First order differential equations

Samy Tindel

Purdue University

Differential equations - MA266

Taken from *Elementary differential equations* by Boyce and DiPrima
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
First order differential equations

General form of equation:

\[
\frac{dy}{dt} = f(t, y)
\]

List of problems:
1. Existence of solution
2. Uniqueness of solution
3. Find exact solutions in simple cases
4. Approximation of solution in complex cases
5. Combine analytic, graphical and numerical methods to understand solutions
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
General form of 1st order linear equation

General form 1:
\[
\frac{dy}{dt} + p(t)y = g(t)
\]

General form 2:
\[
P(t)\frac{dy}{dt} + Q(t)y = G(t)
\]

Remark:
2 forms are equivalent if \(P(t) \neq 0 \)
Example with direct integration

Equation:

\[(4 + t^2) \frac{dy}{dt} + 2t \, y = 4t\]

Equivalent form:

\[\frac{d}{dt} \left[(4 + t^2) \, y\right] = 4t\]

General solution: For a constant \(c \in \mathbb{R}\),

\[y = \frac{2t^2 + c}{4 + t^2}\]
Method of integrating factor

General equation:

$$\frac{dy}{dt} + p(t)y = g(t)$$ \hspace{1cm} (1)

Recipe for the method:

1. Consider equation (1)
2. Multiply the equation by a function μ
3. Try to choose μ such that equation (1) is reduced to:

$$\frac{d(\mu y)}{dt} = a(t)$$ \hspace{1cm} (2)

4. Integrate directly equation (2)

Notation: If previous recipe works, μ is called integrating factor
Example of integrating factor

Equation:

\[
\frac{dy}{dt} + \frac{1}{2} y = \frac{1}{2} e^{t/3}
\]

(3)

Multiplication by \(\mu \):

\[
\mu(t) \frac{dy}{dt} + \frac{1}{2} \mu(t) y = \frac{1}{2} \mu(t) e^{t/3}
\]

Integrating factor: Choose \(\mu \) such that \(\mu' = \frac{1}{2} \mu \), i.e \(\mu(t) = e^{t/2} \)

Solving the equation: We have, for \(c \in \mathbb{R} \)

\[
(3) \iff \frac{d \left(e^{t/2} y \right)}{dt} = \frac{1}{2} e^{5t/6}
\]

\[\iff y(t) = \frac{3}{5} e^{\frac{t}{3}} + c e^{-\frac{t}{2}}\]
Example of integrating factor (2)

Solution for a given initial data: If we know $y(0) = 1$, then

$$y(t) = \frac{3}{5} e^{\frac{t}{3}} + \frac{2}{5} e^{-\frac{t}{2}}$$

Direction fields and integral curves:
General case with constant coefficient

Proposition 1.

Equation considered:

\[
\frac{dy}{dt} + ay = g(t), \quad \text{and} \quad y(0) = y_0. \quad (4)
\]

Hypothesis:

\[a \in \mathbb{R}, \quad g : \mathbb{R}_+ \rightarrow \mathbb{R} \text{ continuous.}\]

Then general solution to (4) is given by:

\[y(t) = e^{-at} \int_{t_0}^{t} e^{as} g(s) \, ds + c e^{-at}.\]

with \(t_0 \geq 0\) and \(c \in \mathbb{R}\).
Example with exponential growth

Equation:

\[\frac{dy}{dt} - 2y = 4 - t \]

General solution: for \(c \in \mathbb{R} \),

\[y(t) = -\frac{7}{4} + \frac{t}{2} + c e^{2t} \]

Direction fields and integral curves:
General first order linear case

Equation considered:

\[
\frac{dy}{dt} + p(t)y = g(t), \quad (5)
\]

Integrating factor:

\[
\mu(t) = \exp \left(\int p(r) \, dr \right).
\]

Then general solution to (5) is given by:

\[
y(t) = \frac{1}{\mu(t)} \left[\int_{t_0}^{t} \mu(s) g(s) \, ds + c \right].
\]

with \(t_0 \geq 0 \) and \(c \in \mathbb{R} \).
Example with unbounded \(p \)

Equation considered:

\[
t \, y' + 2y = 4t^2, \quad y(1) = 2. \tag{6}
\]

Equivalent form:

\[
y' + \frac{2}{t} \, y = 4t, \quad y(1) = 2.
\]

Integrating factor:

\[
\mu(t) = t^2.
\]

Solution:

\[
y(t) = t^2 + \frac{1}{t^2}
\]
Example with unbounded p (2)

Some integral curves:

Comments:

1. First example of solution which is not defined for all $t \geq 0$
2. Due to singularity of $t \mapsto \frac{1}{t}$
3. Integral curves for $t < 0$: not part of initial value problem
4. According to value of $y(1)$, different asymptotics as $t \to 0$
5. Boundary between 2 behaviors: function $y(t) = t^2$
Example with no analytic solution

Equation considered:

\[2y' + ty = 2, \quad y(0) = 1. \]

Integrating factor:

\[\mu(t) = \exp\left(\frac{t^2}{4}\right). \]

Solution:

\[y(t) = \exp\left(-\frac{t^2}{4}\right) \int_0^t \exp\left(\frac{s^2}{4}\right) \, ds + c \exp\left(-\frac{t^2}{4}\right). \]

Some integral curves obtained by approximation:
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
General form of separable equation

Notational change: y seen as function of x instead of t.

General form of first order equation:

$$\frac{dy}{dx} = f(x, y)$$

General form of separable equation:

$$M(x) + N(y) \frac{dy}{dx} = 0.$$

Heuristics to solve a separable equation:

- Write equation as: $M(x) \, dx = -N(y) \, dy$.
- Integrate in x on l.h.s, integrate in y on r.h.s.
Example of separable equation

Equation considered:
\[\frac{dy}{dx} = \frac{x^2}{1 - y^2} \iff -x^2 + (1 - y^2) \frac{dy}{dx} = 0. \] (7)

Chain rule:
\[\frac{df(y)}{dx} = f'(y) \frac{dy}{dx} \]

Application of chain rule:
\[(1 - y^2) \frac{dy}{dx} = \frac{d}{dx} \left(y - \frac{y^3}{3} \right), \quad \text{and} \quad x^2 = \frac{d}{dx} \left(\frac{x^3}{3} \right) \]
Example of separable equation (2)

Equation for integral curves: We have, for $c \in \mathbb{R}$,

$$
(7) \iff \frac{d}{dx} \left(-\frac{x^3}{3} + y - \frac{y^3}{3} \right) = 0 \iff -x^3 + 3y - y^3 = c
$$

Some integral curves obtained by approximation:
General solution for separable equations

Equation considered:

\[M(x) + N(y) \frac{dy}{dx} = 0. \] \hspace{1cm} (8)

Antiderivatives: let \(H_1, H_2 \) such that

\[H'_1(x) = M(x) \quad \text{and} \quad H'_2(y) = N(y). \]

Then general solution to (8) is given by:

\[H_1(x) + H_2(y) = c, \]

with \(c \in \mathbb{R} \).
Solvable example of separable equation

Equation considered:

\[
\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y - 1)}, \quad \text{and} \quad y(0) = -1. \tag{9}
\]

Integration: for a constant \(c \in \mathbb{R} \),

\[
(9) \iff 2(y - 1) \, dy = \left(3x^2 + 4x + 2\right) \, dx
\]

\[
\iff y^2 - 2y = x^3 + 2x^2 + 2x + c
\]

Solving the equation: if \(y(0) = -1 \), we have \(c = 3 \) and

\[
y = 1 \pm \left(x^3 + 2x^2 + 2x + 4\right)^{1/2}
\]
Solvable example of separable equation (2)

Determination of sign: Using $y(0) = -1$ again, we get

$$y = 1 - \left(x^3 + 2x^2 + 2x + 4 \right)^{1/2} = 1 - \left((x + 2)(x^2 + 2) \right)^{1/2}$$

Interval of definition: $x \in (-2, \infty)$

\rightarrow boundary corresponds to vertical tangent on graph below

Integral curves:
Example of equation with implicit solution

Equation considered:

\[\frac{dy}{dx} = \frac{4x - x^3}{4 + y^3}. \]

General solution: for a constant \(c \in \mathbb{R} \),

\[y^4 + 16y + x^4 - 8x^2 = c \]

Initial value problem: if \(y(0) = 1 \), we get

\[y^4 + 16y + x^4 - 8x^2 = 17 \]
Example of equation with implicit solution (2)

Integral curves:

Interval of definition:
\[\left(-3.3488, -1.5674 \right) \rightarrow \text{boundary corresponds to vertical tangent on graph} \]
Implicit equations with Matlab

Preliminary remark:
- Most of equations in HW will be solved explicitly
- To plot functions: use ezplot

Implicit equation:
- Of the form $H_2(y) = c$
- Use function solve

Implicit function:
- Of the form $H_2(y) = H_1(x)$
- Loop on values of x
- For each value of x, use function solve
- Easier: use ezplot
Homework hints

Problem 2.2-11:
- Equation: \(x \, dx + y \exp(-x) \, dy = 0 \), with \(y(0) = 1 \)
- Solution: \(y(x) = (2 \exp(x) - 2x \exp(-x) - 1) \)
- Radical vanishes for \(x_1 \approx -1.7 \) and \(x_2 \approx 0.77 \)

Problem 2.2-22:
- Equation: \((3y^2 - 4)dy = 3x^2 \, dx \), with \(y(1) = 0 \)
- Solution: \(y^3 - 4y = x^3 - 1 \)
- From equation, \(y' \to \infty \) when \(y \to \pm \frac{2}{\sqrt{3}} \)
- This corresponds to \(x_1 \approx -1.276 \) and \(x_2 \approx 1.598 \)
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
General form of homogeneous equation

Recall: y seen as function of x instead of t.

General form of first order equation:

$$\frac{dy}{dx} = f(x, y)$$

General form of homogeneous equation:

$$\frac{dy}{dx} = \varphi\left(\frac{y}{x}\right).$$

Heuristics to solve homogeneous equations:

- Go back to a separable equation
Solving homogeneous equations

Equation:

\[
\frac{dy}{dx} = \varphi \left(\frac{y}{x} \right). \tag{10}
\]

General method:

1. Set \(y(x) = x \, v(x) \), and express \(y' \) in terms of \(x, v, v' \).
2. Replace in equation (10) → separable equation in \(v \).
3. Solve the separable equation in \(v \).
4. Go back to \(y \) recalling \(y = x \, v \).
Example of homogeneous equation

Equation:

\[
\frac{dy}{dx} = \frac{y - 4x}{x - y}
\]

Equation for \(v\):

\[
\frac{1 - v}{v^2 - 4} \frac{dv}{dx} = \frac{1}{x}
\]

Solution for the \(v\) equation: for \(c \in \mathbb{R}\),

\[
|v - 2|^{1/4} |v + 2|^{3/4} = \frac{c}{|x|}
\]
Example of homogeneous equation (2)

Solution for the y equation: for $c \in \mathbb{R}$,

$$|y - 2x|^{1/4}|y + 2x|^{3/4} = c$$

Graph for the implicit equation: observe symmetry w.r.t origin
Problem 2.2-32:

- Equation: \(y' = \frac{x^2 + 3y^2}{2xy} \)
- Solution for the \(v \) equation: \(v = \pm (cx - 1)^{1/2} \)
- Solution for the \(y \) equation: \(y = \pm x(cx - 1)^{1/2} \)
Homework hints (2)

Problem 2.2-B:
- Equation: \(y' = (y + x)^2 \)
- Set \(u = x + y \)
- Equation in \(u \):
 \[
 \frac{u'}{u^2 + 1} = 1, \text{ of the form } \frac{u'}{f(u)} = g(u)
 \]

Problem 2.2-C:
- Equation: \(y^2 y' + \frac{y^3}{x} = \frac{2}{x^2} \)
- Set \(u = y^3 \)
- Equation in \(u \): of the form
 \[
 \frac{u'}{3} + \frac{u}{x} = \frac{2}{x^2}, \text{ of the form } u' + p(x)u = g(u)
 \]
Global strategy

Interest of modeling:
Numerical predictions replace costly experiments

Basic steps:

1. Translate physical principles into equations
 - Variations involved → 1st order equation
 - Simplifications can often be useful

2. Analyze the system
 - Solve equation
 - Otherwise try to analyze behavior of system
 - Possible linearization of the system

3. Comparison with experimental data
Salt concentration example

Description of experiment:

- At $t = 0$, Q_0 lb of salt dissolved in 100 gal of water
- Water containing $\frac{1}{4}$ lb salt/gal entering, with rate r gal/min
- Well-stirred mixture draining from tank, rate r
Salt concentration example (2)

Notation: $Q(t) \equiv$ quantity of salt at time t

Hypothesis: Variations of Q due to flows in and out,

\[
\frac{dQ}{dt} = \text{rate in} - \text{rate out}
\]

Equation:

\[
\frac{dQ}{dt} = \frac{r}{4} - \frac{rQ}{100}, \quad Q(0) = Q_0
\]

Equation, standard form:

\[
\frac{dQ}{dt} + \frac{r}{100} Q = \frac{r}{4}, \quad Q(0) = Q_0
\]
Salt concentration example (3)

Integrating factor: \(\mu(t) = e^{rt} \)

Solution:

\[
Q(t) = 25 + (Q_0 - 25) e^{-\frac{rt}{100}}
\]

Integral curves:
Salt concentration example (4)

Expression for Q:

$$Q(t) = 25 + (Q_0 - 25) e^{-\frac{rt}{100}}$$

Question: time to reach $q \in (Q_0, 25)$?

Answer: We find

$$Q(t) = q \iff t = \frac{100}{r} \ln \left(\frac{Q_0 - 25}{q - 25} \right)$$

Application: If $r = 3$, $Q_0 = 50$ and $q = 25.5$, then:

$$t = 130.4 \text{ min}$$
Chemical pollution example

Description of experiment:

- At $t = 0$, 10^7 gal of fresh water
- Water containing unwanted chemical component entering with rate $5 \cdot 10^6$ gal/year
- Water flows out, same rate $5 \cdot 10^6$ gal/year
- Concentration of chemical in incoming water:

$$\gamma(t) = 2 + \sin(2t) \text{ g/gal}$$
Chemical pollution example (2)

Notation: \(Q(t) \equiv \) quantity of chemical comp. at time \(t \)
\(\rightarrow \) measured in grams

Remark: Volume is constant

Hypothesis: Variations of \(Q \) due to flows in and out,

\[
\frac{dQ}{dt} = \text{rate in} - \text{rate out}
\]

Equation:

\[
\frac{dQ}{dt} = 5 \cdot 10^6 \gamma(t) - 5 \cdot 10^6 \cdot \frac{Q}{10^7}, \quad Q(0) = 0
\]
Chemical pollution example (3)

Equation, standard form: We set $Q = 10^6 q$ and get

$$\frac{dq}{dt} + \frac{1}{2} q = 10 + 5 \sin(2t), \quad q(0) = 0$$

Integrating factor: $\mu(t) = e^{\frac{t}{2}}$

Solution:

$$q(t) = 20 - \frac{40}{17} \cos(2t) + \frac{10}{17} \sin(2t) - \frac{300}{17} e^{-\frac{t}{2}}$$

Integral curve:
Cooling cup example

Description of experiment:
- Cup of coffee cooling in a room

Notation:
- $T(t) \equiv$ temperature of cup
- $\tau \equiv$ temperature of room

Newton’s law for thermic exchange:
Variations of temperature proportional to difference between T and τ

Equation:
$$\frac{dT}{dt} = -k(T - \tau), \quad T(0) = T_0.$$
Escape velocity example

Notation:
- $x \equiv$ altitude
- $x = 0$: surface of earth

Description of experiment:
- Body with mass m
- Initial velocity v_0, upward
- Air resistance negligible
- Newton’s constant g depends on altitude
Escape velocity example (2)

Gravitational force: given by

\[w(x) = -\frac{k}{(R + x)^2}, \quad \text{and} \quad w(0) = -mg. \]

Hence:

\[w(x) = -\frac{mgR^2}{(R + x)^2}. \]

Equation: according to Newton’s law,

\[m \frac{dv}{dt} = -\frac{mgR^2}{(R + x)^2}, \quad v(0) = v_0. \]
Escape velocity example (3)

Elimination of variable: We have (chain rule)

\[\frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v \frac{dv}{dx}. \]

Therefore we get a separable equation:

\[m \frac{dv}{dt} = -\frac{mgR^2}{(R + x)^2} \iff v \frac{dv}{dx} = -\frac{gR^2}{(R + x)^2} \]

Integration of equation: for \(c \in \mathbb{R} \),

\[\frac{v^2}{2} = \frac{gR^2}{R + x} + c \]
Escape velocity example (4)

Solution: with $v(0) = v_0$ we get

$$v = \pm \left(v_0^2 - 2gR + \frac{2gR^2}{R + x} \right)^{1/2}, \quad (12)$$

and sign according to direction of velocity.

Question: maximal altitude that body reaches?

\leftarrow We seek ξ such that $v = 0$ whenever $x = \xi$ in (12)

Answer: We find

$$\xi = \frac{v_0^2 R}{2gR - v_0^2}$$

Escape velocity: in order to have $\xi = \infty$

\leftarrow take $v_0 = (2gR)^{1/2} = 11.1 \text{ km s}^{-1}$
Problem 20, section 2.3

Experiment:
- Ball with mass m thrown with velocity v_0
- Initial height: x_0
- Air resistance neglected

Equation:

$$v' = -g$$

Solution:

$$v = v_0 - gt.$$

Maximal height: when $v = 0$, that is $t = \frac{v_0}{g}$

Equation for height:

$$x(t) = x_0 + \int_0^t v(s) ds = x_0 + v_0 t - \frac{gt^2}{2}$$
Problem 21, section 2.3

Experiment:
- Ball with mass m thrown with velocity v_0
- Initial height: x_0
- Air resistance: $-\gamma v$

Equation: linear 1st order equation of the form

$$v' = -mg - \gamma v$$

Solution:

$$v = -\frac{mg}{\gamma} + \left(v_0 + \frac{mg}{\gamma}\right) e^{-\frac{\gamma}{m} t}.$$

Maximal height: when $v = 0$, that is

$$t = \frac{m}{\gamma} \ln \left(1 + \frac{v_0 \gamma}{mg}\right) \gamma \text{ small} \quad \frac{v_0}{g}$$
Problem 22, section 2.3

Experiment:
- Ball with mass m thrown with velocity v_0
- Initial height: x_0
- Air resistance: $-\gamma v^2$

Equation: whenever $v \geq 0$, separable equation of the form

$$v' = -g - \frac{\gamma}{m} v^2$$

Solution: recalling $\int \frac{dx}{x^2+a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a})$, we get

$$v = \left(\frac{mg}{\gamma}\right)^{1/2} \tan \left(c - \left(\frac{mg}{\gamma}\right)^{1/2} t\right),$$

with $c = \tan^{-1}\left((\frac{\gamma}{mg})^{1/2} v_0\right)$.
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
Existence and uniqueness results: why?

Interest of existence and uniqueness results:

1. Mathematical interest
2. Before studying a physical system represented by an equation, know if it admits solutions
3. If a solution to an equation is exhibited, know if it is the only one
Existence and uniqueness: linear case

Theorem 4.

General linear equation:

\[y' + p(t)y = g(t), \quad y(t_0) = y_0 \in \mathbb{R}. \] \hspace{1cm} (13)

Hypothesis:
- \(t_0 \in I, \) where \(I = (\alpha, \beta). \)
- \(p \) and \(g \) continuous on \(I. \)

Conclusion:
There exists a unique function \(y \) satisfying equation (13) on \(I. \)

Remark: According to Theorem
\[\leftrightarrow \quad \text{Solution fails to exists only when } p \text{ or } g \text{ are discontinuous} \]
Existence and uniqueness: nonlinear case

Theorem 5.

General nonlinear equation:

\[y' = f(t, y), \quad y(0) = y_0 \in \mathbb{R}. \] \hspace{1cm} (14)

Hypothesis:

- \((t_0, y_0) \in R\), where \(R = (\alpha, \beta) \times (\gamma, \delta) \).
- \(f \) and \(\frac{\partial f}{\partial y} \) continuous on \(R \).

Conclusion:

One can find \(h > 0 \) such that there exists a unique function \(y \) satisfying equation (14) on \((t_0 - h, t_0 + h)\).

Remark: If \(f \) is continuous, we still get existence of a solution.
Maximal interval in a linear case

Equation considered: back to equation (6), namely

\[t y' + 2y = 4t^2, \quad y(1) = 2. \]

Equivalent form:

\[y' + \frac{2}{t} y = 4t, \quad y(1) = 2. \]

Application of Theorem 4:

- \(g(t) = 4t \) continuous on \(\mathbb{R} \)
- \(p(t) = \frac{2}{t} \) continuous on \((-\infty, 0) \cup (0, \infty) \) only
- \(1 \in (0, \infty) \)

We thus get unique solution on \((0, \infty) \)
Maximal interval in a linear case (2)

Comparison with explicit solution: We have seen that

\[y' + \frac{2}{t} y = 4t, \quad y(1) = 2 \quad \implies \quad y(t) = t^2 + \frac{1}{t^2}. \]

This is defined on \((0, \infty)\) as predicted by Theorem 4.

Changing initial condition: consider

\[y' + \frac{2}{t} y = 4t, \quad y(-1) = 2. \]

Then:

- Solution defined on \((-\infty, 0)\)
- On \((-\infty, 0)\) we have \(y(t) = t^2 + \frac{1}{t^2}\).
Maximal interval in a linear case (3)

Interval of definition on integral curves:

Comments:
- Interval of definition delimited by asymptotes
Maximal interval in a nonlinear case

Equation considered: back to equation (9), namely

\[y' = \frac{3x^2 + 4x + 2}{2(y - 1)}, \quad \text{and} \quad y(0) = -1. \]

Application of Theorem 5: we have

\[f(x, y) = \frac{3x^2 + 4x + 2}{2(y - 1)}, \quad \frac{\partial f}{\partial y}(x, y) = -\frac{3x^2 + 4x + 2}{2(y - 1)^2} \]

Therefore:

1. There exists rectangle \(R \) such that
 - \((0, -1) \in R\)
 - \(f \) and \(\frac{\partial f}{\partial y} \) continuous on \(R \)

2. According to Theorem 5 there is unique solution on interval \((-h, h)\), with \(h > 0 \)
Comparison with explicit solution: We have seen that

\[y = 1 - \left((x + 2)(x^2 + 2) \right)^{1/2} \]

Interval of definition: \(x \in (-2, \infty) \)

\(\leftrightarrow \) much larger than predicted by Theorem 5

Changing initial condition: consider \(y(0) = 1 \), on line \(y = 1 \). Then:

1. Theorem 5: nothing about possible solutions
2. Direct integration:
 - We find \(y = 1 \pm (x^3 + 2x^2 + 2x)^{1/2} \)
 - 2 possible solutions defined for \(x > 0 \)
Maximal interval in a nonlinear case (3)

Interval of definition on integral curves:

Comments:

- Interval of definition delimited by vertical tangents
Example with non-uniqueness

Equation considered:

\[y' = y^{1/3}, \quad \text{and} \quad y(0) = 0. \]

Application of Theorem 5: \(f(y) = y^{1/3} \). Hence,

- \(f : \mathbb{R} \to \mathbb{R} \) continuous on \(\mathbb{R} \), differentiable on \(\mathbb{R}^* \)
- Theorem 5: gives existence, not uniqueness

Solving the problem: Separable equation, thus

- General solution: for \(c \in \mathbb{R} \), \(y = \left[\frac{2}{3}(t + c) \right]^{3/2} \)
- With initial condition \(y(0) = 0 \),

\[y = \left(\frac{2t}{3} \right)^{3/2} \]
Example with non-uniqueness (2)

3 solutions to the equation:

\[
\phi_1(t) = \left(\frac{2t}{3}\right)^{3/2}, \quad \phi_2(t) = -\left(\frac{2t}{3}\right)^{3/2}, \quad \psi(t) = 0.
\]

Family of solutions: For any \(t_0 \geq 0 \),

\[
\chi(t) = \chi_{t_0}(t) = \begin{cases}
0 & \text{for } 0 \leq t < t_0 \\
\pm \left(\frac{2(t-t_0)}{3}\right)^{3/2} & \text{for } t \geq t_0
\end{cases}
\]

Integral curves:
Comparison linear/nonlinear equations

Nice properties of linear equations:
1. All solutions expressed in terms of a constant c.
2. General formula for solution, involving integrations.
3. Discontinuities/singularities deduced from properties of p and g.

Problems with nonlinear equations:
1. Solutions in terms of a constant c → possibility of other solutions too.
2. No general formula for solutions.
3. Often implicit solution only.
4. Singularities depend on particular equation and initial condition.
Bernoulli equations (HW 2-4 27 and 28)

Equation: For $n \geq 2$,

$$y' + p(t)y = q(t)y^n.$$

Interest of Bernoulli equations:
Nonlinear equations which can be turned into linear equations.

Alternative form:

$$\frac{y'}{y^n} + \frac{p(t)}{y^{n-1}} = q(t)$$

Change of variable: Set $v = \frac{1}{y^{n-1}}$. We get

$$v' - (n-1)p(t)v = -(n-1)q(t) \quad \rightarrow \text{Linear equation}$$
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
Introduction

General form of autonomous equations:

\[\frac{dy}{dt} = f(y) \] \hspace{1cm} (15)

Solving autonomous equations:
This is a special case of separable equation

Aim of the section:

1. Information on equation (15) with graphical methods
2. Applications to population growth models
Exponential growth

Hypothesis:
Rate of change proportional to value of population

Equation: for $r \in \mathbb{R}$ and $y_0 \geq 0$,

$$\frac{dy}{dt} = ry, \quad y(0) = y_0$$

Solution:

$$y = y_0 \exp(rt)$$
Exponential growth (2)

Integral curves:

Limitation of model:
- Cannot be valid for large time t.
Logistic growth

Hypothesis:
- Growth rate depends on population
- Related equation: \(\frac{dy}{dt} = h(y)y \)

Specifications for \(h \):
- \(h(y) \approx r > 0 \) for small values of \(y \)
- \(y \mapsto h(y) \) decreases for larger values of \(y \)
- \(h(y) < 0 \) for large values of \(y \)

Possibility: \(h(y) = r - ay \)

Verhulst equation: for \(r, K > 0 \)

\[
\frac{dy}{dt} = f(y), \quad \text{with} \quad f(y) = r \left(1 - \frac{y}{K}\right) y
\]

(16)
Logistic growth (2)

Vocabulary:
- r: Intrinsic growth.
- K: Saturation level.
- Solutions to $f(y) = 0$: critical points.

Equilibrium solutions:
- Defined as $y \equiv \ell$, where ℓ critical point
- Here 2 equilibrium: $y = 0$ and $y = K$
- If we have:
 - $y(0) = 0$ or $y(0) = K$
 - y satisfies (16),
then y stays constant
Logistic growth (3)

Graphical interpretation 1:

- Draw $y \mapsto f(y)$.
- Here f is a parabola, intercepts $(0, 0)$ and $(K, 0)$.
- We have $\frac{dy}{dt} > 0$ if $y \in (0, K)$.
- We have $\frac{dy}{dt} < 0$ if $y > K$.

Vocabulary: y-axis is called phase line.
Logistic growth (4)

Graphical interpretation 2: behavior of \(t \mapsto y(t) \)

- Draw line \(y = 0 \) and \(y = K \)
- Other curves:
 - Increasing if \(y < K \)
 - Decreasing if \(y > K \)
 - Flattens out as \(y \to 0 \) or \(y \to K \)
- Curves do not intersect
- Possibility of a convexity/concavity analysis (threshold \(\frac{K}{2} \))

![Graphical representation of logistic growth](image)
Logistic growth (5)

Stable and unstable equilibrium:

1. We have seen (phase diagram):
 ▶ y increases if $y < K$
 ▶ y decreases if $y > K$

 Thus K stable equilibrium

2. We have seen (phase diagram):
 ▶ y increases as long as $y > 0$ (and $y < K$)

 Thus 0 unstable equilibrium

Remark:
See also the notion of semi-stable equilibrium
Logistic growth (6)

Solving the equation: Equation (16) can be written as

\[
\left[\frac{1}{y} + \frac{1/K}{1 - y/K} \right] dy = r \, dt
\]

Solution is given by:

\[
y = \frac{y_0 K}{y_0 + (K - y_0) e^{-rt}}
\]

Equilibrium revisited: For all \(y_0 > 0\) we have:

\[
\lim_{t \to \infty} y(t) = K.
\]

Thus \(K\) stable equilibrium.
Critical threshold example

Equation considered: for $r, T > 0$

$$\frac{dy}{dt} = f(y), \quad \text{with} \quad f(y) = -r \left(1 - \frac{y}{T}\right)y$$

Critical points:

$$f(y) = 0 \iff y = 0 \text{ or } y = T$$

This corresponds to 2 equilibrium.
Critical threshold example (2)

Graphical interpretation 1:

- Here f parabola, intercepts $(0, 0)$ and $(T, 0)$.
- We have $\frac{dy}{dt} < 0$ if $y \in (0, T)$
- We have $\frac{dy}{dt} > 0$ if $y > T$

Conclusion for equilibrium:

- T unstable equilibrium
- 0 stable equilibrium
Critical threshold example (3)

Graphical interpretation 2: behavior of $t \mapsto y(t)$

- Draw line $y = 0$ and $y = T$
- Other curves:
 - Increasing if $y > T$
 - Decreasing if $y < T$
 - Flattens out as $y \to 0$
- Curves do not intersect
- Possibility of a convexity/concavity analysis (threshold $\frac{T}{2}$)
Critical threshold example (4)

Solving the equation: Like for equation (16) we get

$$y(t) = \frac{y_0 T}{y_0 + (T - y_0)e^{rt}}$$ (18)

Limiting behavior: according to (18),

1. If $0 < y_0 < T$, we have $\lim_{t \to \infty} y(t) = 0$.
2. If $y_0 > T$, we have $\lim_{t \to t^*} y(t) = \infty$, where

$$t^* = \frac{1}{r} \ln \left(\frac{y_0}{y_0 - T} \right)$$

This behavior could not be inferred from graphic representation.
Equation:

\[y' = y^2(4 - y^2) \equiv f(y) \]

Graph of \(f \): Intercepts for \(x \in \{-2, 0, 2\} \)

Equilibrium:

- \(-2\) and 2 are stable
- 0 is unstable
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
Example of exact equation

Equation considered:

\[2x + y^2 + 2xyy' = 0 \] (19)

Remark: equation (19) neither linear nor separable

Additional function: Set \(\psi(x, y) = x^2 + xy^2 \). Then:

\[\frac{\partial \psi}{\partial x} = 2x + y^2, \quad \text{and} \quad \frac{\partial \psi}{\partial y} = xy. \]
Example of exact equation (2)

Expression of (19) in terms of ψ: we have

\[
(19) \quad \iff \quad \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = 0
\]

Solving the equation: We assume $y = y(x)$. Then

\[
(19) \quad \iff \quad \frac{d\psi}{dx}(x, y) = 0 \quad \iff \quad \psi(x, y) = c,
\]

for a constant $c \in \mathbb{R}$.

Conclusion: equation solved under implicit form

\[
x^2 + xy^2 = c.
\]
Equation considered:

\[M(x, y) + N(x, y) \frac{dy}{dx} = 0. \quad (20) \]

Hypothesis: there exists \(\psi : \mathbb{R}^2 \to \mathbb{R} \) such that

\[\frac{\partial \psi}{\partial x} = M(x, y) \quad \text{and} \quad \frac{\partial \psi}{\partial y} = N(x, y). \]

Conclusion: general solution to (20) is given by:

\[\psi(x, y) = c, \quad \text{with} \quad c \in \mathbb{R}, \]

provided this relation defines \(y = y(x) \) implicitly.
Criterion for exact equations

Notation: For \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \), set \(f_x = \frac{\partial f}{\partial x} \) and \(f_y = \frac{\partial f}{\partial y} \).

Theorem 7.

Let:
- \(R = \{(x, y); \alpha < x < \beta, \text{ and } \gamma < y < \delta\} \).
- \(M, N, M_y, N_x \) continuous on \(R \).

Then there exists \(\psi \) such that:

\[
\psi_x = M, \quad \text{and} \quad \psi_y = N \quad \text{on } R,
\]

if and only if \(M \) and \(N \) satisfy:

\[
M_y = N_x \quad \text{on } R
\]
Computation of function ψ

Aim: If $M_y = N_x$, find ψ such that $\psi_x = M$ and $\psi_y = N$.

Recipe in order to get ψ:

1. Write ψ as antiderivative of M with respect to x:

 $$\psi(x, y) = a(x, y) + h(y), \quad \text{where} \quad a(x, y) = \int M(x, y) \, dx$$

2. Get an equation for h by differentiating with respect to y:

 $$h'(y) = N(x, y) - a_y(x, y)$$

3. Finally we get:

 $$\psi(x, y) = a(x, y) + h(y).$$
Computation of ψ: example

Equation considered:

$$y \cos(x) + 2xe^y + \left(\sin(x) + x^2e^y - 1\right)y' = 0.$$ \hspace{1cm} (21)

Step 1: verify that $M_y = N_x$ on \mathbb{R}^2.

Step 2: compute ψ according to recipe. We find

$$\psi(x, y) = y \sin(x) + x^2e^y - y$$

Solution to equation (21):

$$y \sin(x) + x^2e^y - y = c.$$
Computation of ψ: counter-example

Equation considered:

$$3xy + y^2 + (x^2 + xy) y' = 0. \quad (22)$$

Step 1: verify that $M_y \neq N_x$.

Step 2: compute ψ according to recipe. We find

$$h'(y) = -\frac{x^2}{2} - xy \quad \rightarrow \quad \text{still depends on } x!$$

Conclusion: Condition $M_y = N_x$ necessary.
Solving an exact equation: example

Equation considered:

\[
2x - y + (2y - x) y' = 0, \quad y(1) = 3. \tag{23}
\]

Step 1: verify that \(M_y = N_x \) on \(\mathbb{R}^2 \).

Step 2: compute \(\psi \) according to recipe. We find

\[
\psi(x, y) = x^2 - xy + y^2.
\]

Solution to equation (23): recalling \(y(1) = 3 \), we get

\[
x^2 - xy + y^2 = 7.
\]
Solving an exact equation: example (2)

Expressing y in terms of x: we get

$$y = \frac{x}{2} \pm \left(7 - \frac{3x^2}{4} \right)^{1/2}.$$

Recalling $y(1) = 3$, we end up with:

$$y = \frac{x}{2} + \left(7 - \frac{3x^2}{4} \right)^{1/2}.$$

Interval of definition:

$$x \in \left(-2\sqrt{\frac{7}{4}}; 2\sqrt{\frac{7}{4}} \right) \simeq (-3.05; 3.05)$$
Equation considered:

\[
\underbrace{ye^{2xy}}_{M} + x + \underbrace{(bxe^{2xy})}_{N} y' = 0, \quad b \in \mathbb{R}.
\]

(24)

Step 1: We have \(M_y = N_x\) iff \(b = 1\).

Step 2: When \(b = 1\), compute \(\psi\) according to recipe. We find

\[
\psi(x, y) = \frac{1}{2} \left(e^{2xy} + x^2 \right).
\]

Solution to equation (24): we get

\[
e^{2xy} + x^2 = c.
\]
Outline

1. Linear equations
2. Separable equations
3. Homogeneous equations
4. Modeling with first order differential equations
5. Differences between linear and nonlinear equations
6. Autonomous equations
7. Exact equations and integrating factors
8. Numerical approximation: Euler’s method
Approximations of first order equations: why?

General facts about (14):

1. If f is continuous, equation can be solved in neighborhood of t_0.
2. Solution y cannot be computed explicitly.

Conclusion:
We need approximations in order to understand behavior of y.

Generic first order equation: back to equation (14), that is

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0$$
Starting from direction fields

Equation considered:

\[
\frac{dy}{dt} = 3 - 2t - 0.5y \tag{25}
\]

Direction fields for (25):

Basic idea: Linking the tangent lines on the graph we get an approximation of solution.
Questions about approximation methods

Basic issues:

1. Method to link tangent lines.
2. Do we get an approximation of real solution?
3. Rate of convergence for approximation.
First steps of approximation

Equation considered: equation (14), that is

\[
\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.
\]

Approximation near \(t_0\):

- Solution passes through \((t_0, y_0)\)
- Slope at \((t_0, y_0)\) is \(f(t_0, y_0)\)
- Consider \(t_1\) close to \(t_0\)

Then linear approximation of \(y(t_1)\) is given by:

\[
y_1 = y_0 + f(t_0, y_0) (t_1 - t_0).
\]
First steps of approximation (2)

Approximation near t_1:

- Solution passes through $(t_1, y(t_1))$
- Problem: we don’t know the exact value of $y(t_1)$
- We approximate $y(t_1)$ by y_1
- Approximate slope at (t_1, y_1) is given by $f(t_1, y_1)$
- Consider t_2 close to t_1

Then linear approximation of $y(t_2)$ is given by:

$$y_2 = y_1 + f(t_1, y_1) \left(t_2 - t_1 \right).$$
Euler scheme

Proposition 8.

Equation considered: equation (14), that is

\[
\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.
\]

Hypothesis: constant step in time,

\[
t_{n+1} - t_n = h.
\]

Notation: \(f_n = f(t_n, y_n), \hat{y} = \text{Euler’s approximation.}\)

Conclusion: Recursive formula for Euler’s scheme,

\[
\begin{align*}
y_{n+1} & = y_n + f_n h \\
\hat{y}(t) & = y_n + f_n (t - t_n), \quad \text{for } t \in [t_0 + nh, t_0 + (n + 1)h]
\end{align*}
\]
Example of Euler scheme

Equation considered: back to equation (25), that is

\[
\frac{dy}{dt} = f(t, y) = 3 - 2t - 0.5y, \quad y(0) = 1
\]

Exact solution: we find

\[
y = \phi(t) = 14 - 4t - 13 \exp\left(-\frac{t}{2}\right)
\]

Euler scheme, step 1: with \(h = 0.2 \) we have

- \(f_0 = f(0, 1) = 2.5 \)
- \(\hat{y}(t) = 1 + 2.5t \) for \(t \in (0, 0.2) \)
- \(y_1 = 1.5 \)
Example of Euler scheme (2)

Euler scheme, step 2: with $h = 0.2$ we have

- $f_1 = f(0.2, 1.5) = 1.85$
- $\hat{y}(t) = 1.5 + 1.85(t - 0.2)$ for $t \in (0.2, 0.4)$
- $y_2 = 1.87$

Numerical results:

<table>
<thead>
<tr>
<th>t</th>
<th>Exact</th>
<th>Euler with $h = 0.2$</th>
<th>Tangent line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>$y = 1 + 2.5t$</td>
</tr>
<tr>
<td>0.2</td>
<td>1.43711</td>
<td>1.50000</td>
<td>$y = 1.13 + 1.85t$</td>
</tr>
<tr>
<td>0.4</td>
<td>1.75650</td>
<td>1.87000</td>
<td>$y = 1.364 + 1.265t$</td>
</tr>
<tr>
<td>0.6</td>
<td>1.96936</td>
<td>2.12300</td>
<td>$y = 1.6799 + 0.7385t$</td>
</tr>
<tr>
<td>0.8</td>
<td>2.08584</td>
<td>2.27070</td>
<td>$y = 2.05898 + 0.26465t$</td>
</tr>
<tr>
<td>1.0</td>
<td>2.11510</td>
<td>2.32363</td>
<td></td>
</tr>
</tbody>
</table>

Remark: about 10% error at $t = 1$

\rightarrow Approximation not accurate enough, smaller h needed.
Example of Euler scheme (3)

Numerical results with varying h:

<table>
<thead>
<tr>
<th>t</th>
<th>Exact</th>
<th>$h = 0.1$</th>
<th>$h = 0.05$</th>
<th>$h = 0.025$</th>
<th>$h = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.0</td>
<td>2.1151</td>
<td>2.2164</td>
<td>2.1651</td>
<td>2.1399</td>
<td>2.1250</td>
</tr>
<tr>
<td>2.0</td>
<td>1.2176</td>
<td>1.3397</td>
<td>1.2780</td>
<td>1.2476</td>
<td>1.2295</td>
</tr>
<tr>
<td>3.0</td>
<td>-0.9007</td>
<td>-0.7903</td>
<td>-0.8459</td>
<td>-0.8734</td>
<td>-0.8898</td>
</tr>
</tbody>
</table>

Comments:
- Error decreases with time step.
- Error could possibly be of order h.
Example of Euler scheme (4)

Graphical comparison for $h = 0.2$:

Remark: $\hat{y} \geq y$
$
\rightarrow$ Due to the fact that y concave \rightarrow tangent above graph
Euler scheme for fast increasing solution

Equation considered:

\[\frac{dy}{dt} = 4 - t + 2y, \quad y(0) = 1 \] \hspace{1cm} (26)

Exact solution: we find

\[y = \phi(t) = -\frac{7}{4} - \frac{t}{2} + \frac{11}{4} \exp(2t) \]

Thus exponential growth for \(y \).
Euler scheme for fast increasing solution (2)

Numerical results with varying h:

<table>
<thead>
<tr>
<th>t</th>
<th>Exact</th>
<th>$h = 0.1$</th>
<th>$h = 0.05$</th>
<th>$h = 0.025$</th>
<th>$h = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>1.0</td>
<td>19.06990</td>
<td>15.77728</td>
<td>17.25062</td>
<td>18.10997</td>
<td>18.67278</td>
</tr>
<tr>
<td>2.0</td>
<td>149.3949</td>
<td>104.6784</td>
<td>123.7130</td>
<td>135.5440</td>
<td>143.5835</td>
</tr>
<tr>
<td>3.0</td>
<td>1109.179</td>
<td>652.5349</td>
<td>837.0745</td>
<td>959.2580</td>
<td>1045.395</td>
</tr>
<tr>
<td>4.0</td>
<td>8197.884</td>
<td>4042.122</td>
<td>5633.351</td>
<td>6755.175</td>
<td>7575.577</td>
</tr>
<tr>
<td>5.0</td>
<td>60573.53</td>
<td>25026.95</td>
<td>37897.43</td>
<td>47555.35</td>
<td>54881.32</td>
</tr>
</tbody>
</table>

Comments:
- Error still decreases with h
- Worse performance than for (25).

Explanation of difference:
- For (25) all solutions converge to $\phi(t) = 14 - 14t$
 \Rightarrow successive errors are not propagating
- For (26) solutions diverge exponentially
 \Rightarrow strong propagation of successive errors