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Outline

@ First order systems and applications
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Spring example

Physical setting: Interacting springs

Equation:
d?x
mlﬁ = ko(x — x1) — kixq + Fi(t)
d?*x
2 dt22 = _k2(X2 — Xl) — k3X2 + Fg(t)
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Second order equation as first order system (1)

Equation:
y" +0.125y' +y =0

Aim:

Write this equation as a system of differential equations
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Second order equation as first order system (2)

Equation:
y" +0.125y' +y =0

Change of variable: set

X1=Y, X2 =Yy
New equation:
X7 = X
xy = —x3 —0.125x;
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First order system as second order equation (1)

System:

Aim:

Write this system as a second order differential equation
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First order system as second order equation (2)

Differentiating x: We get

x"==2y'=—x, thus x"+x=0

General solution for x:

x(t) = Acos(t) + Bsin(t) = Ccos(t — )

General solution for y:

1

Y(8) = = 5¥(8) = 5 sin(t — )

Differential equations
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First order system as

General solution
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Another example of first order system (1)

System:

= 2x+vy

Aim:

Write this system as a second order differential equation

T



Another example of first order system (2)

Differentiating x: We get

"

X'"=y =2x+y=x"4+2x, thus x"—x"—2x =0

General solution for x:
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Another example of first order system (3)

General solution

x(t) = Ae '+ Be*
y(t) = —Ae ' +2Be*

SEIAN Systems




Definitions

First order linear system: Of the form

x1(t) = an(t)x(t) +an(t)x(t) + - +anm(t)x.(t) +Af(t)
x5(t) = an(t)xa(t) +an(t)x(t) + -+ Fan(t)x.(t) +H(t)
() = am(®x(t) +am(®he(t) + - +am(tx(t) +h(t)

Homogeneous system: When

Nonhomogeneous system: When there exists j such that

fi #0

Differential equations 13 /93



Initial value

Definition 1. ;
For the system above an initial condition is given by

x1(to) = X105 - - -, Xn(to) = Xn0

Example of system:
X; =x1 +2x
X, =2x3 —2x

Initial condition:
Xl(O) = ]., X2(0) =0

Samy T. Systems Differential equations 14 / 93



Example of initial value
Form of the general solution: We will see that

1
xi(t)=ae > +ae*, and x(t)=—2c e+ € et

System for c1, G-
1 +c = 1
—4C1 +C2 =0

Unique solution of the initial value problem:

Xl(t) — g e—3t + g e2t7 and Xg(l’) _ _g e—3t + g eZt

Samy T. Systems Differential equations 15 / 93



Outline

© Matrices and linear systems
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Matrix notation
First order linear system: Of the form

xi(t) = au(t)a(t) +an(t)x(t)
x(t) = an(t)a(t) +an(t)x(t)

X(8) = am()a(t) +am(t)o(t)

Related matrices:

all(t) 312(t) 313(t)

A(t) = a21.(t) aZQI(t) 323.(1_&)

(D) am(t) am(t) ...

Samy T. Systems

+ +31n(t)xn(t) +f1(t)
+ +32n( )Xn(t) +f2(t)
+ Fann(t)xa(t)  +1o(t)



Matrix notation (2)

Vector of unknown: We set

xi(t) x1(t)
Xo(t Xé t
x(t) = ( ) , and X(t)= ( )
Xn(t) Xy (t)

Vector form of the linear system:
x'(t) = A(t) x(t) + f(t)

Initial data:

X(t()) = Xp

Samy T. Systems Differential equations 18 / 93



Some vector space notions

Space V,(/): For an interval | we set
Vo) ={y:1—-R"}.
Then V, (/) is a vector space.

Wronskian: Let
@ x1(t),...,x,(t) vectors in V,(/)

The Wronskian of those vectors is

Wixy,...,x,](t) = det ([x1(t), ..., x,(t)])
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Wronskian and independence

—~ Theorem 2.

Let
@ x1(t),...,x,(t) vectors in V, (/).
@ Assume that W(xy,...,x,|(t) # O for a given t, € |

Then

{x1,...,Xp} is linearly independent.
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Example of Wronskian

Vector function:

xi(t) = lzeett] . and  xo(t) = [35i”(t)]

cos(t)

Wronskian: We have

et 3sin(t)

Wixi, %o](t) = |, ¢ cos(t)

= €' (cos(t) — 65sin(t))

Linear independence: We have
W[Xl,XQ](O) =1 7& 0.
Therefore {x1,x>} is linearly independent

Samy T. Systems Differential equations 21 /93



JAszef Maria Hoene-Wronski

Wronski: A philosopher-mathematician
@ Born in Poland (1776)
@ Lived mostly in France

@ Hero of the Polish army
when defeated by the Russians

@ Mathematician
Wronskian is his main contribution

@ Philosophical system based on math

@ Ousted from the observatory
because of his philosophical views

@ Died in poverty, aged 76
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Homogeneous equation

~ Theorem 3. \

Consider the system

Hypothesis:
The mapping t — A(t) is continuous

Then the following holds true:
@ The general solution set is a vector space of dimension n

@ The system with initial data x(ty) = Xo
admits a unique solution
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Fundamental solutions

— Definition 4. |

Consider
@ The system x'(t) = A(t) x(t)
@ Aset {xq,...,x,} of n linearly independent
solutions of the system
Then:
©Q The set

{X1,...,%Xn}
is called fundamental solution set of the system

@ The matrix
X(t) = [x1,- ., %]

is called fundamental matrix of the system

\.

J

Differential equations
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Wronskian and fundamental solutions

~ Theorem 5. \

Consider
@ The system x'(t) = A(t) x(t) on an interval /
@ Aset {xq,...,x,} of n solutions of the system
e tpel

Then:

Q If Wixq,...,x,](to) # 0 then {x1,...,%,}
is a fundamental solution set of the system

© The general solution of the system can be written as

x(t) = axq(t) + - - - + coXxq(t)

Samy T. Systems Differential equations 25 /93



Example of application

System under consideration:

o . (12
x'=Ax, with A= [_2 1] (1)
Solutions:
| —efcos(2t) | efsin(2t)
x(t) = [ e’ sin(2t) ] o and () = [etcos(2t)
Remark:

One can check that x; and x, solve (1)

Samy T. Systems Differential equations 26 /93
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Example of application (2)

Wronskian computation:

_ |—efcos(2t) e'sin(2t)| o
Wix1, x2](t) = etsin(2t) e’ cos(2t) ¢

Conclusion: Since W{xy,x,](t) # 0 for all t € R,

{x1,%>} is a fundamental solution set

General form of the solution to (1):

e’ (—c; cos(2t) + cpsin(2t))
x(t) = e’ (¢ sin(2t) + ¢, cos(2t))

Differential equations
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Outline

© The eigenvalue method for linear systems
@ Distinct eigenvalues
@ Complex eigenvalues
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Aim

General objective: Solve homogeneous systems of the form
x'(t) = Ax(t),

with
X(t) S Rn, Ac Mn n-

)

Methodology:
Based on eigenvalues/eigenvectors decomposition of A

Samy T. Systems Differential equations 29 /93



Solutions and eigenvectors

~ Theorem 6. \

Consider the system with constant matrix

x'(t) = Ax(t), x(t) eR", A€ M,,. (2)
Hypothesis:
@ A admits n lin. independ. eigen. u, with eigenval. A\
Conclusion:

© The following are linearly independent solutions to (2):
xk(t) = eMtuy

@ The general solution of (2) is of the form

x(t) = ¢ eMfuy + - -+ + ¢, eMu,

\. J
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Outline

@ Distinct eigenvalues
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© The eigenvalue method for linear systems



Example with real eigenvalues

Equation:

Eigenvalue decomposition:

)\1:3, Ulzlél; )\2:—1, ngl_él

T



Example with real eigenvalues (2)

Fundamental solutions:

Wronskian:

e3t

263 et | —4e" #0.

W(xy, xo](t) = |

Conclusion: x; and x; are linearly independent

Samy T. Systems Differential equations
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Example with real eigenvalues (3)

General solution:

x(t)

=] & = E DA
SEIAN Systems



Compartmental analysis (1)
Situation:
@ Three brine tanks, volume Vi, V,, V3
@ Fresh water flows into tank 1, rate r
@ Mixed water flows from tank 2 into tank 3, rate r
o Mixed water flows out of tank 3, rate r

Aim: Compute quantity of salt in each tank i

7 (gal/min)

Samy T. Systems Differential equations 35 /93



Compartmental analysis (2)

Notation: Set

k,': d
Vi
Equations:
X{ = —k1X1
Xé = k]_X]_ —k2X2
X?/) = k2X2 —k3X3

=] 5

SEIAN Systems
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Compartmental analysis (3)

Specific values for the volumes: Take

V]_ - 20, V2 - 40, V3 - 50

Specific values for the rate: Take

r=10

Initial value: Assume

X1(0) = 15, X2(0) = 0, X3(O) =0

Samy T. Systems Differential equations 37 /93



Compartmental analysis (4)
System under consideration:

x'=Ax, with A=|05 -025 O

0 025 0.2

(3)

-0.5 0 0 ]

General solution:

3 0 0
x()=c | 6 |e+| 1|e/ 4|0 et
5 -5 1

T



Compartmental analysis (5)

Initial value: With x;(0) = 15, x2(0) = 0, x3(0) = 0, we get

3C1 = 15
—6C1 +C = 0
5C1 —5C2 +c = 0

Values for the constants:

= 5, C = 30, C3 = 125

T



Compartmental analysis (6)

Particular solution:

15 0 0
x(t)=| =30 | e 2+ | =30 |e 4+ | 0 |e "
25 30 125
]5 T T T T T
x=x,() )

10 2
S AN EE U §

5 2]

x=x3(1) |
0

I
0 5 10 15 20 25 30
{

[} = =
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Outline

© The eigenvalue method for linear systems

@ Complex eigenvalues
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Method for complex eigenvalues

~ Theorem 7.

Consider the system with constant matrix

x'(t) = Ax(t), x(t) eR", A€ M,,.

Hypothesis: We have complex eigenvalues/eigenvectors

A=a=x1f and u=ax:b.

Conclusion: We have 2 real valued independent solutions to

x1(t) = e*(cos(ft)a —sin(St)b)
x2(t) = e* (sin(ft)a+ cos(SBt)b).

\.

(4)

(4)

Samy T. Systems Differential equations
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Example with complex eigenvalues

Equation:

TR



Example with complex eigenvalues (2)

Fundamental solutions:
cos(t) | _1;
xi(t) = . e >

x(t) =

Remark: Only A, u; are used in order to compute x; and x;

Samy T. Systems Differential equations 44 / 93
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@ Multiple eigenvalue solutions

=] = - = a



Example of matrix with repeated root
1 -1
(173

Pa(r) = det(A —rld) = (r — 2)2

Matrix:

Characteristic polynomial:

Eigenvalues and eigenvectors:

I’:2, V1:<_1>

Remark: r = 2 is a double eigenvalue, with 1 eigenvector only.

Samy T. Systems Differential equations 46 / 93



Generalized eigenvectors with multiplicity 2

System: x’ = Ax, with A € R>? and det(A) # 0

Situation:
@ A has a double eigenvalue r
e Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
@ Find vy such that (A — rld)?v, = 0, but not parallel to v
@ Compute v; = (A — rld)v;

© Then vy, v, are generalized eigenvectors

Samy T. Systems Differential equations 47 / 93



Solving systems with multiplicity 2

Situation:
@ We consider the system x’ = Ax
@ A has a double eigenvalue r

@ Generalized eigenvectors vy, v,

Corresponding fundamental solutions: We get

xi1(t) = wvie”
x2(t) = (vit+wvp)e™

Samy T. Systems Differential equations 48 / 93



Example with multiplicity 2 (1)

Equation:

Eigenvalues and eigenvector:
o 1
r =2 (multiplicity 2), v = ( 1 )

Square of a matrix: We have

-1

A—2Id:[1

_111 ., (A=2d*=0

Samy T. Systems Differential equations 49 / 93



Example with multiplicity 2 (2)

Applying the recipe to find the generalized eigenvectors: We choose

v, = H ;o ovi=(A=2d)v, = [_11]

General solution:

Samy T. Systems Differential equations 50 / 93



Example with multiplicity 2 (3)

Asymptotic behavior: As t — oo

o x(t) — o0
@ limi_o ’fl—gg = —1, thus slope ~ —1

@ x(t) does not approach the asymptote

Graph in the x;x plane:

x‘/”(t)

(2)12
1
= S VL

2/ (A 1 2 x1
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Generalized eigenvectors with multiplicity 3

Situation:
@ A has a triple eigenvalue r
@ Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
@ Find v3 such that (A — rld)3vz = 0, not parallel to v
@ Compute vy = (A — rld)vs
© Compute v; = (A — rld)v;
© Then vy, vy, v3 are generalized eigenvectors

Samy T. Systems Differential equations 52 /93



Solving systems with multiplicity 3

Situation:
@ We consider the system x’ = A x
@ A has a triple eigenvalue r

o Generalized eigenvectors vy, vo, v3

Corresponding fundamental solutions: We get

x1(t) = wie”
x2(t) = (vit+wp)e™
1
x3(t) = <§v1 t2 + ot + v3> e’

Samy T. Systems Differential equations 53 /93



Example with multiplicity 3 (1)
Equation:

0 1
xX=|-5 -3 —7

1 0 0
Aim

2

X

Expression of the general solution to this system

=] =) = £ 9OHQC
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Example with multiplicity 3 (2)

Eigenvalues and eigenvector:

r=—1 (multiplicity 3), v=|1

T



Example with multiplicity 3 (3)

Third power computation: We find

(A+1d)*=0

Value for v3: We take

T



Example with multiplicity 3 (4)

Value for v,: We compute

1 1 2
Vo = (A + |d)V3 =|-5 -2 -7
1 0 1

We get

SEIAN Systems

I

Differential equations
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Example with multiplicity 3 (5)

Checking value for vi: We compute

1 1 2
vi=(A+Ildv,=|-5 -2 -7

1 0 1
—2
vi= |—2| =—-2v
2

Samy T. Systems

We get

1
-5
1

Differential equations
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Example with multiplicity 3 (6)

Fundamental solutions: Recall that
xi1(t) = wvie’’

X2(t) = (vit+wvy)e™®

2

1
x3(t) = (—v1t2+v2t+v3>e

Summarizing values of vy, v;, v3: We have found

—t

-2 1 1
Vi = -2 s Vo = -5 s V3 = 0
2 1 0

59 / 03



Example with multiplicity 3 (7)

Fundamental solutions in our case: We find

[—2
X]_(t) = -2 e_t

_2

[—2t+1
x2(t) = |—2t—5|et

| 2t +1

2+ t+1
x3(t) = —t2 -5t |et

2+t

Samy T. Systems Differential equations 60 / 93



Outline

© A gallery of solution curves of linear systems
@ Real eigenvalues
@ Complex eigenvalues
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Aim

Brief summary of what we have seen:
@ System x’ = Ax

@ )\ eigenvalue with eigenvector v

Then a solution to the system is

x(t) =vet

Next step:
Geometric interpretations of the eigenvalue decomposition

Samy T. Systems Differential equations 62 /93



Summary in a 2-d situation

\

—~ Theorem 8.

System: x/(t) = Ax(t), with A € M,
Then we have 3 cases:

© 2 distinct real eigenvalues: General solution of the form

At Aot

X = cvie™t 4 Ve

@ 2 distinct complex eigenvalues: General solution
x = c;e** (cos(Bt)a — sin(St)b) + ce™* (sin(St)a + cos(St)b)
© Repeated eigenvalue: General solution of the form

x = cvieM + ¢ (vt + vp) M

J

Samy T. Systems Differential equations
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Outline

@ Real eigenvalues
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© A gallery of solution curves of linear systems



Signs for the eigenvalues

Real distinct eigenvalues: We will distinguish 5 cases
@ Nonzero of opposite sign: A\ <0 < A,
@ Both negative: \; < A\, <0
@ Both positive: 0 < Xy < A\
@ One zero, one negative: A\; < A\, =0

@ One zero, one positive: 0 = Ay < g

Repeated eigenvalue: We will distinguish 3 cases
@ Positive: \{ =X >0
@ Negative: \; =\ <0
@ Zero: A\ =X =0
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Saddle points: A\; < 0 < A, (1)

Equation:

Eigenvalue decomposition:

)\1:—2, Vl:[_

General solution:

SEIAN Systems

Differential equations
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Saddle points: A\; < 0 < A, (2)

) -1 1
General solution: x = ¢; [ 6 ] e 24 [ 1 ] et
Geometric information:
@ As t — 00, vy is the asymptotic direction
@ Quadrant in which x is located: according to ¢;, ¢

/
I\ e20, 620 //
\\y '

Ve
>0, c3<0 e
\ i v, /
//
|
e \
d \¢,<0, ;50

i \
4 \

/7 el<0,¢,<0 \

x

x|
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Sinks: A\ < A\ <0 (1)

Equation:

Eigenvalue decomposition:

A = —14, vlzl_;]; A= —T7, vzzlil

General solution:

T



Sinks: A\ < A\ <0 (2)

-1
General solution: x = ¢ [ 5 1 e+ o l 3 1 e 't

Geometric information:
@ Ast— oo, x(t) =0
@ If  #0, as t — oo X' is closer to the direction of v,
@ Quadrant in which x is located: according to ¢;, ¢

I >0, ¢3>0

T



SEIAN Systems

Sources: 0 < Ay < A1 (1)

Equation:

Eigenvalue decomposition:
=7, v = S on=14 v =] L
2 — 9 V2 - 1 1 1 — Y V]_ - 2

General solution:

Differential equations
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Sources: 0 < Ay < A1 (2)

. -1 3
General solution: x = ¢ [ 5 ] e + o [ ] e’t
Geometric information:
@ Ast — o0, x(t) — o0
o If  #0, as t = —oo X' is closer to the direction of v,
@ Quadrant in which x is located: according to ¢, ¢,

I\

By
\

>0, ;<0

)
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Line solutions: A\; < A\; =0 (1)

|36 6]
o6 1

Eigenvalue decomposition:

Equation:

A = —35, vlzl_ll; A =0, V2:[_é1

General solution:

T



Line solutions: A\; < A\p =0 (2)

General solution: x = ¢; [ _? 1 e ¥+ o [ —613 ]

Geometric information:
@ Ast — oo, x(t) = v
@ The solution converges to a constant vector as t — oo
@ Quadrant in which x is located: according to ¢;, ¢

1
Ly
\/7-L |
>0, ;<0
>0, ;>0
|y
i~
<0, ¢,<0 ‘\ [
\ 6<0,6>0
\
\
\
!

T
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Line solutions: 0 = Ay < A\; (1)

Equation:
o 36 6 «
-6 -1

Eigenvalue decomposition:

/\1:35, VI:[ 61, /\2:0, ngl_é‘|

General solution:

Differential equations
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Line solutions: 0 = Ay < A1 (2)
General solution: x = ¢ [ 7? ] e®t 4+ ¢ [ 7% ]

Geometric information:
@ As t — 00, X(t) = V2
@ The solution converges to a constant vector as t — —o0
@ As t — oo, solutions are flowing away from v,

< in the direction of vy
@ Quadrant in which x is located: according to ¢, ¢

lz\\
\

€1>0,'¢,<0
v

€1<0,6,<0 |\
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Repeated eigenvalue with 2 eigenvectors (1)

Equation:
<=2 %«
10 2

Eigenvalue decomposition: Double eigenvalue,

)‘:27 V1:lé‘|7 VZZ[

General solution:

Samy T. Systems

Differential equations

76 /93



Repeated eigenvalue with 2 eigenvectors (2)

General solution: x = [ “ ] et
%)
Geometric information:
@ Solutions are rays
@ As t — o0, solutions are flowing away from 0
< in the direction of (¢, )

@ Quadrant in which x is located: according to ¢, ¢

<0, ;>0 A’l'
<0, ¢y<0, th

G|
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Repeated eigenvalue with 1 eigenvector (1)

=|1 73«
137

Eigenvalue decomposition: Double eigenvalue \ = 4,

Equation:

Eigenvector v; = [ ] ,  Generalized eigenvector v, = [ (1) 1

3

General solution:
-3 —3t+1
x:cll 3]e4t+czl 3t]e4t
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Repeated eigenvalue with 1 eigenvector (2)

—3t+1 ] ot

General solution: x = ¢; [ _2 ] e+ o [ 3t

Geometric information:
@ lim;,_ x(t) = 0, along the direction of v;
@ As t — oo, solutions are flowing away from 0
— along the direction of v;
@ Half plane in which x is located: according to ¢,

N
N\ 6=0,¢,>0

\

N 2
N 62=0, ¢,<0
<0 \(\
INN

x
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Repeated eigenvalue with 1 eigenvector (3)

Another geometric information:

@ For all curves, the tangent at 0 is vy

Terminology:

This case is called improper nodal source

T



Repeated 0 eigenvalue with 1 eigenvector (1)

x = 2 4 X
=1 =2

Eigenvalue decomposition: Double eigenvalue A = 0,

Equation:

Eigenvector v; = [ ] ,  Generalized eigenvector v, = [ (1) 1

-1

General solution:
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Repeated 0 eigenvalue with 1 eigenvector (2)

General solution: x = ¢; [ _i 1 Yo l 2t —1—_1 1

Geometric information:
@ x line parallel to v;
@ Starting point for t = 0: vy + Vs

€120, €20 =

¢1<0, 6,>0
S~ \
~

~
~
. \ \.\ ‘v:
L]
[ \
VIR
~
~

\ <0, ¢5<0

Differential equations 82 /93
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Outline

@ Complex eigenvalues
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© A gallery of solution curves of linear systems



3 main situations

Cases to be distinguished for A;:
@ Pure imaginary:
A1 =1q with g # 0
o Complex with negative real part:
A =p+1qwithp<0and g#0
@ Complex with positive real part:
A =p+1qwithp>0and g#0

Note: B
We also have A\ = )\

Samy T. Systems Differential equations 84 /93



Elliptic solutions: A\; = 1q (1)

Equation:

8 —6

x’:l6 _17]x, x(0) =

Eigenvalue decomposition:

AL =101, vq = [ﬂ +1 [O

General solution:

B e
‘o (H cos(10¢) + [ 4] S|n(10t)>

SEIAN Systems

Differential equations
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Elliptic solutions: A\; = 1q (2)

Initial value: We take

Computing c1, c: We get

Unique solution:

| 4cos(10t) — sin(10t)
x(t) = 2 cos(10t) + 25sin(10t)

T



Elliptic solutions: A\; = 1q (3)

4 cos(10t) — sin(10t) ]

Unique solution: x = [2 cos(10t) 4 2sin(10t)

Geometric information:
@ Solution located on an ellipse

@ Goes counterclockwise like the previous ellipse

Y
AN

¥
\
\
\
\
\
LS &N
J
= \

X
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Spiral solutions: A\; = p + 1q, with p < 0 (1)
Equation:
[T e

Eigenvalue decomposition:
3 5
)\1 =—-1+ 10’&, Vi = l4] +1 |})]

General solution:

e = e [f ton ] s
toet qﬂ cos(10¢) + [ 41 sm(lOt))

T



Spiral solutions: A\; = p 4 1q, with p < 0 (2)

Initial value: We take

Computing c1, c: We get

Unique solution:

| e7*(4cos(10t) —sin(10t))
x(t) = e " (2cos(10t) + 2sin(10t))

T



Spiral solutions: A\; = p + 1q, with p < 0 (3)

e~ (4 cos(10t) —sin(10t)) ]

Unique solution: x = e " (2cos(10t) + 25sin(10t))

Geometric information:
@ Solution located on an "ellipse" reeling in as t — oo
@ Goes counterclockwise: x'(0) = 10(—1,2)"

T



Spiral solutions: A\; = p + 1q, with p > 0 (1)
Equation:
, -5 17 4
x:[_8 7]x, x(O):[Q]
Eigenvalue decomposition:
)\1:1+1OZ, V] = |f1 +Z|é]

4 0

General solution:

e = et [f mton - ] o)
ot (H cos(10¢) + [ 4] sm(lOt))

T



Spiral solutions: A\; = p 4 1q, with p > 0 (2)

Initial value: We take

Computing c1, c: We get

Unique solution:

| e"(4cos(10t) — sin(10t))
x(t) = e’ (2 cos(10t) + 2sin(10t))

T



Spiral solutions: A\; = p + 1q, with p > 0 (3)

e (4 cos(10t) — sin(10t)) ]

Unique solution: x = | ¢ 5 cos(10¢) + 25in(101))

Geometric information:
@ Solution located on an "ellipse" spiraling away as t — oo
@ Goes clockwise (ellipse has been inverted)
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