MA 262 - DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

REVIEW PROBLEMS - FINAL

Problem 1. Find the general solution of the following equation:

 $(y\cos(x) + 2xe^y) + (\sin(x) + x^2e^y - 1)y' = 0$

Problem 2. We consider the following equation:

$$x^3y' + 4x^2y = e^{-x}.$$

Find the general form of the solution.

Problem 3. Solve the initial value problem

$$y' = \frac{2\cos(x)}{3+2y}, \qquad y(0) = 1$$

Problem 4. Transform the following equation into a linear equation by substitution.

$$t^2y' + 2t\,y - y^3 = 0.$$

Problem 5. A tank initially contains 10 L of pure water in which 5g of salt is dissolved. A mixture containing a concentration of γ g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the tank at the same rate. Find an expression in terms of γ for the amount of salt in the tank at any time t.

Problem 6. Using a substitution, transform the following equation into a separable equation.

$$y' = \frac{2x + (x^3 + y^3)^{1/3}}{y}.$$

Problem 7. Give the general solution of the following equation:

$$y'' - \frac{2}{x}y' = 18x^4.$$

Problem 8. Determine the number of solutions of the following system according to the values of $k \in \mathbb{R}$:

Problem 9. Let A and B be two 3×3 matrices defined by

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 4 & -2 \\ -3 & 5 & 7 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & -5 & 2 \end{bmatrix}$$

Compute $\det(B^2 A^{-1})$.

Problem 10. Let A be the matrix defined by

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

Compute the value of the (3, 1)-element of A^{-1} .

Problem 11. Describe colspace(A) for A given as

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 5 & 11 & 21 \\ 3 & 7 & 13 \end{bmatrix}$$

Problem 12. Determine the dimension of the space spanned by the following vectors.

$\begin{bmatrix} 1 \end{bmatrix}$		0		1		2		$\begin{bmatrix} 2 \end{bmatrix}$
1		0		0	-	-1		0
-1	,	0	,	1	,	1	,	2
$\begin{vmatrix} 1\\2 \end{vmatrix}$		0		-1		-1		$\begin{bmatrix} 0\\2\\-2\end{bmatrix}$

Problem 13. Let p_1 and p_2 be the polynomials defined by

$$p_1(x) = 1 - ax, \qquad p_2(x) = 1 + x$$

Determine the values of a such that p_1 and p_2 are linearly independent.

Problem 14. For solutions of differential equations or systems in \mathbb{R}^n or $M_{n,n}(\mathbb{R})$, establish a criterion to know if the solution set is a vector space or not.

Problem 15. Let T be a linear transformation such that

$$T(\mathbf{v}_1 + \mathbf{v}_2) = 3\mathbf{v}_1 - \mathbf{v}_2, \qquad T(2\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v}_1 + 2\mathbf{v}_2.$$

Find the expression for $T(a\mathbf{v}_1 + b\mathbf{v}_2)$ for arbitrary a, b.

Problem 16. Determine if the following matrix is defective:

$$A = \begin{bmatrix} 6 & 3 & -4 \\ -5 & -2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

Problem 17. Compute dim(ker(T)) + 2 dim(Rng(T)) for the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$A = \begin{bmatrix} 1 & -2 & 5 \\ 2 & -3 & -1 \\ 5 & -8 & -1 \end{bmatrix}$$

Problem 18. Solve the following initial value problem:

$$y'' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1.$

Find $y(\frac{\pi}{4})$.

Problem 19. Given that $y_1(x) = x^{-1}$ is a solution of $2x^2y'' + 3xy' - y = 0, \qquad x > 0,$

find a fundamental set of solutions.

Problem 20. Find the general solution of the following equation:

$$y'' + y = \tan(t)$$

Problem 21. Find the general form of a particular solution for the following equation: $y^{(4)} - y = 3t + \cos(t)$

Problem 22. Solve the following initial value problem:

$$\mathbf{x}' = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Problem 23. Find a particular solution \mathbf{x}_p of the following system:

$\mathbf{x}' = \begin{bmatrix} -\\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ & -2 \end{bmatrix} \mathbf{x} +$	$-\begin{bmatrix} 2e^{-t}\\ 3t \end{bmatrix}$
---	--	---