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Global objective

Aim: Introduce conditional probability, whose interest is twofold
1 Quantify the effect of a prior information on probabilities
2 If no prior information is available, then independence

↪→ simplification in probability computations
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Example of conditioning
Dice tossing: We consider the following situation

We throw 2 dice
We look for P(sum of 2 faces is 9)

Without prior information:

P (sum of 2 faces is 9) = 1
9

With additional information: If first face is = 4. Then
Only 6 possible results: (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
Among them, only (4, 5) give sum= 9
Probability of having sum= 9 becomes 1

6
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General definition

Let
P a probability on a sample space S
E ,F two events, such that P(F ) > 0

Then
P (E |F ) = P(E F )

P(F )

Definition 1.
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Example: examination (1)

Situation:
Student taking a one hour exam

Hypothesis: For x ∈ [0, 1] we have

P (Lx) = x
2 , (1)

where the event Lx is defined by

Lx = {student finishes the exam in less than x hour}

Question: Given that the student is still working after .75h
↪→ Find probability that the full hour is used
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Example: examination (2)
Model: We wish to find

P (Lc
1| Lc

.75)

Computation: We have

P (Lc
1| Lc

.75) = P (Lc
1Lc

.75)
P (Lc

.75)

= P (Lc
1)

P (Lc
.75)

= 1− P (L1)
1− P (L.75)

Conclusion: Applying (1) we get

P (Lc
1| Lc

.75) = .8
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Simplification for uniform probabilities

General situation: We assume
S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 ≤ i ≤ N

Alert:
This is an important but very particular case of probability space

Conditional probabilities in this case:
Reduced sample space, i.e

Conditional on F , all outcomes in F are equally likely
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Example: family distribution (1)

Situation:
The Popescu family has 10 kids

Questions:
1 If we know that 9 kids are girls

↪→ find the probability that all 10 kids are girls
2 If we know that the first 9 kids are girls

↪→ find the probability that all 10 kids are girls
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Example: family distribution (2)

Model:
S = {G ,B}10

Uniform probability: for all s ∈ S,

P({s}) = 1
210
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Example: family distribution (3)

First conditioning: We take

F1 =
{(G , . . . ,G); (G , . . . ,G ,B); (G , . . . ,G ,B,G); · · · ; (B,G , . . . ,G)}

Reduced sample space:
Each outcome in F1 has probability 1

11

Conditional probability:

P ({(G , . . . ,G)}|F1) = 1
11
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Example: family distribution (4)

Second conditioning: We take

F2 = {(G , . . . ,G); (G , . . . ,G ,B)}

Reduced sample space:
Each outcome in F2 has probability 1

2

Conditional probability:

P ({(G , . . . ,G)}|F2) = 1
2
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Example: bridge game (1)

Bridge game:
4 players, E, W, N, S
52 cards dealt out equally to players

Conditioning: We condition on the set

F = {N + S have a total of 8 spades}

Question: Conditioned on F ,
Probability that E has 3 of the remaining 5 spades
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Example: bridge game (2)

Model: We take

S = {Divisions of 52 cards in 4 groups}
and we have

Uniform probability on S
|S| =

(
52

13,13,13,13

)
' 5.36 1028

Reduced sample space: Conditioned on F ,

S̃ = {Combinations of 13 cards among 26 cards with 5 spades}
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Example: bridge game (3)

Conditional probability:

P (E has 3 of the remaining 5 spades|F ) =

(
5
3

) (
21
10

)
(

26
13

) ' .339
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Intersection and conditioning

Situation:
Urn with 8 Red and 4 White balls
Draw 2 balls without replacement

Question: Let
R1 = 1st ball drawn is red
R2 = 2nd ball drawn is red

Then find P(R1R2)
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Intersection and conditioning (2)

Recall:
Urn with 8 Red and 4 White balls
Draw 2 balls without replacement

Computation: We have

P(R1R2) = P(R1)P(R2|R1)

Thus
P(R1R2) = 8

12
7
11 = 14

33 ' .42

Samy T. Conditional probability Probability Theory 19 / 106



The multiplication rule

Let
P a probability on a sample space S
E1, . . . ,En n events

Then

P (E1 · · ·En) = P (E1)
n−1∏
k=1

P (Ek+1|E1 · · ·Ek) (2)

Proposition 2.
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Proof

Expression for the rhs of (2):

P (E1)
P (E1E2)
P (E1)

P (E1E2E3)
P (E1E2)

· · · P (E1 · · ·En−1En)
P (E1 · · ·En−1)

Conclusion:
By telescopic simplification
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Example: deck of cards (1)

Situation:
Ordinary deck of 52 cards
Division into 4 piles of 13 cards

Question: If
E = {each pile has one ace} ,

compute P(E )
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Example: deck of cards (2)

Model: Set

E1 = {the ace of S is in any one of the piles}
E2 = {the ace of S and the ace of H are in different piles}
E3 = {the aces of S, H & D are all in different piles}
E4 = {all 4 aces are in different piles}

We wish to compute
P (E1E2E3E4)
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Example: deck of cards (3)

Applying the multiplication rule: write

P (E1E2E3E4) = P (E1) P (E2|E1) P (E3|E1E2) P (E4|E1E2E3)

Computation of P(E1): Trivially

P (E1) = 1

Computation of P(E2|E1): Given E1,
Reduced space is
{51 labels given to all cards except for ace S}
P(E2|E1) = 51−12

51 = 39
51

Samy T. Conditional probability Probability Theory 24 / 106



Example: deck of cards (4)

Other conditioned probabilities:

P (E3|E1E2) = 50− 24
50 = 26

50 ,

P (E4|E1E2E3) = 49− 36
49 = 13

49

Conclusion: We get

P(E ) = P (E1) P (E2|E1) P (E3|E1E2) P (E4|E1E2E3)

= 39 · 26 · 13
51 · 50 · 49 ' .105
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Thomas Bayes

Some facts about Bayes:
England, 1701-1760
Presbyterian minister
Philosopher and statistician
Wrote 2 books in entire life
Bayes formula unpublished
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Decomposition of P(E )

Let
P a probability on a sample space S
E ,F two events with 0 < P(F ) < 1

Then
P (E ) = P (E |F )P(F ) + P (E |F c)P(F c)

Proposition 3.
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Bayes’ formula

Let
P a probability on a sample space S
E ,F two events with 0 < P(F ) < 1

Then

P (F |E ) = P (E |F )P(F )
P (E |F )P(F ) + P (E |F c)P(F c)

Proposition 4.
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Iconic Bayes (offices of HP Autonomy)
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Example: insurance company (1)

Situation:
Two classes of people:
those who are accident prone and those who are not.
Accident prone: probability .4 of accident in a one-year period
Not accident prone: probab .2 of accident in a one-year period
30% of population is accident prone

Question:
Probability that a new policyholder will have an accident within a
year of purchasing a policy?
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Example: insurance company (2)

Model: Define
A1 = Policy holder has an accident in 1 year
A = Accident prone

Then
S = {(A1,A); (Ac

1,A); (A1,Ac); (Ac
1,Ac)}

Probability: given indirectly by conditioning

Aim:
Compute P(A1)
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Example: insurance company (3)

Given data:

P(A1|A) = .4, P(A1|Ac) = .2, P(A) = .3

Application of Proposition 3:

P (A1) = P (A1|A)P(A) + P (A1|Ac)P(Ac)

We get
P (A1) = 0.4× 0.3 + 0.2× 0.7 = 26%
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Example: swine flu (1)

Situation:
We assume that 20% of a pork population has swine flu.
A test made by a lab gives the following results:

Among 50 tested porks with flu, 2 are not detected
Among 30 tested porks without flu, 1 is declared sick

Question:
Probability that a pork is healthy while his test is positive?
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Example: swine flu (2)

Model: We set F = "Flu", T = "Positive test"
We have

P(F ) = 1
5 , P(T c |F ) = 1

25 , P(T |F c) = 1
30

Aim:
Compute P(F c |T )
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Example: swine flu (3)

Application of Proposition 4:

P(F c |T ) = P(T |F c)P(F c)
P(T |F c)P(F c) + P(T |F )P(F )

= P(T |F c)P(F c)
P(T |F c)P(F c) + [1− P(T c |F )]P(F )

= 0.12

Conclusion:
12% chance of killing swines without proper justification
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Henri Poincaré

Some facts about Poincaré:
Born in Nancy, 1854-1912
Cousin of Raymond Poincaré
↪→ French president during WW1
Mathematician and engineer
Numerous contributions in

I Celestial mechanics
I Relativity
I Gravitational waves
I Topology
I Differential equations
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An example by Poincaré (1)

Situation:
We are on a train
Someone gets on the train and proposes to play a card game
The unknown person wins

Question:
Probability that this person has cheated?

Samy T. Conditional probability Probability Theory 38 / 106



An example by Poincaré (2)

Model: We set
p = probability to win without cheating
q = probability that the unknown person has cheated
W = "The unknown person wins"
C = "The unknown person has cheated"

Hypothesis on probabilities: We assume

P(W |C c) = p, P(W |C) = 1, P(C) = q

Aim:
Compute P(C |W )
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An example by Poincaré (3)

Application of Proposition 4:

P(C |W ) = P(W |C)P(C)
P(W |C)P(C) + P(W |C c)P(C c)

= q
q + p(1− q)

Remarks:
(1) We have P(C |W ) ≥ q = P(C).
↪→ the unknown’s win increases his probability to cheat
(2) We have

lim
p→0

P(C |W ) = 1
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Odds

Let
P a probability on a sample space S
A an event

We define the odds of A by

P(A)
P(Ac) = P(A)

1− P(A)

Definition 5.
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Odds and conditioning

Situation: We have
An hypothesis H , true with probability P(H)
A new evidence E

Formula: The odds of H after evidence E are given by

P(H |E )
P(Hc |E ) = P(H)

P(Hc)
P(E |H)
P(E |Hc)

Proposition 6.
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Proof

Inversion of conditioning: We have

P(H |E ) = P(E |H)P(H)
P(E )

P(Hc |E ) = P(E |Hc)P(Hc)
P(E )

Conclusion:
P(H |E )
P(Hc |E ) = P(H)

P(Hc)
P(E |H)
P(E |Hc)
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Example: coin tossing (1)

Situation:
Urn contains two type A coins and one type B coin.
When a type A coin is flipped,
it comes up heads with probability 1

4
When a type B coin is flipped,
it comes up heads with probability 3

4
A coin is randomly chosen from the urn and flipped

Question:
Given that the flip landed on heads
↪→ What is the probability that it was a type A coin?
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Example: coin tossing (2)

Model: We set
A = type A coin flipped
B = type B coin flipped
H = Head obtained

Data:
P(A) = 2

3 , P(H |A) = 1
4 , P(H |B) = 3

4

Aim:
Compute P(A|H)
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Example: coin tossing (3)

Application of Proposition 6:

P(A|H)
P(B|H) = P(A)

P(B)
P(H |A)
P(H |B)

Numerical result: We get

P(A|H)
P(B|H) = 2/3

1/3
1/4
3/4 = 2

3

Therefore
P(A|H) = 2

5
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Generalization of Proposition 3

Let
P a probability on a sample space S
F1, . . . ,Fn partition of S, i.e

I Fi mutually exclusive
I ∪n

i=1Fi = S
E another event

Then we have

P (E ) =
n∑

i=1
P (E |Fi) P (Fi)

Proposition 7.
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Generalization of Proposition 4

Let
P a probability on a sample space S
F1, . . . ,Fn partition of S, i.e

I Fi mutually exclusive
I ∪n

i=1Fi = S
E another event

Then we have

P (Fj |E ) = P (E |Fj) P (Fj)∑n
i=1 P (E |Fi) P (Fi)

Proposition 8.
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Example: card game (1)

Situation:
3 cards identical in form (say Jack)
Coloring of the cards on both faces:

I 1 card RR
I 1 card BB
I 1 card RB

1 card is randomly selected, with upper side R

Question:
What is the probability that the other side is B?
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Example: card game (2)

Model: We define the events
RR: chosen card is all red
BB: chosen card is all black
RB: chosen card is red and black
R: upturned side of chosen card is red

Aim:
Compute P(RB|R)
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Example: card game (3)

Application of Proposition 8:

P (RB|R)

= P (R|RB)P(RB)
P (R|RR)P(RR) + P (R|RB)P(RB) + P (R|BB)P(BB)

Numerical values:

P (RB|R) =
1
2 ×

1
3

1× 1
3 + 1

2 ×
1
3 + 0× 1

3
= 1

3
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Example: disposable flashlights
Situation:

Bin containing 3 different types of disposable flashlights
Proba that a type 1 flashlight will give over 100 hours of use is .7
Corresponding probabilities for types 2 & 3: .4 and .3
20% of the flashlights are type 1, 30% are type 2,
and 50% are type 3

Questions:
1 What is the probability that a randomly chosen flashlight will

give more than 100 hours of use?
2 Given that a flashlight lasted over 100 hours, what is the

conditional probability that it was a type j flashlight, for
j = 1, 2, 3?
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Example: disposable flashlights (2)

Model: We define the events
A: flashlight chosen gives more than 100h of use
Fj : type j is chosen

Aim 1:
Compute P(A)
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Example: disposable flashlights (3)

Application of Proposition 7:

P (A) =
3∑

j=1
P (A|Fj) P (Fj)

Numerical values:

P (A) = 0.7× 0.2 + 0.4× 0.3 + 0.3× 0.5 = .41
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Example: disposable flashlights (4)

Aim 2:
Compute P(F1|A)

Application of Proposition 8:

P (F1|A) = P (A|F1)P (F1)
P(A)

Numerical value:

P (F1|A) = 0.7× 0.2
0.41 = 14

41 ' 41%
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Definition of independence

Let
P a probability on a sample space S
E ,F two events

Then E and F are independent if

P (E F ) = P(E )P(F )

Notation:

E and F independent denoted by E ⊥⊥ F

Definition 9.
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Some remarks

Interpretation: If E ⊥⊥ F , then

P (E |F ) = P(E ),

that is the knowledge of F does not affect P(E )

Warning: Independent 6= mutually exclusive!
Specifically

A,B mutually exclusive ⇒ P(AB) = 0
A,B independent ⇒ P(AB) = P(A)P(B)

Therefore A et B both independent and mutually exclusive
↪→ we have either P(A) = 0 or P(B) = 0
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Example: dice tossing (1)

Experiment: We throw two dice

Sample space:
S = {1, . . . , 6}2

P({(s1, s2)}) = 1
36 for all (s1, s2) ∈ S

Events: We consider

A = "1st outcome is 1", B = "2nd outcome is 4"

Question:
Do we have A ⊥⊥ B?
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Example: dice tossing (2)
Description of A and B:

B = {1} × {1, . . . , 6}, and B = {1, . . . , 6} × {4}.

Probabilities for A and B: We have

P(A) = |A|36 = 1
6 , P(B) = |B|36 = 1

6

Description of AB: We have AB = {(1, 4)}. Thus

P(AB) = 1
36 = P(A)P(B)

Conclusion: A and B are independent
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Example: tossing n coins (1)

Experiment:
Tossing a coin n times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Question:
Are there values of n such that A ⊥⊥ B?
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Example: tossing n coins (2)

Model: We take
S = {h, t}n

P({s}) = 1
2n for all s ∈ S

Description of A and B:

A = {(t, . . . , t), (h, t, . . . , t), (t, h, t, . . . , t), (t, . . . , t, h)}
B = {(h, . . . , h), (t, . . . , t)}c

Samy T. Conditional probability Probability Theory 62 / 106



Example: tossing n coins (3)

Computing probabilities for A and B: We have

P(A) = |A|
2n = n + 1

2n

P(B) = 1− P(Bc) = 1− 1
2n−1

Description of AB and

AB = A\{(f , . . . , f )} ⇒ P(AB) = n
2n
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Example: tossing n coins (4)

Checking independence: We have A ⊥⊥ B iff

n + 1
2n

(
1− 1

2n−1

)
= n

2n ⇐⇒ n − 2n−1 + 1 = 0

Conclusion: One can check that

x 7→ x − 2x−1 + 1

vanishes for x = 3 only on R+. Thus

We have A ⊥⊥ B iff n = 3
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Independence and complements

Let
P a probability on a sample space S
E ,F two events
We assume that E ⊥⊥ F

Then
E ⊥⊥ F c , E c ⊥⊥ F , E c ⊥⊥ F c

Proposition 10.
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Proof

Decomposition of P(E ): Write

P(E ) = P (E F ) + P (E F c)
= P (E ) P (F ) + P (E F c)

Expression for P(E F c): From the previous expression we have

P(E F c) = P(E )− P (E ) P (F )
= P(E ) (1− P (F ))
= P(E )P (F c)

Conclusion:
E ⊥⊥ F c
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Counterexample: independence of 3 events (1)
Warning:
In certain situations we have A,B,C pairwise independent, however

P(A ∩ B ∩ C) 6= P(A)P(B)P(C)

Example: tossing two dice
S = {1, . . . , 6}2

P({(s1, s2)}) = 1
36 for all (s1, s2) ∈ S

Events: Define

A = "even number for the 1st outcome"
B = "odd number for the 2nd outcome"
C = "same parity for the two outcomes"
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Counterexample: independence of 3 events (2)
Description of A,B,C :

A = {2, 4, 6} × {1, . . . , 6}
B = {1, . . . , 6} × {1, 3, 5}
C = ({2, 4, 6} × {2, 4, 6}) ∪ ({1, 3, 5} × {1, 3, 5})

Pairwise independence: we find

A ⊥⊥ B, A ⊥⊥ C and B ⊥⊥ C

Independence of the 3 events: We have A ∩ B ∩ C = ∅. Thus

0 = P(A ∩ B ∩ C) 6= P(A)P(B)P(C) = 1
8
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Independence of 3 events

Let
P a probability on a sample space S
3 events A1,A2,A3

We say that A1,A2,A3 are independent if

P (A1A2) = P(A1)P(A2), P (A1A3) = P(A1)P(A3)
P (A2A3) = P(A2)P(A3)

and
P(A1A2A3) = P(A1)P(A2)P(A3)

Definition 11.
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Independence of n events

Let
P a probability on a sample space S
n events A1,A2, . . . ,An

We say that A1,A2, . . . ,An are independent if
for all 2 ≤ r ≤ n and j1 < · · · < jr we have

P(Aj1Aj2 · · ·Ajr ) = P(Aj1)P(Aj2) · · ·P(Ajr )

Definition 12.
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Independence of an ∞ number of events

Let
P a probability on a sample space S
A sequence of events {Ai ; i ≥ 1}

We say that the Ai ’s are independent if
for all 2 ≤ r <∞ and j1 < · · · < jr we have

P(Aj1Aj2 · · ·Ajr ) = P(Aj1)P(Aj2) · · ·P(Ajr )

Definition 13.
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Example: parallel system (1)

Situation:
Parallel system with n components
All components are independent
Probability that i-th component works: pi

Question:
Probability that the system functions
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Example: parallel system (2)

Model: We take
S = {0, 1}n

Probability P on S defined by

P({(s1, . . . , sn)}) =
n∏

i=1
psi

i (1− pi)1−si

Events:

A = "System functions" , Ai = "i-th component functions"

Facts about Ai ’s:
The events Ai are independent and P(Ai) = pi
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Example: parallel system (3)

Computations for P(Ac):

P(Ac) = P (∩n
i=1Ac

i )

=
n∏

i=1
P (Ac

i )

=
n∏

i=1
(1− pi)

Conclusion:
P(A) = 1−

n∏
i=1

(1− pi)
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Example: rolling dice (1)

Experiment:
Roll a pair of dice
Outcome: sum of faces

Event: We define
E = "5 appears before 7"

Question:
Compute P(E )
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Example: rolling dice (2)

Family of events: For n ≥ 1 set

En = no 5 or 7 on first n − 1 trials, then 5 on n-th trial

Relation between En and E : We have

E = 5 appears before 7 = ∪n≥1En
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Example: rolling dice (3)

Computation for P(En): by independence

P (En) =
(
1− 10

36

)n−1 4
36 =

(13
18

)n−1 1
9

Computation for P(E ):

P(E ) =
∞∑

n=1
P (En) = 1

9
1

1− 13
18

Thus
P(E ) = 2

5
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Same example with conditioning (1)

New events: We set
E = "5 appears before 7"
F5 = "1st trial gives 5"
F7 = "1st trial gives 7"
H = "1st trial gives an outcome 6= 5,7"
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Same example with conditioning (2)

Conditional probabilities:

P (E |F5) = 1, P (E |F7) = 0, P (E |H) = P (E )

Justification: E ⊥⊥ H since

E H = H ∩ {Event which depends on i-th trials with i ≥ 2}
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Same example with conditioning (3)

Applying Proposition 7:

P (E ) = P (E |F5) P (F5) + P (E |F7) P (F7) + P (E |H) P (H) (3)

Computation: We get

P (E ) = 1
9 + 13

18 P (E ) ,

and thus
P(E ) = 2

5
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Problem of the points

Experiment:
Independent trials
For each trial, success with probability p

Question:
What is the probability that n successes occur before m failures?
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Pascal’s solution
Notation: set

An,m = "n successes occur before m failures", Pn,m = P (An,m)

Conditioning on 1st trial: Like in (3) we get

Pn,m = pPn−1,m + (1− p)Pn,m−1 (4)

Initial conditions:

Pn,0 = pn, P0,m = (1− p)m (5)

Strategy:
Solve difference equation (4) with initial condition (5)
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Fermat’s solution

Expression for An,m: Write

An,m = "at least n successes in m + n − 1 trials"

Thus An,m = ∪m+n−1
k=n Ek,m,n with

Ek,m,n = "exactly k successes in m + n − 1 trials"

Expression for Pn,m: We get

Pn,m =
m+n−1∑

k=n

(
m + n − 1

k

)
pk (1− p)m+n−1−k
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P(·| F ) is a probability

Let
P a probability on a sample space S
F an event such that P(F ) > 0

Then
Q : E 7→ P (E |F )

is a probability

Proposition 14.
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Proof (1)

0 ≤ Q(E ) ≤ 1:

0 ≤ Q(E ) = P(E F )
P(F ) ≤

P(F )
P(F ) = 1

Q(S) = 1 :

Q(S) = P(S F )
P(F ) = P(F )

P(F )= 1
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Proof (2)

Additivity: Let {En; n ≥ 1} be a family of mutually exclusive events.
We claim that

Q
( ∞⋃

n=1
En

)
=
∞∑

n=1
Q (En)

Justification:

Q
( ∞⋃

n=1
En

)
= P ((⋃∞n=1 En) F )

P(F )

= P (⋃∞n=1 (En F ))
P(F ) =

∑∞
n=1 P (En F )
P(F ) =

∞∑
n=1

Q (En)
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Intersection and conditioning – Part 2

Let
P a probability on a sample space S
E1,E2 two events
F an event such that P(F ) > 0

Then

P (E1|F ) = P (E1|E2 F ) P (E2|F ) + P (E1|E c
2 F ) P (E c

2 |F )

Proposition 15.
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Proof

Strategy:
Apply Proposition 3 to the probability Q of Proposition 14

Q (E1) = Q (E1|E2)Q(E2) + Q (E1|E c
2 )Q(E c

2 )

Computing the conditional probabilities:

Q (E1|E2) = P (E1|E2 F ) , Q (E1|E c
2 ) = P (E1|E c

2 F )

Conclusion:

P (E1|F ) = P (E1|E2 F ) P (E2|F ) + P (E1|E c
2 F ) P (E c

2 |F )
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Example: insurance company – Part 2 (1)

Situation:
Two classes of people:
those who are accident prone and those who are not.
Accident prone: probability .4 of accident in a one-year period
Not accident prone: probab .2 of accident in a one-year period
30% of population is accident prone

Question:
Probability that a new policyholder will have an accident within
her/his second year of purchasing a policy if we know she/he had an
accident in his first year?
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Example: insurance company (2)

Model: Define
A1 = Policy holder has an accident in his first year
A2 = Policy holder has an accident in his second year
A = Accident prone

Given data:

P(A1|A) = .4, P(A1|Ac) = .2, P(A) = .3

Aim:
Compute P(A2|A1)
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Example: insurance company (3)

Application of Proposition 15:

P (A2|A1) = P (A2|AA1) P (A|A1) + P (A2|Ac A1) P (Ac |A1)

Computation of conditional probabilities:

P (A2|AA1) = .4, P (A2|Ac A1) = .2
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Example: insurance company (4)

Computation of conditional probabilities (2):

P (A|A1) = P (A1|A) P(A)
P(A1)

= 0.4× 0.3
0.26 = 6

13

and
P (Ac |A1) = 1− P (A|A1) = 7

13

Conclusion:

P (A2|A1) = 0.4× 6
13 + 0.2× 7

13 ' 29%
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Matching problem (1)

Situation:
n men take off their hats
Hats are mixed up
Then each man selects his hat at random
Match: if a man selects his own hat

Questions:
1 Probability of no match
2 Probability of exactly k matches
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Matching problem (2)

Model: We set
E = no match
M = first man selects his hat
Pn = P(E )

Conditioning on M:

Pn = P (E |M) P(M) + P (E |Mc) P(Mc)

= P (E |Mc) n − 1
n
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Matching problem (3)

New situation on Mc :
n − 1 hats with n − 1 men
1 extra man with no hat
1 extra hat with no man
Set N = "extra man selects extra hat"

Conditioning on N :

P (E |Mc) = P (E N |Mc) + P (E |Nc Mc) P (Nc |Mc) (6)

Samy T. Conditional probability Probability Theory 96 / 106



Matching problem (4)
Recall:

P (E |Mc) = P (E N |Mc) + P (E |Nc Mc) P (Nc |Mc) (7)

New situation if Nc occurs: since extra man does not select extra hat
Declare extra hat as extra man’s
Whole situation equivalent to (n − 1) mixed hats

New situation if N occurs:
1 extra man selects extra hat
We are left with (n − 2) mixed hats

Consequence on (7):

P (E |Mc) = Pn−1 + 1
n − 1 Pn−2 (8)
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Matching problem (5)

Putting together (6) and (8): We get

Pn = n − 1
n Pn−1 + 1

n Pn−2 ⇐⇒ Pn − Pn−1 = −1
n (Pn−1 − Pn−2)

Initial data:
P1 = 0, P2 = 1

2

Solution of difference equation:

Pn =
n∑

j=2

(−1)j

j!

Samy T. Conditional probability Probability Theory 98 / 106



Matching problem (6)

Events for the k-match problem: We set
Ek = exactly k matches
Fj = match for man j

Successive conditioning: For 1 ≤ j1 < · · · < jk ≤ n we get

P (Fj1 · · · Fjk Ek) = 1
n

1
n − 1 · · ·

1
n − (k − 1) Pn−k

= (n − k)!
n! Pn−k
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Matching problem (7)
Recall:

P (Fj1 · · · Fjk Ek) = (n − k)!
n! Pn−k

Computing P(Ek): We have

P (Ek) =
∑

1≤j1<···<jk≤n
P (Fj1 · · · Fjk Ek)

=
(
n
k

)
(n − k)!

n! Pn−k

Therefore

P (Ek) = 1
k! Pn−k
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Conditional independence

Let
P a probability on a sample space S
E1,E2 two events
F an event such that P(F ) > 0

We say that E1,E2 are independent conditionally on F if

P (E1 E2|F ) = P (E1|F )P (E2|F )

Definition 16.
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Laplace’s rule of succession (1)

Experiment:
k + 1 coins in a box
Probability of Heads for i-th coin: i

k , i = 0, . . . , k
Coin randomly selected
Observation: n successive Heads

Question:
Probability that the (n + 1)-th flip is also Head
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Laplace’s rule of succession (2)

Model: We set
Ci = i-th coin initially selected
Fn = first n flips result in heads
H = (n+1)-th flip is a head

Aim:
Find P(H |Fn)
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Laplace’s rule of succession (3)

Application of Proposition 15:

P (H |Fn) =
k∑

i=0
P (H |CiFn) P (Ci |Fn)

Hypothesis:
The flips are independent conditionally on Ci

Consequence:
P (H |CiFn) = P (H |Ci) = i

k
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Laplace’s rule of succession (4)
Application of Proposition 8:

P (Ci |Fn) = P (Fn|Ci) P (Ci)∑k
j=0 P (Fn|Cj) P (Cj)

Consequence of conditional independence:

P (Ci |Fn) =

(
i
k

)n 1
k+1∑k

j=0

(
j
k

)n 1
k+1

Thus

P (Ci |Fn) =

(
i
k

)n

∑k
j=0

(
j
k

)n
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Laplace’s rule of succession (5)

Conclusion:

P (H |Fn) =
∑k

i=0

(
i
k

)n+1

∑k
j=0

(
j
k

)n

Approximation: For n large,

P (H |Fn) '
∫ 1

0 xn+1 dx∫ 1
0 xn dx

= n + 1
n + 2
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