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Global objective

Aim: Introduce conditional probability, whose interest is twofold

© Quantify the effect of a prior information on probabilities

@ |If no prior information is available, then independence
— simplification in probability computations
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Example of conditioning

Dice tossing: We consider the following situation
o We throw 2 dice
@ We look for P(sum of 2 faces is 9)

Without prior information:

1
P (sum of 2 faces is 9) = 9

With additional information: If first face is = 4. Then
@ Only 6 possible results: (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)

@ Among them, only (4,5) give sum= 9

1

@ Probability of having sum= 9 becomes
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General definition

—~ Definition 1.)

Let
@ P a probability on a sample space S
e E, F two events, such that P(F) >0

Then

P(E|F) =
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Example: examination (1)

Situation:
Student taking a one hour exam

Hypothesis: For x € [0, 1] we have

X
P(LX) = 57

where the event L, is defined by

L, = {student finishes the exam in less than x hour}

Question: Given that the student is still working after .75h

— Find probability that the full hour is used
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Example: examination (2)

Model: We wish to find
P (L7|L%s)

Computation: We have

P (L{L%s)
P (L%s)

P (L)

P (L%s)
1-P (L)

1—P(Ls)

P (Li[ L)

Conclusion: Applying (1) we get
P (Li[L%s) = .8
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Simplification for uniform probabilities

General situation: We assume
o S={sy,...,sn} finite.
o P({s})=F forall1<i<N

Alert:
This is an important but very particular case of probability space

Conditional probabilities in this case:
Reduced sample space, i.e

Conditional on F, all outcomes in F are equally likely
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Example: family distribution (1)

Situation:
The Popescu family has 10 kids

Questions:

Q If we know that 9 kids are girls
— find the probability that all 10 kids are girls

@ If we know that the first 9 kids are girls
— find the probability that all 10 kids are girls
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Example: family distribution (2)

Model:
e S={G,B}®
@ Uniform probability: for all s € S,

P({s)) = o5
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Example: family distribution (3)

First conditioning: We take

F1:
{(G,...,G); (G,...,G,B); (G,...,G,B,G);---; (B,G,...,G)}

Reduced sample space:
Each outcome in F; has probability -

Conditional probability:

PU(G. . G} F) = o

SEIAN Conditional probability Probability Theory 13 / 106



Example: family distribution (4)

Second conditioning: We take

Reduced sample space:
Each outcome in F; has probability 3

Conditional probability:

1
P{(C,.... G} ) =5
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Example: bridge game (1)

Bridge game:
@ 4 players, E, W, N, S
@ 52 cards dealt out equally to players

Conditioning: We condition on the set

F = {N + S have a total of 8 spades}

Question: Conditioned on F,
Probability that E has 3 of the remaining 5 spades
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Example: bridge game (2)

Model: We take

S = {Divisions of 52 cards in 4 groups}

and we have

@ Uniform probability on S

© |S| = (131333.13) = 536 10%
Reduced sample space: Conditioned on F,

S = {Combinations of 13 cards among 26 cards with 5 spades}
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Example: bridge game (3)

Conditional probability:

P (E has 3 of the remaining 5 spades| F) =

o = = £ DA
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Intersection and conditioning

Situation:
@ Urn with 8 Red and 4 White balls
@ Draw 2 balls without replacement

Question: Let
@ R; = 1st ball drawn is red

@ R, = 2nd ball drawn is red

Then find P(R,R»)
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Intersection and conditioning (2)

Recall:
@ Urn with 8 Red and 4 White balls
@ Draw 2 balls without replacement

Computation: We have
P(R1R,) = P(R))P(Rx| Ry)
Thus

8 7
P(RIR) =517 =33~ #2
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The multiplication rule

,—[Proposition 2.}

Let
@ P a probability on a sample space S

@ Eq,...,E, nevents

Then
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Proof

Expression for the rhs of (2):

P(E\E) P(EEE;)  P(E - En1Ep)
P (&) P(E,) P(EE)  P(E---E, 1)

Conclusion:
By telescopic simplification
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Example: deck of cards (1)

Situation:
@ Ordinary deck of 52 cards
@ Division into 4 piles of 13 cards

Question: If
E = {each pile has one ace},

compute P(E)
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Example: deck of cards (2)

Model: Set
E; = {the ace of S is in any one of the piles}
E; = {the ace of S and the ace of H are in different piles}
E; = {the aces of S, H & D are all in different piles}
E, = {all 4 aces are in different piles}

We wish to compute
P (EiEE3E,)
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Example: deck of cards (3)

Applying the multiplication rule: write
P (E1E E3EL) = P (E1) P(E| E1) P (Es| ELE) P (Es| ELE2ES)
Computation of P(Ep): Trivially
P(E)=1

Computation of P(E;| E;): Given E,
@ Reduced space is

{51 labels given to all cards except for ace S}

o P(E2| E]_) = 515_112 = %
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Example: deck of cards (4)

Other conditioned probabilities:

50 — 24 26

P(E|EiE) = 50 = o
49 — 36 13

PEIERE) = — 0 =

Conclusion: We get
P(E) = P(E) P(E|E) P(E|EE) P (& EEE)

39-26-13

— ~ 1
51-50-49 0>
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Thomas Bayes

Some facts about Bayes:

e England, 1701-1760

@ Presbyterian minister

@ Philosopher and statistician
o Wrote 2 books in entire life

@ Bayes formula unpublished
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Decomposition of P(E)

,—[Proposition 3.] \

Let
@ P a probability on a sample space S
e E, F two events with 0 < P(F) < 1

Then

P(E)=P(E|F)P(F)+P(E|F°)P(F°)
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Bayes' formula

,—[Proposition 4.} \

Let
@ P a probability on a sample space S
e E, F two events with 0 < P(F) < 1

Then

P (E] F)P(F)
(E| F)P(F)+ P (E|Fe)P(F°)

P(FIE) =5
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Iconic Bayes (offices of HP Autonomy)
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Example: insurance company (1)

Situation:

@ Two classes of people:
those who are accident prone and those who are not.

@ Accident prone: probability .4 of accident in a one-year period
@ Not accident prone: probab .2 of accident in a one-year period
@ 30% of population is accident prone

Question:

Probability that a new policyholder will have an accident within a
year of purchasing a policy?
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Example: insurance company (2)

Model: Define
@ A; = Policy holder has an accident in 1 year

@ A = Accident prone

Then
o 5= {(A1, A); (AT, A); (A, A%); (AT, A9)}
@ Probability: given indirectly by conditioning

Aim:
Compute P(A;)
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Example: insurance company (3)

Given data:

P(A|A) =4, P(A|A) =2 P(A)=.23

Application of Proposition 3:
P (A1) = P (A A) P(A) + P (A A°) P(A)

We get
P(A;)) =04 x03+0.2x0.7=26%
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Example: swine flu (1)

Situation:

We assume that 20% of a pork population has swine flu.
A test made by a lab gives the following results:

@ Among 50 tested porks with flu, 2 are not detected
@ Among 30 tested porks without flu, 1 is declared sick

Question:
Probability that a pork is healthy while his test is positive?

SEIAN Conditional probability Probability Theory 34 / 106



Example: swine flu (2)

Model: We set F = "Flu", T = "Positive test"
We have

1 . 1 o1
P(F) = P(TCIF) =, P(TIF) =5

Aim:
Compute P(F<|T)
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Example: swine flu (3)

Application of Proposition 4:

c _ P(T|F)P(F°)
PFIT) = BT 1FP(F) = P(T | FIP(E)
B P(T|F)P(F)
~ P(T[F)P(Fe)+[1—P(T<|F)]P(F)
= 0.12
Conclusion:

12% chance of killing swines without proper justification
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Henri Poincaré

Some facts about Poincaré:
@ Born in Nancy, 1854-1912

@ Cousin of Raymond Poincaré

— French president during WW1
@ Mathematician and engineer
@ Numerous contributions in
Celestial mechanics
Relativity
Gravitational waves

Topology
Differential equations

v

v

v

v

v
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An example by Poincaré (1)

Situation:
@ We are on a train
@ Someone gets on the train and proposes to play a card game

@ The unknown person wins

Question:
Probability that this person has cheated?
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An example by Poincaré (2)

Model: We set
@ p = probability to win without cheating
@ g = probability that the unknown person has cheated
@ W = "The unknown person wins"

@ C = "The unknown person has cheated"
Hypothesis on probabilities: We assume
PW[C)=p, PW|C)=1, P(C)=gq
Aim:

Compute P(C | W)
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An example by Poincaré (3)

Application of Proposition 4:

P(W|C)P(C)
P(W|C)P(C)+P(W|Ce)P(Ce)
q
qg+p(l—q)

P(CIW) =

Remarks:
(1) We have P(C|W) > q = P(C).
— the unknown's win increases his probability to cheat
(2) We have
limP(C|W)=1
p—0
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Odds

~ Definition 5.

Let

@ P a probability on a sample space S

@ A an event
We define the odds of A by

P(A) _  P(A)
P(A) _ 1— P(A)
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Odds and conditioning

,—[Proposition 6.}

Situation: We have
@ An hypothesis H, true with probability P(H)

@ A new evidence E

Formula: The odds of H after evidence E are given by

P(HIE) _ P(H) P(E[H)

P(H|E)  P(H) P(E[He)
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Proof

Inversion of conditioning: We have

P(H| E) w
p(HeE) = TE QE};‘”C)

Conclusion: P(H|E) _ P(H) P(E|H)

P(H[E)  P(H) P(E|H)
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Example: coin tossing (1)

Situation:
@ Urn contains two type A coins and one type B coin.

@ When a type A coin is flipped,
it comes up heads with probability

I

@ When a type B coin is flipped,
it comes up heads with probability

BlW

@ A coin is randomly chosen from the urn and flipped
Question:

Given that the flip landed on heads
— What is the probability that it was a type A coin?
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Example: coin tossing (2)

Model: We set

@ A = type A coin flipped
@ B = type B coin flipped
@ H = Head obtained

Data:
P(A) = 2 P(H|A) = L P(H|B) = 3
e 4 4

Aim:
Compute P(A| H)
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Example: coin tossing (3)

Application of Proposition 6:

P(A[H) _ P(A) P(H|A)

P(B|H) P(B) P(H|B)

Numerical result: We get

P(AIH) 2/31/4 2
P(B|H) 1/33/4 3
Therefore

P(A|H) = §
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Generalization of Proposition 3

,—[Proposition 7.]

Let
e P a probability on a sample space S
e F1,...,F, partition of S, i.e
» F; mutually exclusive
> U?:l Fi=S
@ E another event

Then we have

n

P(E)=>_P(EIFR)P(F)

i=1

SEIAN Conditional probability
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Generalization of Proposition 4

,—[Proposition 8.]

Let
@ P a probability on a sample space S
e f1,...,F, partition of S, i.e

» F; mutually exclusive
> U?:1Fi e 5

@ E another event

Then we have

P(E[F;) P(F)

PUBIE) = S o (EIRy P (F)
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Example: card game (1)

Situation:
@ 3 cards identical in form (say Jack)

@ Coloring of the cards on both faces:

» 1 card RR
» 1 card BB
» 1 card RB

@ 1 card is randomly selected, with upper side R

Question:
What is the probability that the other side is B?
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Example: card game (2)

Model: We define the events
@ RR: chosen card is all red
@ BB: chosen card is all black
@ RB: chosen card is red and black

@ R: upturned side of chosen card is red

Aim:
Compute P(RB| R)
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Example: card game (3)

Application of Proposition 8:

P (RB|R)
B P (R| RB) P(RB)
~ P(R|RR)P(RR) + P (R| RB) P(RB) + P (R| BB) P(BB)

Numerical values:

P (RB|R) =

N[N
X | X
WIR(W[—

_I_
o
X
W=
|
W[~

1x

W=

_|_
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Example: disposable flashlights

Situation:
@ Bin containing 3 different types of disposable flashlights
@ Proba that a type 1 flashlight will give over 100 hours of use is .7
@ Corresponding probabilities for types 2 & 3: .4 and .3

@ 20% of the flashlights are type 1, 30% are type 2,
and 50% are type 3

Questions:
@ What is the probability that a randomly chosen flashlight will
give more than 100 hours of use?
@ Given that a flashlight lasted over 100 hours, what is the
conditional probability that it was a type j flashlight, for
j=1,2,37
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Example: disposable flashlights (2)

Model: We define the events
o A: flashlight chosen gives more than 100h of use
@ Fj: type j is chosen

Aim 1:
Compute P(A)
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Example: disposable flashlights (3)

Application of Proposition 7:

Numerical values:

P(A)=07x02+04x03+0.3x05= 41
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Example: disposable flashlights (4)

Aim 2:
Compute P(F| A)

Application of Proposition 8:

P(A)
Numerical value:
0.7x02 14 o
P(F|A) = o4l - @ ~ 41%

SEIAN Conditional probability
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Definition of independence

— Definition 9. | \
Let
@ P a probability on a sample space S

e E, F two events
Then E and F are independent if

P (EF)=P(E)P(F)

Notation:

E and F independent denoted by E Il F
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Some remarks

Interpretation: If E 1L F, then
P (E| F) = P(E),
that is the knowledge of F does not affect P(E)

Warning: Independent # mutually exclusive!
Specifically

A, B mutually exclusive = P(AB)=0
A, B independent = P(AB)=P(A)P(B)

Therefore A et B both independent and mutually exclusive
— we have either P(A) =0or P(B) =0
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Example: dice tossing (1)

Experiment: We throw two dice

Sample space:
e S=1{1,...,6}?
o P({(s1,2)}) = 55 for all (s, %) € S

Events: We consider

A = "15 outcome is 1", B = "2" outcome is 4"

Question:
Do we have A 1l B?
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Example: dice tossing (2)
Description of A and B:
B={1} x{1,...,6}, and B={1,...,6} x {4}.
Probabilities for A and B: We have
1Al _1 Bl 1

P(A) = 36 6 P(B) = 36 6

Description of AB: We have AB = {(1,4)}. Thus

P(AB) — 316 — P(A)P(B)

Conclusion: A and B are independent
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Example: tossing n coins (1)

Experiment:
Tossing a coin n times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Question:
Are there values of n such that A 1L B?
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Example: tossing n coins (2)

Model: We take
o S={ht}"
o P({s})= 4 forallse S

Description of A and B:

A = {(t,...,t), (ht,....t),(t,ht,....t), (t,...,t,h)}
B = {(h,...,h), (t,..., )}
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Example: tossing n coins (3)

Computing probabilities for A and B: We have

Al n+1
P(A) = =<
(A) on = o
c 1

Description of AB and

AB=A{(f.....f)} = P(AB)=
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Example: tossing n coins (4)

Checking independence: We have A 11 B iff

n+1 1 n 1
o (1—2n_1):— <~ n—-2""+4+1=0

Conclusion: One can check that
X x—2"141

vanishes for x = 3 only on R,. Thus

We have A 1l Biff n=3
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Independence and complements

,—[Proposition 10.]

Let

@ P a probability on a sample space S
o E, F two events

@ We assume that E 1L F

Then

E1 FS, ES1F, E°1 Fe
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Proof

Decomposition of P(E): Write
P(E) = P(EF)+P(EF°)
P(E)P(F)+P(EF)
Expression for P(E F€): From the previous expression we have

P(EF) = P(E)—P(E)P(F)
= P(E)(1-P(F))
P(E)P (FF)

Conclusion:
E 1l F¢
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Counterexample: independence of 3 events (1)
Warning:

In certain situations we have A, B, C pairwise independent, however

P(AnBNC)#P(A)P(B)P(C)
Example: tossing two dice
e S={1,...,6}?
o P({(s1,%2)}) = 55 for all (s, %) € S

Events: Define

A = "even number for the 1t outcome"
B = "odd number for the 2" outcome"
C = "same parity for the two outcomes"

SEIAN Conditional probability

Probability Theory 67 / 106



Counterexample: independence of 3 events (2)
Description of A, B, C:

A = {246} x{1,...,6}
B = {1,...,6} x {1,3,5}
C = ({2,4,6} x {2,4,61)U({1,3,5} x {1,3,5))

Pairwise independence: we find

All B,AlL Cand B1 C

Independence of the 3 events: We have ANBN C = &. Thus

0=P(ANBNC)#P(A)P(B)P(C) =

SEIAN Conditional probability
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Independence of 3 events

r—[ Definition 11.]

Let
@ P a probability on a sample space S
@ 3 events A, Ay, Az

We say that Ay, Ay, Az are independent if

P(AA3) = P(A)P(A;)

and
P(A1AAs) = P(A;) P(A2) P(As)

\.

P(AiA2) = P(A)P(A2), P(AiA;3) =P(A)P(As)

SEIAN Conditional probability
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Independence of n events

r—[Definition 12.]
Let
@ P a probability on a sample space S

@ nevents Ay, Ay, ... A,

We say that A;, A, ..., A, are independent if
forall2<r<nandj; <---<j, we have

P(A;A;, -+ A;) = P(A;) P(Ay) - P(A;)
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Independence of an oo number of events

r—[Definition 13.]
Let
@ P a probability on a sample space S

@ A sequence of events {A;; i > 1}

We say that the A;’s are independent if
forall 2 <r <ooandj; <---<j, we have

P(A;A;, -+ A;) = P(A;) P(Ay) - P(A;)

SEIAN Conditional probability
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Example: parallel system (1)

Situation:
o Parallel system with n components
@ All components are independent
@ Probability that i-th component works: p;

Question:
Probability that the system functions
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Example: parallel system (2)

Model: We take
e S={0,1}"
@ Probability P on S defined by

P({(s1,...,s)}) = f[lpfi(l _ pi)lfs,-

Events:

A = "System functions" , A; = "i-th component functions"

Facts about A;'s:
The events A; are independent and P(A;) = p;
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Example: parallel system (3)

Computations for P(A°):
P(A9) = P(NLA)
- TP
i=1

= [Ia-»)
Conclusion: .
P(4) = 1-T[(1- p)
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Example: rolling dice (1)

Experiment:
@ Roll a pair of dice
@ Outcome: sum of faces

Event: We define
e E = "5 appears before 7"

Question:
Compute P(E)
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Example: rolling dice (2)

Family of events: For n > 1 set

E, =no 5 or 7 on first n — 1 trials, then 5 on n-th trial

Relation between E, and E: We have

E =5 appears before 7 = U,>1E,

SEIAN Conditional probability Probability Theory 76 / 106



Example: rolling dice (3)

Computation for P(E,): by independence

P(E)_< _E)n_li_ (E>n—11
" 36 36 \18 9
Computation for P(E):
© 1 1
P(E):ZP(En)_gl_g
n=1 18
Thus
P(E) —g
5

SEIAN Conditional probability Probability Theory
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Same example with conditioning (1)

New events: We set
e E = "5 appears before 7"
o F5 = "1st trial gives 5"
@ F; = "Ist trial gives 7"
o H = "lst trial gives an outcome # 5,7"
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Same example with conditioning (2)

Conditional probabilities:

P(E[Fs)=1, P(E|F)=0, P(E|H)=P(E)

Justification: E 1L H since

E H = H N {Event which depends on i-th trials with i > 2}
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Same example with conditioning (3)

Applying Proposition 7:
P(E)=P(E|Fs) P(Fs) +P(E|F) P(F7)+P(E|H) P(H) (3)

Computation: We get

P(E)=-+—P(E

(E)= 5+ P(E).

and thus 5
P(E) = -
(E) = -

SEIAN Conditional probability

Probability Theory 80 / 106



Problem of the points

Experiment:
@ Independent trials
@ For each trial, success with probability p

Question:
What is the probability that n successes occur before m failures?
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Pascal’s solution
Notation: set

Apm = "n successes occur before m failures", Pom=P(Arm)
Conditioning on 1st trial: Like in (3) we get
Pom = PPo1m+ (1~ p)Pom1 (4)
Initial conditions:

Pro=p"  Pom=(1-p)" (5)

Strategy:
Solve difference equation (4) with initial condition (5)
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Fermat's solution

Expression for A, ,: Write
Anm = "at least n successes in m + n — 1 trials"
Thus A, = UZ’in”_lEk,my,, with

Ey,mn = "exactly k successes in m+ n — 1 trials"

Expression for P, ,;: We get

mincl im4n—1 L
'thm: Z ( h >pk(1_p)m+n 1—k

k=n
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P(:| F) is a probability

,—[Proposition 14.] \

Let
@ P a probability on a sample space S
@ F an event such that P(F) >0

Then
Q:E—~P(E|F)

is a probability

\.
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0<Q(E) <1
o<a-TED <20
Q(S) =1
Q) - PEA PR
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Proof (2)

Additivity: Let {E,; n > 1} be a family of mutually exclusive events.

We claim that . .
Q (U E,,) => Q(E
n=1 n=1

Justification:

o)) - P8

_P(iO:I(EnF))_ZzOIPEF o
B T R (S P R C

SEIAN Conditional probability
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Intersection and conditioning — Part 2

,—[Proposition 15.]

Let

@ P a probability on a sample space S
e Eq, E, two events

@ F an event such that P(F) >0

Then

P(E|F)=P(E|EF)P(E|F)+P(E|E F)P(E|F)
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Proof

Strategy:
Apply Proposition 3 to the probability Q of Proposition 14

Q (&)= Q(&|E)Q(E) + Q (& E) Q(E)
Computing the conditional probabilities:
Q(E|E) =P(&|EF), Q(E[E)=P(&|EF)
Conclusion:

P(E|F) =P (E|EF) P(E|F)+P(E|E F) P(E]F)
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Example: insurance company — Part 2 (1)

Situation:

@ Two classes of people:
those who are accident prone and those who are not.

@ Accident prone: probability .4 of accident in a one-year period
@ Not accident prone: probab .2 of accident in a one-year period

@ 30% of population is accident prone

Question:
Probability that a new policyholder will have an accident within

her/his second year of purchasing a policy if we know she/he had an
accident in his first year?
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Example: insurance company (2)

Model: Define
@ A; = Policy holder has an accident in his first year
@ A, = Policy holder has an accident in his second year

@ A = Accident prone
Given data:
P(A.|A) = 4, P(A.| A°) = .2, P(A) =3
Aim:

Compute P(Ay| A;)
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Example: insurance company (3)

Application of Proposition 15:

P (Ax| A1) = P (A AAL) P(AlAL) + P (A A°Ap) P (A Ay)

Computation of conditional probabilities:

P (A AA;) = 4, P (A A°A) =2
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Example: insurance company (4)

Computation of conditional probabilities (2):

P(A|A) P(A) 04x03 6

P(AlA) = = -
(AlA) P(A;) 0.26 13
and -
P(A°|A))=1—-P(AlA) = e
Conclusion:

6 7
P(A)A;)) =04 x — 2 X — ~ 299
( 2’ 1) 0.4 x 13—'—0 X 13 9%)
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Matching problem (1)

Situation:
@ n men take off their hats
@ Hats are mixed up
@ Then each man selects his hat at random

@ Match: if a man selects his own hat

Questions:
@ Probability of no match
@ Probability of exactly k matches

SEIAN Conditional probability Probability Theory 94 / 106



Matching problem (2)

Model: We set
@ E = no match
@ M = first man selects his hat

e P,=P(E)
Conditioning on M:
P, = P(E|M)P(M)+P(E|M)P(M)
— p(E|me) 1L
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Matching problem (3)

New situation on M€:
@ n—1 hats with n — 1 men
@ 1 extra man with no hat
@ 1 extra hat with no man

@ Set N = "extra man selects extra hat"

Conditioning on N:

P(E| M) =P (EN| M)+ P (E|N M) P(N°| M) (6)
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Matching problem (4)

Recall:

P(E|M®) =P (EN| M)+ P(E|N M) P(N°| M) (7)

New situation if N¢ occurs: since extra man does not select extra hat
@ Declare extra hat as extra man's
@ Whole situation equivalent to (n — 1) mixed hats

New situation if N occurs:
@ 1 extra man selects extra hat
e We are left with (n — 2) mixed hats

Consequence on (7):

1
P(E|MC):P,,_1—}-7n_1P,,_2 (8)
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Matching problem (5)

Putting together (6) and (8): We get

-1 1 1
Pn:n P14+ —=Pr2 < Pn_Pn—lz__(Pn—l_Pn—2)
n n n

Initial data:
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Matching problem (6)

Events for the k-match problem: We set
o E, = exactly k matches

@ F; = match for man j

Successive conditioning: For 1 < j; < .-+ < ji < n we get

1 1 1
PBEB) = o e
_ |
_ (n k).Pn_k
n!
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Matching problem (7)

Recall:
(n— k)!
n!

P(F-FE) = Pk

Computing P(Ex): We have

P(E) = >, P(Fy---FiE)

1< <<jk<n

(:) . ;!k)! Pr-k

1
P(E) = Pl Pk

Therefore
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Conditional independence

r—[Definition 16.]
Let

@ P a probability on a sample space S
o Ei, E, two events

@ F an event such that P(F) >0

We say that E;, E; are independent conditionally on F if

P(ELE|F)=P(E|F)P(E|F)
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Laplace’s rule of succession (1)

Experiment:

@ k+1 coins in a box

@ Probability of Heads for i-th coin: i
@ Coin randomly selected

@ Observation: n successive Heads

Question:
Probability that the (n + 1)-th flip is also Head

SEIAN Conditional probability

i=0,...
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Laplace’s rule of succession (2)

Model: We set
@ C; = i-th coin initially selected
e F, = first n flips result in heads
o H = (n+1)-th flip is a head

Aim:
Find P(H| F,)
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Laplace's rule of succession (3)

Application of Proposition 15:
k
P(H|F,) ZP H| GF,) P(C|F,)
i=0

Hypothesis:
The flips are independent conditionally on C;

Consequence:

P(H|GF.)=P(H|C) =,
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Laplace's rule of succession (4)

Application of Proposition 8:

 P(RIC)P(C)
PICIR) = S B (EIC) P(C)

Consequence of conditional independence:

P(Cl|F,) = -
o (1)
Thus ()n
P(GIF)=—*
o (1)

Probability Theory 105 / 106



N—"

Laplace's rule of succession (5

Conclusion:

Approximation: For n large,

[Ixmldx  n+1
P(H|F,) ~ 01 . =
Jo x™dx n+2
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