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Functions with values in R3

Scalar-valued functions: We are used to functions like

f(t)=3t>+5 = f(1)=8€R

Vector-valued functions: In this course we consider

r(t) = (x(t).y(t),2(t)) = r(t) R’
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Lines as vector-valued functions (1)

Problem: Consider the line passing through

P(1,2,3) and Q(4,5,6)

Find a vector-valued function for this line
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SEIAN Vector-valued functions

Lines as vector-valued functions (2)

Parallel vector:

v=(3,3,3), simplifiedas v=(1,1,1)

Equation for the line:

r(t)=(1+t,2+t,3+1t)

Examples of points:

r(0) = (1,2,3), r(1)=1(2,3.4), r(2)=(3,4,5)
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Spiral (1)

Problem: Graph the curve defined by

f(t) = <4cos(t),sin(t), ‘

)
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Spiral (2)
Projection on xy-plane: Set z = 0. We get
(4 cos(t), sin(t))
This is an ellipse, counterclockwise, starts at (4,0, 0)

Related surface: We have

2
X 2
- -1
s Y

Thus curve lies on an elliptic cylinder

Upward direction: The z-component is 5
— Spiral on the cylinder
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Spiral (3)

Eight loops of the spiral
r(f) =4costi+sintj+
for —o<t<o

t
—K,
ar

The spiral lies on the
elliptical cylinder

2.,
L iy=1
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Domain of vector-valued functions

Definition: The domain of t +— r(t) is
< The intersection of the domains for each component

Example: If
1

K(t) = <m, \/?\/m>

then the domain of r is
[0,1]
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Limits and continuity (1)

Function: We define
r(t) = <cos(7r t), sin(mt), e_t>

Questions:
@ Graphr
@ Evaluate lim;_,r(t)
© Evaluate lim, . r(t)
©Q At what points is r continuous?
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Limits and continuity (2)

Answers
Q lim,or(t) =(1,0,e72)
@ No limit. As t — oo
< r(t) approaches the unit circle in xy-plane

© r is continuous everywhere

Samy T. Vector-valued functions Multivariate calculus 12 / 49



Outline

© Calculus of vector-valued functions

=] & = E DA
Samy T. Vector-valued functions



Derivative

—~ Definition 1. N

Let
@ r(t) a vector-valued function
o r of the form r(t) = (f(t), g(t), h(t))

Then the derivative of r is defined by

r(t+ h) — r(t).

r'(t) = lim

We also have
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Derivative and velocity

(1) = (1), g(®), h(2))

=
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r(t + Ar) /
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(a)

Vector-valued functions

=

which is a tangent vector at P.

As At >0, % >r(0),

(b)




Spiral on cone example

Function: Consider the curve defined by

r(t) = (tcos(t), tsin(t), t)

Derivative: We get

r'(t) = (—tsin(t) + cos(t), t cos(t) + sin(t), 1)

Related surface: r is a spiral on the cone

X2 4 y? =22
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Unit tangent vector

—~ Definition 2.

Let

@ r(t) a vector-valued function
@ Assume r'(t) # 0

Then the unit tangent vector of r at time t is defined by
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Spiral on cone example

Function: Consider the curve defined by

r(t) = (tcos(t), tsin(t), t)

Derivative: We have seen

r'(t) = (—tsin(t) + cos(t), t cos(t) + sin(t), 1)

Unit tangent: We get

T(t) <—tsin(t)—|—cos(t) t cos(t) + sin(t) 1 >
\Tvm2 0 Ve VR
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Product rules

~ Theorem 3. N

Let
@ u, v vector-valued functions

@ f real-valued function
Then we have
[f(t)u(e)] = F(t)u(t) + F(t)u'(t)
[u(t) -v(t)] = u'(t)-v(t) +u(t)-v(t)

[u(t) x v(t)] = u'(t) x v(t) +u(t) x v'(t)
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Example of product rule

Functions: Consider

()= (11, f(t)=¢

Product derivative: We find

d

S IF@Or0] =€t (Lt 41,2+ 2t)
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Antiderivative

~ Definition 4. )

Consider
e r of the form r(t) = (f(t), g(t), h(t))
e F, G, H antiderivatives of f, g, h respectively
o R(t) = (F(t), G(t), H(t))

Then we have

/r(t)dt — R(t) + (G, G, G3)
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Example of antiderivative

Function: Consider

r(t):< ! ,e—3f,sin(4t)+1>

t2 42
Antiderivative: We get

1 1
/r(t) dt = <\/t2 + 2, —ge_3t, t—7 cos(4t)> +C
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Position, speed, velocity, acceleration

—~ Definition 5.

Consider
e A motion r(t) in R3 of the form r(t) = (x(t), y(t), z(t))

Then we define

© Velocity:

© Speed:

|V(t)| = (X/(t)2 +y,(t)2 +Z/(t)2>1/2

© Acceleration:

a(t) =v'(t) =r"(¢t)

\.
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Example: circular motion

Motion: We consider

r(t) = (3cos(t), 3sin(t))

Velocity:
v(t) = (—3sin(t), 3 cos(t))

Speed:
v(t)| =3

Acceleration:
a(t) = — (3cos(t), 3sin(t))
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Remarks on circular motion
We have obtained:

@ r circular motion

@ v(t) is perpendicular to r(t)

© Speed is constant

Q a(t) = —r(t)
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Projectile motion (1)

Definition of projectile motion:
Object under the influence of an acceleration a(t)
< with initial velocity v(0) and position r(0)

Example: Consider the following situation
@ A ball resting on the ground is kicked
< with initial velocity v(0) = (10, 15,20)m/s
@ Acceleration is only due to gravity
Questions:

@ How long does the ball stay in the air?
@ How far does it fly?
© How high does it fly?
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Projectile motion (2)

Acceleration:
a(t) = (0,0,-9.8) m/s?
Velocity:
v(t) = /a(t)dt —(0,0,-9.8t) + C

Velocity with initial condition:
Taking into account v(0) = (10, 15, 20) we get

v(t) = (10,15, 9.8t + 20)
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Projectile motion (3)

Motion:

r(t) = /v(t) dt = <10t, 15t,20t — 4.9t2> +D
Motion with initial condition:
Taking into account r(0) = (0,0, 0) we get

r(t) = (10¢,15¢,20t — 4.9¢%)
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Projectile motion (4)

Time of flight:
Until z(t) = 0 with t > 0. We get

20
== =4
t 19 08s

Distance it flies: Given by
1(4.08)] = ((40.82)° + (61.23°) " ~ 7350 m
Maximal height: Height when z/(t) = 0. We have

Z(t)=0 <= —98t+20=0 <= t~204

Thus height given by
z(2.04) ~20.41
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Projectile motion (5)

Additional question:
What happens if initial velocity is doubled, ie

v(0) = (20, 30, 40)
Changes on the motion: One can check that

e Time of flight is doubled: t ~ 8.16s
@ Distance of flight is quadrupled: |r(4.16)| ~ 294.36
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Arc length
— Definition 6. | \

We assume
@ r(t) a vector-valued function, r(t) = (f(t), g(t), h(t))

e f' g', W continuous functions

@ Curve r traversed once on [a, b]

Then the arc length of r between r(a) and r(b) is

b
L= / ¥ ()] dt.
We also have

L= /b (F(£)2+g(t) + h’(t)2)1/2 dt.

\.
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Discretized version of arc length

[llustration:
y (e, ), 8, ) (e, ()
/ (f(b), 8(b))
(), (2,) c
x=f(),y =g®
1) S—
g@+-—--
Ay Vs
e, 8t ) [Ay,|
o fa) f(t)) 1®) x [Ax,|

Approximation: We have

1/2 . b
LY (18x +anP) " =3 / I¥(¢)] dt
k a
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Flight of an eagle (1)

Situation: An eagle rises at a rate of 100 vertical ft/min
on a helical path given by

r(t) = (250 cos t, 250sin t, 100t)

Question: How far does the eagle travel in 10 mn?

z

1000

Helix ’
X () = (250 cos £, 250 sin 1, 1007)

SEIAN

Vector-valued functions Multivariate calculus 35 /49



Flight of an eagle (2)

Speed: We have
lv(t)| = |[¥'(t)| = V2502 + 1002 ~ 269

Length: The distance traveled is

10
L= / Iv(t)] dt = 2690
0
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Arc length function

~ Theorem 7. \

We assume
@ r(t) a vector-valued function, r(t) = (f(t), g(t), h(t))

e f', g', W continuous functions

Then
© The arc length function is given by

S(t) = /: Mol

Q If lv(u)]=1forallt > a
— the parameter t corresponds to arc length.
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Helix example (1)

Function: Helix of the form

r(t) = (2cos(t),2sin(t), 4t)

Problem:
Parametrize r according to its arc length.

Samy T. Vector-valued functions Multivariate calculus 38 /49



Helix example (2)

Velocity:
v(t) = (—2sin(t),2cos(t), 4)

Speed: We have
v(t)] = [F'(£)] = 2V5

Arc length function: We get

s(t) = /(;t|v(u)|du NG
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Helix example (3)

Arc length as parameter: Set s = 2+/5t.
— We get a new curve parametrized by s

fa(s) = <2 <2f> - (2f> = >

Property: For r; we have

Increment of As in the parameter
—
Increment of As in arc length
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Unit tangent vector (reloaded)

—~ Definition 8.

Let

@ r(t) a vector-valued function
@ Assume r'(t) # 0

Then the unit tangent vector of r at time t is defined by

Multivariate calculus
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Intuition of curvature

Idea:
If a curve is curvy, then T changes quickly with arc length s

T(s + As)

T(s + As)

arc length = s
arc length = s

T(s) T(s + As) — T(s) T(s + As) — T(s)
k . T(s) s+ As) = T(s
arge curvature 2 3 small curvature

T(s + As) T(s + As)
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Curvature

—~ Definition 0. \
Let

@ r(s) a vector-valued function

@ Assume r parametrized by arc length s
Then the curvature of r at s is defined by

i(s) = dzgs).

\. J

Problem with the definition:
One cannot always parametrize by s
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Curvature formula

~ Theorem 10. ] \
Let

@ r(s) a vector-valued function

@ Assume r parametrized by t
Then the curvature of r at time t is given by

T _ T
HOIEGN

K(t)
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Curvature: helix example (1)

Function: Helix of the form

r(t) = (2cos(t),2sin(t), 4t)

Problem:
Compute the curvature for r.
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Curvature: helix example (2)
Velocity:

v(t) = (—2sin(t), 2 cos(t), 4)

Speed: We have
v(t)] = [F'(t)] = 2V5

Unit tangent: We get

T(t) = 2\1/5 (—2sin(t),2cos(t),4)
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Curvature: helix example (3)

Derivative of unit tangent: We have

T(t) = —% (cos(t), sin(t), 0)

Curvature: Given by
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Remarks on curvature

Particular cases:
@ Lines have 0 curvature

@ Circles have constant curvature

Another formula to compute x:
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