for a surface integral (6)

Computation of the surface integral: We have
//curl(F)-ndszjf F.dr=2r
s c

Remark:
We get a positive flux (normal is oriented like Curl(F))
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Outline

© Divergence theorem
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The main theorem

r—[Theorem 24.] \
Consider

@ A simply connected region D in R3

@ D is enclosed by an oriented surface S
o F=(f, g, h) vector field in R3

e Div(F)=V-F

Then we have

//SF-ndS: ///DDiv(F)dV
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From Green to divergence
From 2-d to 3-d

Flux form of

Green’s Theorem:

ffF-nds=”dijdA
C R

SEIAN

Divergence Theorem:

{JF-nds=Jydidev

Vector calculus




Verifying divergence theorem (1)

Vector field:
F=(xy,z)

Surface: Sphere S of the form

S X+y +22=2
Corresponding domain: Ball of the form

B= {x2+y2—|—22 < 32}

Problem:
Verify divergence theorem in this context

Samy T. Vector calculus Multivariate calculus 185 / 196



Verifying divergence theorem (2)

Expression for Div(F): We have

Div(F) = V-F

Computation: We find
Div(F) =3
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Verifying divergence theorem (3)

Volume integral: We have

///DDiv(F)dV - 3///dV

= 3Vol(D

///DDiV(F)dV:47ra3

Thus
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Verifying divergence theorem (4)

Parametrization of S: We take
r(u,v) = (asin(u) cos(v), asin(u)sin(v),acos(u)), (u,v) € R,

with
R={0<u<m0<v<2r}
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Verifying divergence theorem (5)

Normal vector: We have

t, = (acos(u)cos(v), acos(u)sin(v),—asin(u)),

t, = (—asin(u)sin(v), asin(u)cos(v),0),
Thus

t, xt, = <a2 sin?(u) cos(v), a?sin®(u)sin(v), a® cos(u) sin(u)>
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Verifying divergence theorem (6)

Surface integral: We get

[ [F-nas= [ [F-(t,xt)aa
- /027T /(;r(asin(u)cos(v), asin(u)sin(v), acos(u))

-<32 sin?(u) cos(v), a?sin?(u)sin(v), a* cos(u) sin(u)> dudv

2n
= 33/ / sin(u) dudv
o Jo
We get

//F-nd5:47ra3
S
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Verifying divergence theorem (7)

Verification: We have found

//SF-ndS:///DDiv(F)dV:47ra3
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Computing a flux with the divergence (1)
Vector field:

F=xyz(1,1,1)
Domain: Cube of the form

D: {0<x<1,0<y<10<z<1}

Corresponding surface S:
6 faces of the cube

Problem: In order to avoid a parametrization of S
— Evaluate [ [sF-ndS$ as a volume integral
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Computing a flux with the divergence (2)

F = xyz(1, 1, 1)

Samy T.

Vector calculus
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Computing a flux with the divergence (3)

Expression for Div(F): We have

) 0 0 0
Div(F) = I (xyz) + @ (xyz) + £ (xyz)

Computation: We find

Div(F) = yz + xz + xy
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Computing a flux with the divergence (4)

Volume integral: We get

//Lwamv

1 1 1
= / / / (yz + xz + xy) dxdydz
o Jo Jo

We obtain:

//LDW“NV:j
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Computing a flux with the divergence (5)

Computation of the surface integral: The flux of F through S is

//SF-ndS:///DDiv(F)dV:i

Remark:
We get a positive outward flux
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