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Joint cdf

Let
X ,Y random variables
a, b ∈ R

The joint cdf describes the joint distribution of (X ,Y ):

F (a, b) = P (X ≤ a, Y ≤ b)

Definition 1.
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Values of interest in terms of the cdf

Let
X ,Y random variables
F the joint cdf of X ,Y

Then the marginals cdf’s of X and Y are given by

FX (a) = F (a,∞), FY (b) = F (∞, b)

We also have

P (a1 < X ≤ a2, b1 < Y ≤ b2)
= F (a2, b2)− F (a2, b1)− F (a1, b2) + F (a1, b1)

Proposition 2.
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Discrete case: joint pmf

Consider the following situation:
X ,Y discrete random variables
X takes values in E1, Y takes values in E2

x ∈ E1 and y ∈ E2

The joint pmf p describes the joint distribution of (X ,Y ):

p(x , y) = P (X = x , Y = y)

Definition 3.
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Values of interest in terms of the pmf

Let
X ,Y random variables
p the joint pmf of X ,Y

Then the marginals pmf’s of X and Y are given by

pX (a) =
∑

b∈E2

p(a, b), pY (b) =
∑
a∈E1

p(a, b)

If a1 < a2 and b1 < b2, we also have

P (a1 < X ≤ a2, b1 < Y ≤ b2) =
∑

a1<i1≤a2, b1<i2≤b2

p (i1, i2)

Proposition 4.
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Example: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

X1 = 1A, X2 = 1B, X = (X1,X2)
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Example: tossing 3 coins (2)

Model: We take
S = {h, t}3

P({s}) = 1
8 for all s ∈ S

Description of X = (X1,X2):

s X (s) s X (s)
(t, t, t) (1, 0) (h, t, t) (1, 1)
(t, t, h) (1, 1) (h, t, h) (0, 1)
(t, h, t) (1, 1) (h, h, t) (0, 1)
(t, h, h) (0, 1) (h, h, h) (0, 0)
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Example: tossing 3 coins (3)
Joint pmf for X :

P (X = (0, 0)) = 1
8 , P (X = (0, 1)) = 3

8
P (X = (1, 0)) = 1

8 , P (X = (1, 1)) = 3
8

Marginal pmf for X1:

P(X1 = 0) =
1∑

i=0
P (X = (0, i))

= P (X = (0, 0)) + P (X = (0, 1))

= 1
8 + 3

8 = 1
2

P(X1 = 1) = 1
2
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Example: tossing 3 coins (4)
Marginal pmf for X2:

P(X2 = 0) = 1
4 , P(X2 = 1) = 3

4

Remark:
We have X1 ∼ B(1/2) and X2 ∼ B(3/4)

Summary in a table:

X1\X2 0 1 Marg. X1
0 1/8 3/8 1/2
1 1/8 3/8 1/2

Marg. X2 1/4 3/4 1
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Continuous case: joint density

Consider the following situation:
X ,Y continuous real valued random variables

The random vector (X ,Y ) is said to be jointly continuous
iff for "all" subsets C ⊂ R2 we have

P ((X ,Y ) ∈ C) =
∫ ∫

(x ,y)∈C
f (x , y) dxdy

Definition 5.
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Values of interest in terms of the density

Let
X ,Y random variables
f the joint density of X ,Y

Then the marginals densities of X and Y are given by

fX (x) =
∫
R
f (x , y) dy fY (y) =

∫
R
f (x , y) dx

If a1 < a2 and b1 < b2, we also have

P (a1 < X ≤ a2, b1 < Y ≤ b2) =
∫ a2

a1

∫ b2

b1
f (x , y) dxdy

Proposition 6.
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Simple example of bivariate density (1)

Density: Let (X ,Y ) be a random vector with density

2e−xe−2y 1(0,∞)(x) 1(0,∞)(y)

Question: Compute
P(X < Y )
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Simple example of bivariate density (2)

Computation: We have

P(X < Y ) = 2
∫

0<x<y<∞
e−xe−2y dxdy

= 2
∫ ∞

0
dy e−2y

∫ y

0
e−x dx

= 2
∫ ∞

0
e−2y (1− e−y ) dy

= 1
3
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Change of variable in the plane (1)

Density: Let (X ,Y ) be a random vector with density

e−(x+y) 1(0,∞)(x) 1(0,∞)(y)

Question:
Compute the density of the r.v Z = X

Y

Samy T. Joint r.v Probability Theory 16 / 84



Change of variable in the plane (2)

Characterization through expectations: Let ϕ ∈ Cb(R). Then

E [ϕ(Z )] =
∫ ∞

0

∫ ∞
0

ϕ

(
x
y

)
e−(x+y) dxdy

Change of variable: Set

z = x
y , w = y ⇐⇒ x = z w , y = w

Jacobian:
J = w
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Change of variable in the plane (3)

Computing E[ϕ(Z )]:

E [ϕ(Z )] =
∫ ∞

0

∫ ∞
0

ϕ (z)we−w(z+1) dwdz

=
∫ ∞

0
dz ϕ (z)

∫ ∞
0

w e−w(z+1) dw

=
∫ ∞

0
ϕ (z) 1

(1 + z)2 dz

Density of Z :
1

(1 + z)2 1(0,∞)(z)
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Joint cdf in higher dimensions

Let
X1, . . . ,Xn random variables
a1, . . . , an ∈ R

The following joint cdf describes
the joint distribution of (X1, . . . ,Xn):

F (a1, . . . , an) = P (X1 ≤ a1, . . . ,Xn ≤ an)

Definition 7.
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Joint density in higher dimensions

Consider the following situation:
X1, . . . ,Xn real valued random variables

The random vector (X1, . . . ,Xn) is said to be jointly continuous
iff for "all" subsets C ⊂ Rn we have

P ((X1, . . . ,Xn) ∈ C) =
∫

(x1,...,xn)∈C
f (x1, . . . , xn) dx1 · · · dxn

Definition 8.
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Definition of independence

Let
X ,Y random variables

X and Y are said to be independent if for "all" C ,D ⊂ R we
have

P (X ∈ C , Y ∈ D) = P (X ∈ C)P (Y ∈ D)

Definition 9.
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Characterizations of independence

Let X ,Y random variables.
Then X and Y are independent in the following cases

1 If the joint cdf F satisfies

F (a, b) = FX (a)FY (b), for all a, b ∈ R

2 If X ,Y are discrete and the joint pmf satisfies

p(x , y) = pX (x) pY (y), for all (x , y) ∈ E1 × E2

3 If X ,Y are jointly cont. and the joint density satisfies

f (x , y) = fX (x) fY (y), for all (x , y) ∈ R2

Proposition 10.
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Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

X1 = 1A, X2 = 1B, X = (X1,X2)
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Example ctd: tossing 3 coins (2)
We have seen:

X1\X2 0 1 Marg. X1
0 1/8 3/8 1/2
1 1/8 3/8 1/2

Marg. X2 1/4 3/4 1

Checking independence: With the help of the table, one can see that

P (X = (i , j)) = P (X1 = i) P (X2 = j) , for all i , j ∈ {0, 1}

Therefore X1 ⊥⊥ X2.

Remark: The relation X1 ⊥⊥ X2 is due to the fact that A ⊥⊥ B.
↪→ cf. Conditional probability, Section 4.
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Example: Romeo and Juliet (1)

Situation:
Romeo and Juliet decide to meet on the main square of Verona
They arrive at independent times between 12pm and 1pm
Rule: the first to arrive leaves after 10mn

Question:
Compute the probability that Romeo meets Juliet
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Example: Romeo and Juliet (2)

Model:
X = Arrival time for Romeo
Y = Arrival time for Juliet
Renormalize everything on [0, 1]
Hypothesis: X ⊥⊥ Y and X ,Y ∼ U([0, 1])

Joint density: The joint density for (X ,Y ) is

f (x , y) = 1[0,1]2(x , y) = 1[0,1](x) 1[0,1](y)
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Example: Romeo and Juliet (3)

Aim: Compute
P
(
|Y − X | < 1

6

)
Complementary: Geometrically one can see that

P
(
|Y − X | ≥ 1

6

)
=
(5
6

)2

Conclusion:

P
(
|Y − X | < 1

6

)
= 1−

(5
6

)2
' 30.5%
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Characterizations of independence

Let X ,Y random variables.
Then X and Y are independent in the following cases

1 If X ,Y are discrete and there exist h, g such that

p(x , y) = h(x) g(y), for all (x , y) ∈ E1 × E2

2 If X ,Y are jointly cont. and there exist h, g such that

f (x , y) = h(x) g(y), for all (x , y) ∈ R2

Proposition 11.
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Example of independence (1)

Example 1: If (X ,Y ) have joint density

6e−(2x+3y) 1(0,∞)2(x , y),

then X ⊥⊥ Y .
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Example of independence (2)

Recall joint density:

6e−(2x+3y) 1(0,∞)2(x , y)

Decomposition of the density:

f (x , y) = h(x) g(y),

with
h(x) = 6e−2x 1(0,∞)(x), g(y) = e−3y 1(0,∞)(y)

Conclusion:
X ⊥⊥ Y
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Example of non independence (1)

Example 2: If (X ,Y ) have joint density

24xy 1(0,∞)2(x , y)1(0<x+y<1),

then X ,Y are not independent
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Example of non independence (2)
Recall density:

f (x , y) = 24xy 1(0,∞)2(x , y)1(0<x+y<1),

Non product structure:
X ,Y satisfy the relation: X + Y < 1.

Checking non independence: We have

P
(

(X ,Y ) ∈
[
0, 12

]2)
=
∫

[0, 1
2 ]2

24xy dxdy = 3
8

and

P
(
X ∈

[
0, 12

])
P
(
Y ∈

[
0, 12

])
=
(
24
∫ 1

2

0
dx x

∫ 1−x

0
y dy

)2

=
(11
16

)2
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Density of a sum

Let
X ,Y continuous random variables
Hypothesis: X ⊥⊥ Y
Set Z = X + Y

Then the density of Z is given by

fZ (a) = [fX ∗ fY ] (a) =
∫
R
fX (a − y) fY (y) dy

Proposition 12.
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Proof

Characterization by expectations: Let ϕ ∈ C(R). Then

E [ϕ(Z )] =
∫
R2
ϕ(x + y)fX (x)fY (y) dxdy

Change of variable:
x + y = a and y = b, thus J = 1

Expression for E[ϕ(Z )]:

E [ϕ(Z )] =
∫
R
ϕ(a)

(∫
R
fX (a − b) fY (b) db

)
da
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Triangular distribution

Let

X ,Y ∼ U([0, 1])
Hypothesis: X ⊥⊥ Y
Set Z = X + Y

Then the density of Z is given by

fZ (a) = a 1[0,1](a) + (2− a) 1[1,2](a)

Proposition 13.
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Proof

Application of Proposition 12:

fZ (a) =
∫ 1

0
fX (a − y) dy =

∫
[0,1]∩[a−1,a]

dy = |[0, 1] ∩ [a − 1, a]|

Case 1: a ∈ [0, 1]: Then [0, 1] ∩ [a − 1, a] = [0, a] and

fZ (a) = a

Case 2: a ∈ (1, 2]: Then [0, 1] ∩ [a − 1, a] = [a − 1, 1] and

fZ (a) = 2− a
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Sums of Gamma random variables

Let
X1, . . . ,Xn independent random variables
Xi ∼ Γ(ti , λ)
Z = ∑n

i=1 Xi

Then
Z ∼ Γ

( n∑
i=1

ti , λ
)

Proposition 14.

Remark: This result includes
Sums of exponential random variables
Sums of chi-square random variables
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Sums of Gaussian random variables

Let
X1, . . . ,Xn independent random variables
Xi ∼ N (µi , σ

2
i )

Z = ∑n
i=1 Xi

Then
Z ∼ N

( n∑
i=1

µi ,
n∑

i=1
σ2

i

)

Proposition 15.
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Example: basketball (1)

Situation:
A basketball team will play a 44-game season
26 games are against class A teams, with probability of win = .4
18 games are against class B teams, with probability of win = .7
Results of the different games are independent.

Question: Approximate the probability that
1 The team wins 25 games or more
2 The team wins more games against class A teams than it does

against class B teams
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Example: basketball (2)

Model: We set
XA = # games the team wins against class A
XB = # games the team wins against class B

Then XA ⊥⊥ XB and

XA ∼ Bin(26, 0.4), XB ∼ Bin(18, 0.7)

Approximation for XA,XB: According to DeMoivre-Laplace,

XA ≈ N (10.24; 6.24), XB ≈ N (12.60; 3.78)
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Example: basketball (3)

Approximation for XA + XB: Since XA ⊥⊥ XB,

XA + XB ≈ N (23; 10.2)

Question 1: We have

P (XA + XB ≥ 25) = P (XA + XB ≥ 24.5)

= P
(
XA + XB − 23√

10.2
≥ 24.5− 23√

10.2

)
' 1− P (Z < .4739)
' .3178
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Example: basketball (4)

Approximation for XA − XB: Since XA ⊥⊥ XB,

XA − XB ≈ N (−2.2; 10.2)

Question 2: We have

P (XA − XB > 0) = P (XA − XB ≥ .5)

= P
(
XA − XB + 2.2√

10.2
≥ .5 + 2.2√

10.2

)
' 1− P (Z < .8530)
' .1968
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Sums of Poisson random variables

Let
X1, . . . ,Xn independent random variables
Xi ∼ P(λi)
Z = ∑n

i=1 Xi

Then
Z ∼ P

( n∑
i=1

λi

)

Proposition 16.
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Proof for 2 random variables

Hypothesis:
X1 ∼ P(λ1), X2 ∼ P(λ2) and X1 ⊥⊥ X2

Computation: For n ≥ 0,

P (X1 + X2 = n) =
n∑

k=0
P (X1 = k)P (X2 = n − k)

=
n∑

k=0
e−λ1

λk
1

k! e
−λ2

λn−k
2

(n − k)!

= e−(λ1+λ2) (λ1 + λ2)n

n!
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Sums of Binomial random variables

Let
X1, . . . ,Xn independent random variables
Xi ∼ Bin(ni , p)
Z = ∑n

i=1 Xi

Then
Z ∼ Bin

( n∑
i=1

ni , p
)

Proposition 17.
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General definition

Let
(X ,Y ) couple of discrete random variables
Joint pmf p
Marginal pmf’s pX , pY

y such that pY (y) > 0

Then the conditional pmf of X given Y = y is defined by

pX |Y (x | y) = P (X = x |Y = y) = p(x , y)
pY (y)

Definition 18.
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Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

X1 = 1A, X2 = 1B, X = (X1,X2)
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Example ctd: tossing 3 coins (2)
We have seen:

X1\X2 0 1 Marg. X1
0 1/8 3/8 1/2
1 1/8 3/8 1/2

Marg. X2 1/4 3/4 1

Conditional probabilities given X1 = 0:

pX2|X1(0| 0) = 1/8
1/2 = 1

4 , pX2|X1(1| 0) = 3/8
1/2 = 3

4

Conditional probabilities given X2 = 1:

pX1|X2(0| 1) = 3/8
3/4 = 1

2 , pX1|X2(1| 1) = 3/8
3/4 = 1

2
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Conditioning Poisson random variables

Let
X ∼ P(λ1), Y ∼ P(λ2)
X ⊥⊥ Y
p = λ1

λ1+λ2

Then

L (X |X + Y = n) = Bin(n, p)

Proposition 19.
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Proof (1)

Expression for the conditional probabilities:
Let 0 ≤ k ≤ n. Then invoking X ⊥⊥ Y ,

P (X = k|X + Y = n) = P (X = k)P (Y = n − k)
P (X + Y = n)

Law of X + Y : We have seen

X + Y ∼ P(λ1 + λ2)

Samy T. Joint r.v Probability Theory 53 / 84



Proof (2)

Computation of the conditional probabilities:

P (X = k|X + Y = n)

= e−λ1
λk

1
k! e

−λ2
λn−k

2
(n − k)!

[
e−(λ1+λ2) (λ1 + λ2)n

n!

]−1

=
(
n
k

)
pk(1− p)n−k

Conclusion:
L (X |X + Y = n) = Bin(n, p)
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General definition

Let
(X ,Y ) couple of continuous random variables
Joint density f
Marginal densities fX , fY
y such that fY (y) > 0

Then the conditional density of X given Y = y is defined by

fX |Y (x | y) = f (x , y)
fY (y)

Definition 20.
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Justification of the definition

Heuristics: fX |Y (x | y) can be interpreted as

fX |Y (x | y) dx = f (x , y) dxdy
fY (y) dy

' P (x ≤ X ≤ x + dx , y ≤ Y ≤ y + dy)
P (y ≤ Y ≤ y + dy)

= P (x ≤ X ≤ x + dx | y ≤ Y ≤ y + dy)

Use of the conditional probability: compute probabilities like

P (X ∈ A|Y = y) =
∫

A
fX |Y (x | y) dx

Rigorous definition: see MA 539
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Simple example of continuous conditioning (1)

Density: Let (X ,Y ) be a random vector with density

e−
x
y e−y

y 1(0,∞)(x) 1(0,∞)(y)

Question: Compute
P(X > 1|Y = y)
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Simple example of continuous conditioning (2)
Marginal distribution of Y : We have

fY (y) =
∫ ∞

0
f (x , y) dx

= e−y

y

(∫ ∞
0

e−
x
y dx

)
1(0,∞)(y)

= e−y 1(0,∞)(y)

Conditional density: For y > 0 we have

fX |Y (x | y) = f (x , y)
fY (y) = e−

x
y

y 1(0,∞)(x)

Namely L(X |Y = y) = E( 1
y )
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Simple example of continuous conditioning (3)

Conditional probability:

P(X > 1|Y = y) =
∫ ∞

1
fX |Y (x | y) dx

=
∫ ∞

1

e−
x
y

y dx

= e−
1
y
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Characterizing r.v by expected values

Notation:
Cb(R2) ≡ set of continuous and bounded functions on R2.

Let X = (X1,X2) be a r.v in R2. We assume that

E[ϕ(X1,X2)] =
∫
R2
ϕ(x1, x2) f (x1, x2) dx1dx2,

for all functions ϕ ∈ Cb(R2).

Then (X1,X2) is continuous, with density f .

Theorem 21.
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Application: change of variable

Problem: Let
X = (X1,X2) random variable with density f .
Set Y = h(X ) with h : R2 → R2.

We wish to find the density of Y .
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Application: change of variable (2)

Recipe: One proceeds as follows
1 For ϕ ∈ Cb(R2), write

E[ϕ(Y )] = E[ϕ(h(X ))] =
∫
R2
ϕ(h(x1, x2)) f (x1, x2) dx1dx2.

2 Change variables y = h(x) in the integral.
After some elementary computations we get

E[ϕ(Y )] =
∫
R2
ϕ(y1, y2) g(y1, y2) dy1dy2.

3 This characterizes Y , which admits a density g
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Polar coordinates of Gaussian vectors (1)

Standard Gaussian vector in R2: Consider
X ,Y ∼ N (0, 1), with X ⊥⊥ Y
Z = (X ,Y )

Polar coordinates: Set

(X ,Y ) = (R cos(Θ),R sin(Θ))

Question:
Find the joint density of (R ,Θ)
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Polar coordinates of Gaussian vectors (2)

Decomposition of the expected value: For ϕ ∈ Cb(R2),

E [ϕ(R ,Θ)] = E
[
ϕ(R ,Θ) 1(Y>0)

]
+ E

[
ϕ(R ,Θ) 1(Y<0)

]
≡ A+ + A−

Expression for A+:

A+ = E
[
ϕ

(
(X 2 + Y 2)1/2, tan−1

(
Y
X

))
1(X>0)

]

=
∫
R×R+

ϕ
(

(x2 + y 2)1/2, tan−1
(y
x

)) e− x2+y2
2

2π dxdy
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Polar coordinates of Gaussian vectors (3)

Change of variable for A+: Set

x = r cos(θ), y = r sin(θ) =⇒ J(r , θ) = r

Then

A+ =
∫
R+×(0,π)

ϕ(r , θ) r e
− r2

2

2π drdθ

Change of variable for A−: We find

A− =
∫
R+×(π,2π)

ϕ(r , θ) r e
− r2

2

2π drdθ
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Polar coordinates of Gaussian vectors (4)

Expression for the expected value:

E [ϕ(R ,Θ)] =
∫
R+×(0,2π)

ϕ(r , θ) r e
− r2

2

2π drdθ

Joint density for (R ,Θ):

f (r , θ) = 1
2π 1(0,2π)(θ)× r e− r2

2 1R+(r)

Otherwise stated:
R ∼ Rayleigh, Θ ∼ U([0, 2π])
R ⊥⊥ Θ
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Change of variable: general result

Let
X = (X1,X2) continuous random variable
Density: fX
g diffeomorphism of R2

Y = g(X )

Then Y has a density fY given by

fY (y) = fX
(
g−1(y)

)
J(y) 1{y=g(x) for some x}

Theorem 22.
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Outline

1 Joint distribution functions

2 Independent random variables

3 Sums of independent random variables

4 Conditional distributions: discrete case

5 Conditional distributions: continuous case

6 Joint probability distribution of functions of random variables

7 Conditional expectation
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Cond. pmf in the discrete case (repeated)

Let
(X ,Y ) couple of discrete random variables
Joint pmf p
Marginal pmf’s pX , pY

y such that pY (y) > 0

Then the conditional pmf of X given Y = y is defined by

pX |Y (x | y) = P (X = x |Y = y) = p(x , y)
pY (y)

Definition 23.
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Cond. expectation in the discrete case

Let
(X ,Y ) couple of discrete random variables
Joint pmf p
Marginal pmf’s pX , pY , y such that pY (y) > 0
pX |Y (x | y) conditional distribution

Then the conditional exp. of X given Y = y is defined by

E [X |Y = y ] =
∑
x∈E

x pX |Y (x | y)

Definition 24.
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Binomial example (1)

Situation: Let
X ,Y ∼ Bin(n, p)
Z = X + Y

Problem: We wish to compute

E [X |Z = m]

Samy T. Joint r.v Probability Theory 73 / 84



Binomial example (2)
Distribution for Z :

Z =
n∑

i=1
Xi +

n∑
j=1

Yj ∼ Bin(2n, p)

Computation for conditional pmf: For k ≤ min(n,m) we have

P (X = k|Z = m) = P(X = k , X + Y = m)
P(Z = m)

= P(X = k , Y = m − k)
P(Z = m)

=

(
n
k

)(
n

m−k

)
(

2n
m

)
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Binomial example (3)
Conditional pmf: For k ≤ min(n,m) we have

pX |Z (k|m) =

(
n
k

)(
n

m−k

)
(

2n
m

)
Recall: If V ∼ HypG(n,N ,m) then

P(X = k) =

(
m
k

)(
N−m
n−k

)
(

N
n

)
Identification of the conditional pmf: We have

pX |Z (k|m) = Pmf of HypG(2n,m, n)
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Binomial example (4)

Conditional expectation: Let V ∼ HypG(2n,m, n). Then

E [X |Z = m] = E[V ]

Numerical value:
According to the values for hypergeometric distributions,

E [X |Z = m] = m × n
2n = m

2
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Cond. density in the continuous case (repeated)

Let
(X ,Y ) couple of continuous random variables
Joint density f
Marginal densities fX , fY
y such that fY (y) > 0

Then the conditional density of X given Y = y is defined by

fX |Y (x | y) = f (x , y)
fY (y)

Definition 25.
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Cond. expectation in the continuous case

Let
(X ,Y ) couple of continuous random variables
Joint density f
Marginal densities fX , fY , y such that fY (y) > 0
fX |Y (x | y) conditional density

Then the conditional exp. of X given Y = y is defined by

E [X |Y = y ] =
∫
R
x fX |Y (x | y) dx

Definition 26.
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Example of continuous conditional expectation (1)

Density: Let (X ,Y ) be a random vector with density

e−
x
y e−y

y 1(0,∞)(x) 1(0,∞)(y)

Question: Compute
E [X |Y = y ]
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Example of continuous conditional expectation (2)
Conditional density: For y > 0 we have seen that

fX |Y (x | y) = f (x , y)
fY (y) = e−

x
y

y 1(0,∞)(x)

Namely L(X |Y = y) = E( 1
y )

Conditional expectation: We have

E [X |Y = y ] =
∫
R
x fX |Y (x | y) dx

=
∫ ∞

0
x e−

x
y

y
= y
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Expectation and conditioning

Let X ,Y be two random variables. Then
1 If X ,Y are discrete we have

E[X ] =
∑

y
E [X |Y = y ] pY (y)

2 If X ,Y are continuous we have

E[X ] =
∫
R
E [X |Y = y ] fY (y) dy

3 Unified notation:

E[X ] = E {E [X |Y ]}

Proposition 27.
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Example: sales in a store (1)

Situation:
We consider a store on a given day. We assume

# of people entering in the store has mean 50
Amount of money spent by each person is $8
Indep. between # persons entering and amount of money spent

Question:
Expected amount of money spent in the store on a given day?
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Example: sales in a store (2)
Notation: We set

N = # of customers entering the store
Xi = Amount spent by i-th customer, for i ≥ 1
Z = Total amount spent

Expression for Z : We have (double randomness)

Z =
N∑

i=1
Xi

Hypothesis:
Xi ’s follow the same distribution X
(Xi)i≥1 ⊥⊥ N
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Example: sales in a store (3)
Computation:

E[Z ] = E
{
E
[ N∑

i=1
Xi | N

]}

=
∞∑

n=1
E
[ N∑

i=1
Xi | N = n

]
pN(n)

=
∞∑

n=1
E
[ n∑

i=1
Xi | N = n

]
pN(n)

=
∞∑

n=1

n∑
i=1

E [Xi | N = n] pN(n)

=
∞∑

n=1
nE[X ] pN(n)

= E[N]E[X ]
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