Vector-valued functions

Samy Tindel
Purdue University

Multivariate calculus - MA 261

Mostly taken from Calculus, Early Transcendentals by Briggs - Cochran - Gillett - Schulz

Outline

(1) Vector-valued functions
(2) Calculus of vector-valued functions
(3) Motion in space
(4) Length of curves
(5) Curvature and normal vector

Outline

(1) Vector-valued functions

(2) Calculus of vector-valued functions

(3) Motion in space

4 Length of curves
(5) Curvature and normal vector

Functions with values in \mathbb{R}^{3}

Scalar-valued functions: We are used to functions like

$$
f(t)=3 t^{2}+5 \quad \Longrightarrow \quad f(1)=8 \in \mathbb{R}
$$

Vector-valued functions: In this course we consider

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle \quad \Longrightarrow \quad \mathbf{r}(t) \in \mathbb{R}^{3}
$$

Lines as vector-valued functions (1)

Problem: Consider the line passing through

$$
P(1,2,3) \text { and } Q(4,5,6)
$$

Find a vector-valued function for this line

Lines as vector-valued functions (2)

Parallel vector:

$$
\mathbf{v}=(3,3,3), \quad \text { simplified as } \quad \mathbf{v}=(1,1,1)
$$

Equation for the line:

$$
\mathbf{r}(t)=\langle 1+t, 2+t, 3+t\rangle
$$

Examples of points:

$$
\mathbf{r}(0)=\langle 1,2,3\rangle, \quad \mathbf{r}(1)=\langle 2,3,4\rangle, \quad \mathbf{r}(2)=\langle 3,4,5\rangle
$$

Spiral (1)

Problem: Graph the curve defined by

$$
\mathbf{r}(t)=\left\langle 4 \cos (t), \sin (t), \frac{t}{2 \pi}\right\rangle
$$

Spiral (2)

Projection on $x y$-plane: Set $z=0$. We get

$$
\langle 4 \cos (t), \sin (t)\rangle
$$

This is an ellipse, counterclockwise, starts at $(4,0,0)$
Related surface: We have

$$
\frac{x^{2}}{4}+y^{2}=1
$$

Thus curve lies on an elliptic cylinder
Upward direction: The z-component is $\frac{t}{2 \pi}$
\hookrightarrow Spiral on the cylinder

Spiral (3)

Domain of vector-valued functions

Definition: The domain of $t \mapsto \mathbf{r}(t)$ is
\hookrightarrow The intersection of the domains for each component
Example: If

$$
\mathbf{r}(t)=\left\langle\sqrt{1-t^{2}}, \sqrt{t}, \frac{1}{\sqrt{5+t}}\right\rangle
$$

then the domain of \mathbf{r} is

$$
[0,1]
$$

Limits and continuity (1)

Function: We define

$$
\mathbf{r}(t)=\left\langle\cos (\pi t), \sin (\pi t), e^{-t}\right\rangle
$$

Questions:
(1) Graph \mathbf{r}
(2) Evaluate $\lim _{t \rightarrow 2} \mathbf{r}(t)$
(3) Evaluate $\lim _{t \rightarrow \infty} \mathbf{r}(t)$
(4) At what points is \mathbf{r} continuous?

Limits and continuity (2)

Answers
(1) $\lim _{t \rightarrow 2} \mathbf{r}(t)=\left\langle 1,0, e^{-2}\right\rangle$
(2) No limit. As $t \rightarrow \infty$
$\hookrightarrow \mathbf{r}(t)$ approaches the unit circle in $x y$-plane
(3) \mathbf{r} is continuous everywhere

Outline

(1) Vector-valued functions

(2) Calculus of vector-valued functions
(3) Motion in space

4 Length of curves
(5) Curvature and normal vector

Derivative

Definition 1.

Let

- $\mathbf{r}(t)$ a vector-valued function
- \mathbf{r} of the form $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$

Then the derivative of \mathbf{r} is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

We also have

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

Derivative and velocity

Spiral on cone example

Function: Consider the curve defined by

$$
\mathbf{r}(t)=\langle t \cos (t), t \sin (t), t\rangle
$$

Derivative: We get

$$
\mathbf{r}^{\prime}(t)=\langle-t \sin (t)+\cos (t), t \cos (t)+\sin (t), 1\rangle
$$

Related surface: \mathbf{r} is a spiral on the cone

$$
x^{2}+y^{2}=z^{2}
$$

Unit tangent vector

Definition 2.

Let

- $\mathbf{r}(t)$ a vector-valued function
- Assume $\mathbf{r}^{\prime}(t) \neq 0$

Then the unit tangent vector of \mathbf{r} at time t is defined by

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Spiral on cone example

Function: Consider the curve defined by

$$
\mathbf{r}(t)=\langle t \cos (t), t \sin (t), t\rangle
$$

Derivative: We have seen

$$
\mathbf{r}^{\prime}(t)=\langle-t \sin (t)+\cos (t), t \cos (t)+\sin (t), 1\rangle
$$

Unit tangent: We get

$$
\mathbf{T}(t)=\left\langle\frac{-t \sin (t)+\cos (t)}{\sqrt{t^{2}+2}}, \frac{t \cos (t)+\sin (t)}{\sqrt{t^{2}+2}}, \frac{1}{\sqrt{t^{2}+2}}\right\rangle
$$

Product rules

Theorem 3.

Let

- \mathbf{u}, \mathbf{v} vector-valued functions
- f real-valued function

Then we have

$$
\begin{aligned}
{[f(t) \mathbf{u}(t)]^{\prime} } & =f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) \\
{[\mathbf{u}(t) \cdot \mathbf{v}(t)]^{\prime} } & =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \\
{[\mathbf{u}(t) \times \mathbf{v}(t)]^{\prime} } & =\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
\end{aligned}
$$

Example of product rule

Functions: Consider

$$
\mathbf{r}(t)=\left\langle 1, t, t^{2}\right\rangle, \quad f(t)=e^{t}
$$

Product derivative: We find

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[f(t) \mathbf{r}(t)]=e^{t}\left\langle 1, t+1, t^{2}+2 t\right\rangle
$$

Antiderivative

Definition 4.

Consider

- \mathbf{r} of the form $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$
- F, G, H antiderivatives of f, g, h respectively
- $\mathbf{R}(t)=\langle F(t), G(t), H(t)\rangle$

Then we have

$$
\int \mathbf{r}(t) \mathrm{d} t=R(t)+\left\langle C_{1}, C_{2}, C_{3}\right\rangle
$$

Example of antiderivative

Function: Consider

$$
\mathbf{r}(t)=\left\langle\frac{t}{\sqrt{t^{2}+2}}, e^{-3 t}, \sin (4 t)+1\right\rangle
$$

Antiderivative: We get

$$
\int \mathbf{r}(t) \mathrm{d} t=\left\langle\sqrt{t^{2}+2},-\frac{1}{3} e^{-3 t}, t-\frac{1}{4} \cos (4 t)\right\rangle+\mathbf{C}
$$

Outline

(1) Vector-valued functions

(2) Calculus of vector-valued functions

(3) Motion in space
(4) Length of curves
(5) Curvature and normal vector

Position, speed, velocity, acceleration

Definition 5.

Consider

- A motion $\mathbf{r}(t)$ in \mathbb{R}^{3} of the form $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$

Then we define
(1) Velocity:

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

(2) Speed:

$$
|\mathbf{v}(t)|=\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right)^{1 / 2}
$$

(3) Acceleration:

$$
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)
$$

Example: circular motion

Motion: We consider

$$
\mathbf{r}(t)=\langle 3 \cos (t), 3 \sin (t)\rangle
$$

Velocity:

$$
\mathbf{v}(t)=\langle-3 \sin (t), 3 \cos (t)\rangle
$$

Speed:

$$
|\mathbf{v}(t)|=3
$$

Acceleration:

$$
\mathbf{a}(t)=-\langle 3 \cos (t), 3 \sin (t)\rangle
$$

Remarks on circular motion

We have obtained:
(1) r circular motion
(2) $\mathbf{v}(t)$ is perpendicular to $\mathbf{r}(t)$
(3) Speed is constant
(4) $\mathbf{a}(t)=-\mathbf{r}(t)$

Projectile motion (1)

Definition of projectile motion:
Object under the influence of an acceleration $\mathbf{a}(t)$
\hookrightarrow with initial velocity $\mathbf{v}(0)$ and position $\mathbf{r}(0)$
Example: Consider the following situation

- A ball resting on the ground is kicked \hookrightarrow with initial velocity $\mathbf{v}(0)=\langle 10,15,20\rangle \mathrm{m} / \mathrm{s}$
- Acceleration is only due to gravity

Questions:
(1) How long does the ball stay in the air?
(2) How far does it fly?
(3) How high does it fly?

Projectile motion (2)

Acceleration:

$$
\mathbf{a}(t)=\langle 0,0,-9.8\rangle \mathrm{m} / \mathrm{s}^{2}
$$

Velocity:

$$
\mathbf{v}(t)=\int \mathbf{a}(t) \mathrm{d} t=\langle 0,0,-9.8 t\rangle+\mathbf{C}
$$

Velocity with initial condition:
Taking into account $\mathbf{v}(0)=\langle 10,15,20\rangle$ we get

$$
\mathbf{v}(t)=\langle 10,15,-9.8 t+20\rangle
$$

Projectile motion (3)

Motion:

$$
\mathbf{r}(t)=\int \mathbf{v}(t) \mathrm{d} t=\left\langle 10 t, 15 t, 20 t-4.9 t^{2}\right\rangle+\mathbf{D}
$$

Motion with initial condition:
Taking into account $\mathbf{r}(0)=\langle 0,0,0\rangle$ we get

$$
\mathbf{r}(t)=\left\langle 10 t, 15 t, 20 t-4.9 t^{2}\right\rangle
$$

Projectile motion (4)

Time of flight:
Until $z(t)=0$ with $t>0$. We get

$$
t=\frac{20}{4.9}=4.08 \mathrm{~s}
$$

Distance it flies: Given by

$$
|\mathbf{r}(4.08)|=\left((40.82)^{2}+(61.23)^{2}\right)^{1 / 2} \simeq 73.59 \mathrm{~m}
$$

Maximal height: Height when $z^{\prime}(t)=0$. We have

$$
z^{\prime}(t)=0 \quad \Longleftrightarrow \quad-9.8 t+20=0 \quad \Longleftrightarrow \quad t \simeq 2.04
$$

Thus height given by

$$
z(2.04) \simeq 20.41
$$

Projectile motion (5)

Additional question:
What happens if initial velocity is doubled, ie

$$
\mathbf{v}(0)=\langle 20,30,40\rangle
$$

Changes on the motion: One can check that

- Time of flight is doubled: $t \simeq 8.16 \mathrm{~s}$
- Distance of flight is quadrupled: $|\mathbf{r}(4.16)| \simeq 294.36$

Outline

(1) Vector-valued functions

(2) Calculus of vector-valued functions

(3) Motion in space
(4) Length of curves
(5) Curvature and normal vector

Arc length

Definition 6.

We assume

- $\mathbf{r}(t)$ a vector-valued function, $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$
- $f^{\prime}, g^{\prime}, h^{\prime}$ continuous functions
- Curve \mathbf{r} traversed once on $[a, b]$

Then the arc length of \mathbf{r} between $\mathbf{r}(a)$ and $\mathbf{r}(b)$ is

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
$$

We also have

$$
L=\int_{a}^{b}\left(f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}\right)^{1 / 2} \mathrm{~d} t
$$

Discretized version of arc length

Illustration:

Approximation: We have

$$
L \simeq \sum_{k}\left(\left|\Delta x_{k}\right|^{2}+\left|\Delta y_{k}\right|^{2}\right)^{1 / 2} \quad \xrightarrow{k \rightarrow \infty} \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t
$$

Flight of an eagle (1)

Situation: An eagle rises at a rate of 100 vertical $\mathrm{ft} / \mathrm{min}$ on a helical path given by

$$
\mathbf{r}(t)=\langle 250 \cos t, 250 \sin t, 100 t\rangle
$$

Question: How far does the eagle travel in 10 mn ?

Flight of an eagle (2)

Speed: We have

$$
|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{250^{2}+100^{2}} \simeq 269
$$

Length: The distance traveled is

$$
L=\int_{0}^{10}|\mathbf{v}(t)| \mathrm{d} t=2690
$$

Arc length function

Theorem 7.

We assume

- $\mathbf{r}(t)$ a vector-valued function, $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$
- $f^{\prime}, g^{\prime}, h^{\prime}$ continuous functions

Then
(1) The arc length function is given by

$$
s(t)=\int_{a}^{t}|\mathbf{v}(u)| \mathrm{d} u .
$$

(2) If $|\mathbf{v}(u)|=1$ for all $t \geq a$
\hookrightarrow the parameter t corresponds to arc length.

Helix example (1)

Function: Helix of the form

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t), 4 t\rangle
$$

Problem:
Parametrize \mathbf{r} according to its arc length.

Helix example (2)

Velocity:

$$
\mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t), 4\rangle
$$

Speed: We have

$$
|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right|=2 \sqrt{5}
$$

Arc length function: We get

$$
s(t)=\int_{0}^{t}|\mathbf{v}(u)| \mathrm{d} u=2 \sqrt{5} t
$$

Helix example (3)

Arc length as parameter: Set $s=2 \sqrt{5} t$.
\hookrightarrow We get a new curve parametrized by s

$$
\mathbf{r}_{1}(s)=\left\langle 2 \cos \left(\frac{s}{2 \sqrt{5}}\right), 2 \sin \left(\frac{s}{2 \sqrt{5}}\right), \frac{2 s}{\sqrt{5}}\right\rangle
$$

Property: For \mathbf{r}_{1} we have
Increment of Δs in the parameter

Increment of Δs in arc length

Outline

(1) Vector-valued functions

(2) Calculus of vector-valued functions

(3) Motion in space
(4) Length of curves
(5) Curvature and normal vector

Unit tangent vector (reloaded)

Definition 8.

Let

- $\mathbf{r}(t)$ a vector-valued function
- Assume $\mathbf{r}^{\prime}(t) \neq 0$

Then the unit tangent vector of \mathbf{r} at time t is defined by

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Intuition of curvature

Idea:
If a curve is curvy, then \mathbf{T} changes quickly with arc length s

Curvature

Definition 9.

Let

- $\mathbf{r}(s)$ a vector-valued function
- Assume r parametrized by arc length s

Then the curvature of \mathbf{r} at s is defined by

$$
\kappa(s)=\frac{\mathrm{d} \mathbf{T}(s)}{\mathrm{d} s}
$$

Problem with the definition:
One cannot always parametrize by s

Curvature formula

Theorem 10.

Let

- $\mathbf{r}(s)$ a vector-valued function
- Assume \mathbf{r} parametrized by t

Then the curvature of \mathbf{r} at time t is given by

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{|\mathbf{v}(t)|}
$$

Curvature: helix example (1)

Function: Helix of the form

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t), 4 t\rangle
$$

Problem:
Compute the curvature for \mathbf{r}.

Curvature: helix example (2)

Velocity:

$$
\mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t), 4\rangle
$$

Speed: We have

$$
|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right|=2 \sqrt{5}
$$

Unit tangent: We get

$$
\mathbf{T}(t)=\frac{1}{2 \sqrt{5}}\langle-2 \sin (t), 2 \cos (t), 4\rangle
$$

Curvature: helix example (3)

Derivative of unit tangent: We have

$$
\mathbf{T}^{\prime}(t)=-\frac{1}{\sqrt{5}}\langle\cos (t), \sin (t), 0\rangle
$$

Curvature: Given by

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{|\mathbf{v}(t)|}=\frac{1}{10} .
$$

Remarks on curvature

Particular cases:

- Lines have 0 curvature
- Circles have constant curvature

Another formula to compute κ :

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime \prime}(t) \times \mathbf{r}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

