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Interest of differential equations

Differential equation:
Equation in which the derivative of a function appears.

Features of differential equations:
@ Theoretical interest

@ Always related to a physical system:

Fluid dynamics
Electrical circuits
Population dynamics
Economy, finance

vV vV VvV Vv

@ More than 300 years of study

@ Still active domain of research
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Expression of Newton's law

Example of physical situation:
Object falling in the atmosphere near sea level

Notation:

@ t = time variable, in seconds

@ v = velocity, depends on time v = v(t), in ms™!
e F = force

@ a = acceleration

Orientation: Downwards

Newton's law:
= dv
=ma=m—
dt
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Gravity example (2)
Forces acting on the object:

o Gravity: mg, where g = 9.81ms~2 close to earth

@ Air resistance, drag: —yv, where v object dependent

»

oOm
mg
Total force: F = mg —yv
Resulting equation:
dv (1)
m— =mg — v
pm g — 7
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Qualitative study

Specific values for coefficients:
< We take m = 10kg and v = 2kg s *
Specific equation:
— =908—-— (2)
Note:

@ One can solve equation (2)

@ Qualitative study: draw conclusions from equation itself

Example of slope:

< If v =40, then % = 1.8
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Direction field

Meaning of the graph:
— Values of % according to values of v
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What can be seen on the graph:
o Critical value: v, = 49ms™1, solution to 9.8 — % =0
o If v < v.: positive slope
o If v > v.: negative slope
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Qualitative study (2)

Equilibrium: According to the graph
@ v(t) = v, is solution to (2)
@ All solutions converge to v, as t — oo

Remark:
@ The facts above will be shown later on

@ v, is called equilibrium for system (2)

Generalization: For general system (1):
e Equilibrium: v, = %
@ Convergence to equilibrium
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Predator-pray model

Situation:
e p = p(t) = mice population
@ Reproduction rate for mice: r mice/month

@ Presence of owl: k mice eaten per month

Resulting equation:
dp

ok
dar P
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Direction field
Meaning of the graph:

dv .
— Values of & according to values of v
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What can be seen on the graph:

@ Critical value: p. = é solution to

e If p < p.: negative slope

o If p > p.: positive slope

m—k
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Qualitative study (2)

Equilibrium: According to the graph
@ p(t) = p. is solution to (2)
@ A solution will never converge to p. as t — 0o
e If p(0) > p., population increases
e If p(0) < p, extinction

Remark:

@ p. is an unstable equilibrium for system (2)
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Importance of direction fields

General form of an equation:

dy
L f(t
™ (t,y)

Conclusions from previous examples:
@ Importance of direction fields graphs (t,y) — f(t,y)
@ Plotting (t,y) — f(t,y) is easier than solving the equation
© It can be done with the help of a computer
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Matlab dfield8 function

Remote connexion to Matlab:

0 LOg ON https://goremote.itap.purdue.edu/Citrix/XenApp/auth/login.aspx
@ Choose

» Course Software

» Science

» Math

» Dfield
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Matlab dfield8 function (2)
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Matlab dfield8 function (3
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Mice and owl equation

Specific form:

dp
— = 0.5p — 450 3
e p (3)
Integration of the equation: We have

P 1
p—900 2

Integrating we obtain:

t
p(t) = 900 + cexp <§>  with ceR.
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Initial data

Family of solutions:
@ We have seen: solutions depend on parameter ¢
@ One way to find c: specify value of p(0)
e Example: if p(0) = 850, then p(t) = 900 — 50 exp(t/2)

Graph of solutions according to initial condition:
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General solution

,—[Proposition 1.]

Equation considered:

dy _
dt

Hypothesis:

Then the unique solution to (4) is given by:

y(t) =2+ [yo - ﬂ edt

\.

a,beR, a+#0, y(0) € R.
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Mice and owl reloaded

Equation:
dp

ok
da P

Expression of solution: with initial condition py > 0,
k k
p(t) = —+ lpo - 1 e
r r

Remarks:
o If pp = é solution stays at equilibrium

o If pp < é solution decreases until extinction

— Negative values of p are physically meaningless
k . . .
o If pp > ¥, solution grows exponentially (critics to model?)

@ This could be seen on the previous graph
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Gravity reloaded

Equation:
dv ~
R — —V
dt & m
Expression of solution: with initial condition vy € R,

m m t
v(t) = me + [vo - g} e m
Y Y
Remarks:
o If vy = %, solution stays at equilibrium

o If vog # ﬂf convergence to equilibrium
< exponential convergence, rate -1

@ From v, one can retrieve position x
— find velocity v when a dropped object hits the ground
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Ordinary vs partial differential equations

Ordinary differential equation: depends on one variable only
e Gravity, v=v(t) ; Mice an owl, p=p(t)

@ Capacitor with capacitance C, resistance R, inductance L:

Partial differential equation: depends on two or more variables
@ Heat equation:
,0°u  Ou
“ox2 T ot
@ Wave equation:
, 0%u  O%u

T
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Systems of differential equations

Definition: Systems of differential equations
< when 2 or more unknown functions are involved

Example: Lotka-Volterra predator-pray model

Z’; = ax — axy
¥ = -y +y

Remark: In many engineering situations
— lots of coupled differential equations
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Order of a differential equation
Definition: Order of a differential equation
= Order of highest derivative appearing in equation

Examples:
@ Gravity, Mice-owl: first order
e Capacitor: second order

@ Heat, wave: second order partial differential equations

General form of n-th order differential equation:

Fly,y,...,y') =0 (5)
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Linear and nonlinear equations

Definition: In equation (5),
o If F is linear, differential equation is linear
e If F is not linear, differential equation is nonlinear

Examples:
o Gravity, Mice-owl, Capacitor: linear differential equations
@ Heat, wave: linear partial differential equations

@ Lotka-Volterra: nonlinear, because of term xy

Remark:
Nonlinear equations are harder to solve than linear equations
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Solutions to differential equations

Definition: Solution to equation (5) on [a, b]

< any function ¢ such that ¢, ¢, ..., (" exist and
F(o(8). ¢/(1),...,0"(8)) =0, for t€[ab]

Remark: If we have an intuition for a solution to (5)

— verification is easy

Example: For equation
y'+y =0,

easy to check that sin(t) and cos(t) are solutions
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Issues related to differential equations

General form of equation:

List of problems:
@ Existence to solution
@ Uniqueness of solution
© Find exact solutions in simple cases
© Approximation of solution in complex cases

© Combine analytic, graphical and numerical methods
— to understand solutions
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