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Global objective

Aim: Introduce
Sample space
Events of an experiment
Probability of an event
Show how probabilities can be computed in certain situations
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Sample space

Situation: We run an experiment for which
Specific outcome is unknown
Set S of possible outcomes is known

Terminology:

In the context above S is called sample space
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Examples of sample spaces

Tossing two dice: We have

S = {1, 2, 3, 4, 5, 6}2

= {(i , j); i , j = 1, 2, 3, 4, 5, 6}

Lifetime of a transistor: We have

S = R+ = {x ∈ R; 0 ≤ x <∞}
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Events

Consider
Experiment with sample space S
A subset E of S

Then

E is called event

Definition 1.
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Example of event (1)

Tossing two dice: We have

S = {1, 2, 3, 4, 5, 6}2

Event: We define

E = (Sum of dice is equal to 7)
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Example of event (2)

Description of E as a subset:

E = {(1, 6); (2, 5); (3, 4); (4, 3); (5, 2); (6, 1)} ⊂ S
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Second example of event (1)

Lifetime of a transistor: We have

S = R+ = {x ∈ R; 0 ≤ x <∞}

Event: We define

E = (Transistor does not last longer than 5 hours)
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Second example of event (2)

Description of E as a subset:

E = [0, 5] ⊂ S
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Operations on events
Complement: E c is the set of elements of S not in E

Two dice example:

E c = "Sum of two dice different from 7"

Union, Intersection: For the two dice example, if

B = "Sum of two dice is divisible by 3"
C = "Sum of two dice is divisible by 4"

Then

B ∪ C = "Sum of two dice is divisible by 3 or 4"
B ∩ C = BC = "Sum of two dice is divisible by 3 and 4"
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Illustration (1)

Union and intersection:
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Illustration (2)

Complement:
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Illustration (3)

Subset:

Figure: E ⊂ F
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Laws for elementary operations

Commutative law:

E ∪ F = F ∪ E , EF = FE

Associative law:

(E ∪ F ) ∪ G = E ∪ (F ∪ G) , E (FG) = (EF )G

Distributive laws:

(E ∪ F )G = EG ∪ EG
(EF ) ∪ G = (E ∪ G)(F ∪ G)
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Illustration
Distributive law:

Figure: (E ∪ F )G = EG ∪ FG
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De Morgan’s laws

Let
S sample space
E1, . . . ,En events

Then ( n⋃
i=1

Ei

)c

=
n⋂

i=1
E c

i( n⋂
i=1

Ei

)c

=
n⋃

i=1
E c

i

Proposition 2.

Samy T. Axioms Probability Theory 19 / 69



Proof (1)

Proof of (∪n
i=1Ei)c ⊂ ∩n

i=1E c
i :

Assume x ∈ (∪n
i=1Ei)c Then

x 6∈ ∪n
i=1Ei =⇒ for all i ≤ n, x 6∈ Ei

=⇒ for all i ≤ n, x ∈ E c
i

=⇒ x ∈ ∩n
i=1E c

i
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Proof (2)

Proof of ∩n
i=1E c

i ⊂ (∪n
i=1Ei)c :

Assume x ∈ ∩n
i=1E c

i Then

for all i ≤ n, x ∈ E c
i =⇒ for all i ≤ n, x 6∈ Ei

=⇒ x 6∈ ∪n
i=1Ei

=⇒ x ∈ (∪n
i=1Ei)c
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Definition of probability

A probability is an application which assigns a number (chances
to occur) to any event E . It must satisfy 3 axioms

1

0 ≤ P(E ) ≤ 1

2

P(S) = 1

3 If EiEj = ∅ for i , j ≥ 1 such that i 6= j , then

P
( ∞⋃

i=1
Ei

)
=
∞∑

i=1
P (Ei)

Definition 3.
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Easy consequence of the axioms

Let P be a probability on S. Then
1

P (∅) = 0
2 For n ≥ 1,

if EiEj = ∅ for 1 ≤ i , j ≤ n such that i 6= j then

P
( n⋃

i=1
Ei

)
=

n∑
i=1

P (Ei)

Proposition 4.

Samy T. Axioms Probability Theory 24 / 69



Example: dice tossing

Experiment: tossing one dice

Model: S = {1, . . . , 6} and

P ({s}) = 1
6 , for all s ∈ S

Probability of an event: If E = "even number obtained", then

P(E ) = P({2, 4, 6}) = P ({2} ∪ {4} ∪ {6})

= P ({2}) + P ({4}) + P ({6}) = 3
6 = 1

2
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Probability of a complement

Let
P a probability on a sample space S
E an event

Then
P (E c) = 1− P(E )

Proposition 5.
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Proof

Use Axioms 2 and 3:

1 = P(S) = P (E ∪ E c) = P (E ) + P (E c)
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Probability of a subset

Let
P a probability on a sample space S
E ,F two events, such that E ⊂ F

Then
P(E ) ≤ P(F )

Proposition 6.
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Proof

Decomposition of F : Write

F = E ∪ E cF

Use Axioms 1 and 3: Since E and E cF are disjoint,

P(F ) = P (E ∪ E cF ) = P (E ) + P (E cF ) ≥ P(E )
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Probability of a non disjoint union

Let
P a probability on a sample space S
E ,F two events

Then
P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F )

Proposition 7.
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Proof

Decomposition of E ∪ F :

E ∪ F = I ∪ II ∪ III
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Proof (2)

Decomposition for probabilities: We have

P(E ∪ F ) = P(I) + P(II) + P(III)
P(E ) = P(I) + P(II)
P(F ) = P(II) + P(III)

Conclusion: Since II = E ∩ F , we get

P(E ∪ F ) = P(E ) + P(F )− P(II)= P(E ) + P(F )− P(E ∩ F )
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Application of Propositions 5 and 7

Experiment: dice tossing
↪→ S = {1, . . . , 6} and P ({s}) = 1

6 for all s ∈ S

Events: We consider the 2 events

A = "even outcome"
B = "outcome multiple of 3"
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Application of Propositions 5 and 7 (Ctd)
Experiment: dice tossing
↪→ S = {1, . . . , 6} and P ({s}) = 1

6 for all s ∈ S

Events:
We consider A = "even outcome" and B = "outcome multiple of 3"
⇒ A = {2, 4, 6} and B = {3, 6}
⇒ P(A) = 1/2 and P(B) = 1/3

Applying Propositions 5 and 7:
P(Ac) = 1− P(A) = 1/2
P(A ∪ B) = P(A) + P(B)− P(A ∩ B) = 1/2 + 1/3− P({6}) = 2/3

Verification:
Ac = {1, 3, 5} ⇒ P(Ac) = 1/2
A ∪ B = {2, 3, 4, 6} ⇒ P(A ∪ B) = 4/6 = 2/3
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Inclusion-exclusion identity

Let
P a probability on a sample space S
n events E1, . . . ,En

Then

P
( n⋃

i=1
Ei

)
=

n∑
r=1

(−1)r+1 ∑
1≤i1<···<ir≤n

P (Ei1 · · ·Eir )

Proposition 8.
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Proof for n = 3

Apply Proposition 7:

P (E1 ∪ E2 ∪ E3) = P (E1 ∪ E2) + P (E3)− P ((E1 ∪ E2)E3)
= P (E1 ∪ E2) + P (E3)− P (E1E3 ∪ E2E3)

Apply Proposition 7 to E1 ∪ E2 and E1E3 ∪ E2E3:

P (E1 ∪ E2 ∪ E3) =
∑

1≤i1≤3
P (Ei1)−

∑
1≤i1<i2≤3

P (Ei1Ei2) + P (E1E2E3)

Case of general n: By induction
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Bounds for P(∪ni=1Ei)

Let
P a probability on a sample space S
n events E1, . . . ,En

Then

P
( n⋃

i=1
Ei

)
≤

∑
1≤i≤n

P (Ei)

P
( n⋃

i=1
Ei

)
≥

∑
1≤i≤n

P (Ei)−
∑

1≤i1<i2≤n
P (Ei1Ei2)

Proposition 9.
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Bounds for P(∪ni=1Ei) – Ctd

Let
P a probability on a sample space S
n events E1, . . . ,En

Then

P
( n⋃

i=1
Ei

)
≤

∑
1≤i≤n

P (Ei)−
∑

1≤i1<i2≤n
P (Ei1Ei2) +

∑
1≤i1<i2<i3≤n

P (Ei1Ei2Ei3)

Proposition 10.
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Proof
Notation: Set

Bi = E c
1 · · ·E c

i−1

Identity:

P (∪n
i=1Ei) = P(E1) +

n∑
i=2

P (BiEi)

Second identity: Since Bi = (∪j<iEj)c ,

P (BiEi) = P (Ei)− P (∪j<iEjEi)

Partial conclusion:

P (∪n
i=1Ei) =

∑
1≤i≤n

P(Ei)−
∑

1≤i≤n
P (∪j<iEjEi)
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Proof (2)
Recall:

P (∪n
i=1Ei) =

∑
1≤i≤n

P(Ei)−
∑

1≤i≤n
P (∪j<iEjEi) (1)

Direct consequence of (1):

P (∪n
i=1Ei) ≤

∑
1≤i≤n

P(Ei) (2)

Application of (2) to P(∪j<iEjEi):

P (∪j<iEjEi) ≤
∑
j<i

P (EjEi)

Plugging into (1) we get

P (∪n
i=1Ei) ≥

∑
1≤i≤n

P(Ei)−
∑
j<i

P (EjEi)
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Model
Hypothesis: We assume

S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 ≤ i ≤ N

Alert:
This is an important but very particular case of probability space

Example: tossing 4 dice
↪→ S = {1, . . . , 6}4 and

P({(1, 1, 1, 1)}) = P({(1, 1, 1, 2)}) = · · · = P({(6, 6, 6, 6)})

= 1
64 = 1

1296
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Computing probabilities

Hypothesis: We assume
S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 ≤ i ≤ N

In this situation, let E ⊂ S be an event. Then

P(E ) = Card(E )
N = |E |N = # outcomes in E

# outcomes in S

Proposition 11.
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Example: tossing one dice

Model: tossing one dice, that is

S = {1, . . . , 6}, P({si}) = 1
6

Computing a simple probability: Let E = "even outcome". Then

P(E ) = |E |N = 3
6 = 1

2

Main problem: compute |E | in more complex situations
↪→ Counting
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Example: drawing balls (1)

Situation: We have
A bowl with 6 White and 5 Black balls
We draw 3 balls

Problem: Compute

P(E ), with E = ”Draw 1 W and 2 B”
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Example: drawing balls (2)

Model 1: We take
S = {Ordered triples of balls, tagged from 1 to 11}
P = Uniform probability on S

Computing |S|: We have

|S| = 11 · 10 · 9 = 990

Decomposition of E : We have

E = WBB ∪ BWB ∪ BBW
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Example: drawing balls (3)

Counting E :

|E | = |WBB|+ |BWB|+ |BBW| = 3× (6× 5× 4) = 360

Probability of E : We get

P(E ) = |E |
|S| = 360

990 = 4
11 = 36.4%
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Example: drawing balls (4)
Model 2: We take

S = {Non ordered triples of balls, tagged from 1 to 11}
P = Uniform probability on S

Computing |S|: We have

|S| =
(
11
3

)
= 165

Decomposition of E : We have

E = {Triples with 2 B and 1 W}
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Example: drawing balls (5)

Counting E :

|E | =
(
5
2

)
×
(
6
1

)
= 60

Probability of E : We get

P(E ) = |E |
|S| = 60

165 = 4
11 = 36.4%

Remark:
When experiment ≡ draw k objects from n objects, two choices:

1 Considered the ordered set of possible draws
2 Consider the draws as unordered
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Example: poker game (1)
Situation: Deck of 52 cards and

Hand: 5 cards
Straight: distinct consecutive values, not of the same suit

Problem: Compute

P(E ), with E = ”Straight is drawn”
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Example: poker game (2)
Model: We take

S = {Non ordered hands of cards}
P = Uniform probability on S

Computing |S|: We have

|S| =
(
52
5

)
= 2, 598, 960

Decomposition of E : We have

E = {Straight hands}
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Example: poker game (3)

Counting E : We have
# possible 1,2,3,4,5: 45

# possible 1,2,3,4,5 not of the same suit: 45 − 4
# possible values of straights: 10

Thus
|E | = 10(45 − 4) = 10, 200

Probability of E : We get

P(E ) = |E |
|S| = 10(45 − 4)(

52
5

) = 0.39%
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Example: roommate pairing (1)

Situation: We have
A football team with 20 Offensive and 20 Defensive players
Players are paired by 2 for roommates
Pairing made at random

Problem: Find probability of
1 No offensive-defensive roommate pairs
2 2i offensive-defensive roommate pairs
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Example: roommate pairing (2)
Model: We take

S = {Non ordered pairings of 40 players}
P = Uniform probability on S

Computing |S|: We have

|S| = 1
20!

(
40

2, 2, . . . , 2

)
= 40!

220 20! ' 3.20 1023

First event E0: We set

E0 = {No Offensive-Defensive pairing}
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Example: roommate pairing (3)

Counting E0: We have

|E0| = (# O–O pairings)× (# D–D pairings)

=
(

20!
210 10!

)2

Computing P(E0):

P(E0) = |E0|
|S| = (20!)3

(10!)240! ' 1.34 10−6

Samy T. Axioms Probability Theory 56 / 69



Example: roommate pairing (4)
Events E2i : We set

E2i = {2i Offensive-Defensive pairings}

Counting E2i : We have
# selections of 2i O & 2i D:

(
20
2i

)2

# 2i O–D pairings: (2i)!
# (20− 2i) O & D intra-pairings: ( (20−2i)!

210−i (10−i)!)
2

Thus we get

|E2i | =
(
20
2i

)2

(2i)!
(

(20− 2i)!
210−i (10− i)!

)2
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Example: roommate pairing (5)

Computing P(E2i):

P(E2i) = |E2i |
|S| =

(
20
2i

)2
(2i)!

(
(20−2i)!

210−i (10−i)!

)2

40!
220 20!

Some values of P(E2i):

P(E0) ' 1.34 10−6

P(E10) ' 0.35
P(E20) ' 7.6 10−6
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Example: husband-wife placement (1)

Situation: We have
A round table
10 married couples
Placement at random

Problem: Find probability that
1 n couples sit next to each other
2 No husband sits next to his wife
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Example: husband-wife placement (2)

Model: We take
S = {Permutations of 20 persons}/{Cyclic transformations}
P = Uniform probability on S

Computing |S|: We have

|S| = 20!
20 = 19!

Events Ei : We set

Ei = {ith husband sits next to his wife}
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Example: husband-wife placement (3)

Basic idea: Let i1 < · · · < in. Then on Ei1 · · ·Ein

The n couples i1, . . . , in are considered as one entity
We are left with the placement of 20− n entities

Counting Ei1 · · ·Ein : We have
# placements of (20− n) entities: (20− n − 1)!
# wife-husband placements next to each other: 2n

Thus
|Ei1 · · ·Ein | = 2n (19− n)!
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Example: husband-wife placement (4)

Second event, n couples sit together: For 1 ≤ n ≤ 10, define

An = {n couples sitting next to each other}
=

⋃
1≤i1<···<in≤10

(Ei1 · · ·Ein)

Then

P (An) =
∑

1≤i1<···<in≤10
P (Ei1 · · ·Ein)

P (An) =
(
10
n

)
2n (19− n)!

19!

Samy T. Axioms Probability Theory 62 / 69



Example: husband-wife placement (5)

Third event, no couple sits together: Define

A0 = {no couple sitting next to each other}

Then

Ac
0 = {at least one couple sitting next to each other}

=
10⋃

i=1
Ei
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Example: husband-wife placement (6)
Computing P(Ac

0): Thanks to Proposition 8

P (Ac
0) = P

(
∪10

i=1Ei
)

=
10∑

n=1
(−1)n+1 ∑

1≤i1<···<in≤10
P (Ei1 · · ·Ein)

=
10∑

n=1
(−1)n+1

(
10
n

)
2n (19− n)!

19!

Computing P(A0): We get

P (A0) = 1 +
10∑

n=1
(−1)n

(
10
n

)
2n (19− n)!

19!
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Probabilities for increasing sequences

Let
P a probability on a sample space S
An increasing family of events {Ei ; i ≥ 1}
Set limn→∞ En = ∪∞i=1Ei

Then
P
(

lim
n→∞

En

)
= lim

n→∞
P (En)

Proposition 12.
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Proof (1)

Decomposition with exclusive sets: Define

Fn = En E c
n−1

Then the Fi are mutually exclusive and we have
∞⋃

i=1
Ei =

∞⋃
i=1

Fi

n⋃
i=1

Ei =
n⋃

i=1
Fi
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Proof (2)
Computation for P(limn→∞ En):

P
(

lim
n→∞

En

)
= P (∪∞i=1Ei)

= P (∪∞i=1Fi)

=
∞∑

i=1
P (Fi)

= lim
n→∞

n∑
i=1

P (Fi)

= lim
n→∞

P (∪n
i=1Fi)

= lim
n→∞

P (∪n
i=1Ei)

= lim
n→∞

P (En)
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Probabilities for decreasing sequences

Let
P a probability on a sample space S
An decreasing family of events {Ei ; i ≥ 1}
Set limn→∞ En = ∩∞i=1Ei

Then
P
(

lim
n→∞

En

)
= lim

n→∞
P (En)

Proposition 13.
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