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@ Introduction



Global objective

Aim: Introduce

@ Sample space

@ Events of an experiment

@ Probability of an event

@ Show how probabilities can be computed in certain situations
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Outline

© Sample space and events
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Sample space

Situation: We run an experiment for which
@ Specific outcome is unknown

@ Set S of possible outcomes is known

Terminology:

In the context above S is called sample space
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Examples of sample spaces

Tossing two dice: We have

S = {1,2,3,4,5,6}
= {(17./)1 Ia.j: 17273747576}

Lifetime of a transistor: We have

S=R;={xeR;0<x < o0}
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Events

—~ Definition 1. N

Consider
@ Experiment with sample space S
@ A subset E of S

Then

E is called event
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Example of event (1)

Tossing two dice: We have

S = {1,2,3,4,5,6)

Event: We define

E = (Sum of dice is equal to 7)
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Example of event (2)
Description of E as a subset:

E = {(1,6):(2,5); (3,4): (4,3); (5,2); (6, 1)} C S

o = = £ DA
SEIAN Axioms



Second example of event (1)

Lifetime of a transistor: We have

S=R;={xeR 0<x < o0}

Event: We define

E = (Transistor does not last longer than 5 hours)
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Second example of event (2)

Description of E as a subset:

E=][0,5]CS

=] & = E DA
SEIAN Axioms



Operations on events
Complement: E€ is the set of elements of S not in E

Two dice example:

E€ = "Sum of two dice different from 7"

Union, Intersection: For the two dice example, if

B = "Sum of two dice is divisible by 3"
C = "Sum of two dice is divisible by 4"

Then

B U C = "Sum of two dice is divisible by 3 or 4"
BN C = BC = "Sum of two dice is divisible by 3 and 4"
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Illustration (1)

Union and intersection:

(a) Shaded region: EU F. (b) Shaded region: EF.
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lllustration (2)

Complement:

(c) Shaded region: E°.
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Samy T.

llustration (3)

Subset:

Figure: E C F
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Laws for elementary operations

Commutative law:

EUF=FUE, EF = FE

Associative law:

(EUF)UG=EU(FUG), E(FG) = (EF)G

Distributive laws:

(EUF)G = EGUEG
(EF) UG = (EUG)(FUG)
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[[lustration

Distributive law:

E F E F
% % G % % G
(a) Shaded region: EG. (b) Shaded region: FG.

E F

G
(c) Shaded region: (E U F)G.

Figure: (EU F)G = EGUFG
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De Morgan's laws

,—[Proposition 2.] \
Let
@ S sample space

e Eq,...,E, events

Then
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Proof (1)

Proof of (U, E;)¢ C NP Ef:
Assume x € (U_,E;)¢ Then

xgU! EE = foralli<n x¢&E
= foralli<n, xeEf
— x € N_,Ef
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Proof (2)

Proof of N, Ef C (UL, E;)":
Assume x € Ni_, EF Then

foralli<n xe€ Ef — foralli<n x¢E
1
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Definition of probability
— Definition 3. \

A probability is an application which assigns a number (chances
to occur) to any event E. It must satisfy 3 axioms

0<P(E)<1

2}
P(S) =1

@ If EiE; = @ for i,j > 1 such that i # j, then

\.
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Easy consequence of the axioms

,—[Proposition 4.]
Let P be a probability on S. Then
o

P(o)=0

Q@ Forn>1,
if E;E; = @ for 1 <i,j < nsuch that i # j then
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Example: dice tossing

Experiment: tossing one dice
Model: S ={1,...,6} and

P({s}) = é, forall seS

Probability of an event: If E = "even number obtained", then

P(E) = P({2,4.6))=P ({2} U4} U {s})
= P21+ P(4) +P({6)= 2 =5
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Probability of a complement

,—[Proposition 5.] \

Let
@ P a probability on a sample space S

@ E an event

Then

P(ES) =1- P(E)
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PrOOf

Use Axioms 2 and 3:

1:P(S):P(EUEC)

P(E)+ P (E%)

[m] - . o
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Probability of a subset

,—[Proposition 6.] \
Let
@ P a probability on a sample space S
e E. F two events, such that E C F

Then
P(E) < P(F)
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Proof

Decomposition of F: Write

F—EUEF

Use Axioms 1 and 3: Since E and EF are disjoint,

P(F)=P(EUEF) =P (E)+P(EF) > P(E)
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Probability of a non disjoint union

,—[Proposition 7.] \

Let
@ P a probability on a sample space S
e E,F two events

Then

P(EUF)=P(E)+P(F)—P(ENF)
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Proof

Decomposition of E U F:

EUF=TUllUIII
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Proof (2)

Decomposition for probabilities: We have

P(EUF) = P(I)+ P(II) + P(III)
P(E) = P(I)+P(II)
P(F) = P(II)+ P(III)

Conclusion: Since II = EN F, we get

P(EUF) =P(E)+ P(F) — P(l)= P(E) + P(F) — P(EN F)
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Application of Propositions 5 and 7

Experiment: dice tossing
—S={1,....6} and P({s}) = ¢ forallse S

Events: We consider the 2 events

A = "even outcome"
B = "outcome multiple of 3"
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Application of Propositions 5 and 7 (Ctd)

Experiment: dice tossing
—S={1,....6} and P({s}) =L forallse€ S

Events:

We consider A = "even outcome" and B = "outcome multiple of 3"
= A={2,4,6} and B= {3,6}

= P(A)=1/2and P(B) =1/3

Applying Propositions 5 and 7:

P(A)=1-P(A)=1/2
P(AUB)=P(A)+P(B)—P(ANnB)=1/2+1/3—-P({6}) =2/3
Verification:

Ac=1{1,3,5} = P(A°) =1/2

AUB={2,3,46} = P(AUB)=4/6=2/3
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Inclusion-exclusion identity

,—{Proposition 8.}

Let
@ P a probability on a sample space S
@ nevents Eq, ..., E,

Then

=1 1<ip<--<ir<n

i

P(Ug) -0 & e

‘E;)

SEIAN Axioms

Probability Theory
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Proof for n =3

Apply Proposition 7:

P(EEUEBUE) = P(ELUE)+P(E)—P((EUE)E)
P(ELUE)+P(E)—P(EEUEE)

Apply Proposition 7 to E; U E; and E;E3 U EyE5:

P(EUEUE)= Z P(E,) — Z P (E,E,) + P (E1EEs)

1<i1<3 1<ii<ih<3

Case of general n: By induction
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Bounds for P(U"_, E;)

,—[Proposition 9.}
Let
@ P a probability on a sample space S

@ nevents E,...,E,

Then

P(;O E,-) < Y P(E)

=1 1<i<n
P (U E,-) > Z P(E)— Z P(E,E,)
i=1 1<i<n 1<ii<i<n
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Bounds for P(U7_,E;) — Ctd

,—[Proposition 10.}
Let
@ P a probability on a sample space S

@ nevents E1,...,E,

Then

*(0)

S Z P(EI) - Z P(Ei1Ei2)+ Z P(EilEizEf3)

1<i<n 1<ii<i<n 1<ii<i<iz<n
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Proof

Notation: Set

Identity:
P (U7:1Ei) — P(El) + Z P (B,E,)

i=2
Second identity: Since B; = (U;<;E;)<,

P(BiE) =P (E)—P(UEE)

Partial conclusion:

P(ULE)= > P(E)— > PUEE)

1<i<n 1<i<n
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SEIAN Axioms

Proof (2)

Recall:
P(ULE)= Y P(E)— > P(UEE)

1<i<n 1<i<n
Direct consequence of (1):

P(UL.E) < > P(E)

Application of (2) to P(U;<,EE;):
P(U<iEE) <) P(EE)
j<i
Plugging into (1) we get

P(ULE) 2 3 P(E) -3 P(EE)

1<i<n j<i

Probability Theory

(1)

()
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Model

Hypothesis: We assume
o S={s1,...,sy} finite.
o P({s})=F forall1<i<N

Alert:
This is an important but very particular case of probability space

Example: tossing 4 dice
— S={1,...,6}* and

P({(lv L1, 1)}) = F:,[({(l’ 1]’_1’ 2)}) == P({(6> 6,0, 6)})

64 1296
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Computing probabilities

r—[Proposition 11.] .
Hypothesis: We assume
o S={sy,...,sn} finite.

o P({s}) =4 forall1<i<N

In this situation, let E C S be an event. Then

P(E) = %(E) B |£| _ # outcomes in E
a N N  # outcomesin S

—



Example: tossing one dice

Model: tossing one dice, that is
1
S=1{1,...,6}, P({si}) = 6

Computing a simple probability: Let £ = "even outcome". Then

_E_3_1

P(E) N 6 2

Main problem: compute |E| in more complex situations
— Counting
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Example: drawing balls (1)

Situation: We have
@ A bowl with 6 White and 5 Black balls
o We draw 3 balls

Problem: Compute

P(E), with E ="Draw 1 W and 2 B"
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Example: drawing balls (2)

Model 1: We take
e S = {Ordered triples of balls, tagged from 1 to 11}
@ P = Uniform probability on S

Computing |S|: We have

S| =11-10-9 = 990

Decomposition of E: We have

E =WBBUBWBUBBW
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Example: drawing balls (3)
Counting E:

|E| = [WBB| + |BWB| + [ BBW| =3 x (6 x 5 x 4) = 360

Probability of E: We get
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Example: drawing balls (4)

Model 2: We take
e S = {Non ordered triples of balls, tagged from 1 to 11}
@ P = Uniform probability on S

11
5= (4) - e

Decomposition of E: We have

Computing |S|: We have

E = {Triples with 2 B and 1 W}
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Example: drawing balls (5)

- () () -

Probability of E: We get

Counting E:

Remark:
When experiment = draw k objects from n objects, two choices:

@ Considered the ordered set of possible draws

@ Consider the draws as unordered

Probability Theory 50 / 69



Example: poker game (1)

Situation: Deck of 52 cards and
@ Hand: 5 cards

@ Straight: distinct consecutive values, not of the same suit

Problem: Compute

P(E), with E = "Straight is drawn”
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Example: poker game (2)

Model: We take
@ S = {Non ordered hands of cards}
@ P = Uniform probability on S

Computing |S|: We have

2
S| = (55> = 2,598, 960

Decomposition of E: We have

E = {Straight hands}
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Example: poker game (3)

Counting E: We have
@ # possible 1,2,3,4,5: 4°
@ # possible 1,2,3,4,5 not of the same suit: 4° — 4
@ # possible values of straights: 10

Thus
|E| = 10(45 —4) =10,200

Probability of E: We get
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Example: roommate pairing (1)

Situation: We have
o A football team with 20 Offensive and 20 Defensive players
@ Players are paired by 2 for roommates

@ Pairing made at random

Problem: Find probability of
@ No offensive-defensive roommate pairs

@ 2/ offensive-defensive roommate pairs
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Example: roommate pairing (2)

Model: We take
e S = {Non ordered pairings of 40 players}
@ P = Uniform probability on S

Computing |S|: We have

1 40 40!
_ — _— _~32010%
9] 20!(2,2,...,2) 220 ()1 3.20 10

First event Ey: We set

Ey = {No Offensive-Defensive pairing}
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Example: roommate pairing (3)

Counting Ey: We have

|Eo] = (# O-O pairings) x (# D-D pairings)

200\’
B (21010!>
Computing P(Ep):

Bl (20

P(Eo) S|~ (101)240!

SEIAN Axioms

— ~ 1.34 107

Probability Theory
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Example: roommate pairing (4)

Events E;;: We set

E>; = {2i Offensive-Defensive pairings}

Counting E;: We have
@ # selections of 2/ O & 2/ D: (22?)2
e # 2i O-D pairings: (2i)!

@ # (20 — 2i) O & D intra-pairings: (%)2

Probabiity Theory 57 / 69
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Example: roommate pairing (5)

Computing P(Ey):

2 Loy 2
| Ezi @?) (2i)! (21&?(1201';)!)
P(E2i) = |5| = 40!

220 20!

Some values of P(Ey)):

P(E) ~ 1.3410°°
0.35
7.610°°

23
2R
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Example: husband-wife placement (1)

Situation: We have
@ A round table
@ 10 married couples

@ Placement at random

Problem: Find probability that
@ n couples sit next to each other
@ No husband sits next to his wife
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Example: husband-wife placement (2)

Model: We take
e S = {Permutations of 20 persons}/{Cyclic transformations}
@ P = Uniform probability on S

Computing |S|: We have

20!
=2 =19
IS =55 =19

Events E;: We set

E; = {ith husband sits next to his wife}
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Example: husband-wife placement (3)

Basic idea: Let 4 <--- < i,. Thenon E; ---E,
@ The n couples iy, ..., I, are considered as one entity
@ We are left with the placement of 20 — n entities

Counting E; - - - E;;: We have
e # placements of (20 — n) entities: (20 — n — 1)!

@ # wife-husband placements next to each other: 2"

Thus
|E, - E;

= 2"(19 — n)!
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Example: husband-wife placement (4)

Second event, n couples sit together: For 1 < n < 10, define

A, = {n couples sitting next to each other}
(E,---E,)

1< <+<ip<10

Then

P(A,) = > P(E-E)

1<ih <-++<ip<10

P(A) — <10> 27 (19 — n)!

n 19!
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Example: husband-wife placement (5)

Third event, no couple sits together: Define
Ao = {no couple sitting next to each other}

Then

A5 = {at least one couple sitting next to each other}

10
- UE
i=1
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Example: husband-wife placement (6)

Computing P(A§): Thanks to Proposition 8

P(AS) = P(U}&Ei)

10
= > ()"t > P(E---E)
n=1 1<i1 < <ip<10
B i(_l)nﬂ 10\ 2" (19 — n)!
= n 19!

Computing P(Ap): We get

P(A) =1+ Z (10) 2"(1199!— n)!
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Probabilities for increasing sequences

,—[Proposition 12.]
Let

@ P a probability on a sample space S
@ An increasing family of events {E;; i > 1}

Then

P < lim E,,> — Jim P(E,)

n—o0 n—o0

SEIAN Axioms
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Proof (1)
Decomposition with exclusive sets: Define
Fo=E,E;
Then the F; are mutually exclusive and we have
Ue - U
i=1 i=1
Ue - U
i=1 i=1
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Proof (2)

Computation for P(lim,_ E,):

P(nILrgoEn> — P(UX,E)

- Im 3P

— lim P(U,F;

n—o0

— lim P(U,E)

n—o0

= lim P(E,)

n—o0
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Probabilities for decreasing sequences

,—[Proposition 13.]
Let

@ P a probability on a sample space S

@ An decreasing family of events {E;; i > 1}

Then

P < lim E,,> — Jim P(E,)

n—o0 n—o0

SEIAN Axioms

Probability Theory 69 / 69



	Introduction
	Sample space and events
	Axioms of probability
	Some simple propositions
	Sample spaces having equally likely outcomes
	Probability as a continuous set function

