Jointly distributed random variables

Samy Tindel

Purdue University

Probability - MA 416

Mostly taken from A first course in probability by S . Ross

PURDUE

Outline

(1) Joint distribution functions
(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Outline

(1) Joint distribution functions
(2) Independent random variables
(3) Sums of independent random variables

4 Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Joint cdf

Definition 1.

Let

- X, Y random variables
- $a, b \in \mathbb{R}$

The joint cdf describes the joint distribution of (X, Y) :

$$
F(a, b)=\mathbf{P}(X \leq a, Y \leq b)
$$

Values of interest in terms of the cdf

Proposition 2.

Let

- X, Y random variables
- F the joint cdf of X, Y

Then the marginals cdf's of X and Y are given by

$$
F_{X}(a)=F(a, \infty), \quad F_{Y}(b)=F(\infty, b)
$$

We also have

$$
\begin{aligned}
\mathbf{P}\left(a_{1}<X\right. & \left.\leq a_{2}, b_{1}<Y \leq b_{2}\right) \\
& =F\left(a_{2}, b_{2}\right)-F\left(a_{2}, b_{1}\right)-F\left(a_{1}, b_{2}\right)+F\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Discrete case: joint pmf

Definition 3.

Consider the following situation:

- X, Y discrete random variables
- X takes values in E_{1}, Y takes values in E_{2}
- $x \in E_{1}$ and $y \in E_{2}$

The joint pmf p describes the joint distribution of (X, Y) :

$$
p(x, y)=\mathbf{P}(X=x, Y=y)
$$

Values of interest in terms of the pmf

Proposition 4.

Let

- X, Y random variables
- p the joint pmf of X, Y

Then the marginals pmf's of X and Y are given by

$$
p_{X}(a)=\sum_{b \in E_{2}} p(a, b), \quad p_{Y}(b)=\sum_{a \in E_{1}} p(a, b)
$$

If $a_{1}<a_{2}$ and $b_{1}<b_{2}$, we also have

$$
\mathbf{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\sum_{a_{1}<i_{1} \leq a_{2}, b_{1}<i_{2} \leq b_{2}} p\left(i_{1}, i_{2}\right)
$$

Example: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times
Events: We consider

$$
\begin{gathered}
A=\text { "At most one Head" } \\
B=\text { "At least one Head and one Tail" }
\end{gathered}
$$

Random variables: Set

$$
X_{1}=\mathbf{1}_{A}, \quad X_{2}=\mathbf{1}_{B}, \quad X=\left(X_{1}, X_{2}\right)
$$

Example: tossing 3 coins (2)

Model: We take

- $S=\{h, t\}^{3}$
- $\mathbf{P}(\{s\})=\frac{1}{8}$ for all $s \in S$

Description of $X=\left(X_{1}, X_{2}\right)$:

s	$X(s)$	s	$X(s)$
(t, t, t)	$(1,0)$	(h, t, t)	$(1,1)$
(t, t, h)	$(1,1)$	(h, t, h)	$(0,1)$
(t, h, t)	$(1,1)$	(h, h, t)	$(0,1)$
(t, h, h)	$(0,1)$	(h, h, h)	$(0,0)$

Example: tossing 3 coins (3)

Joint pmf for X :

$$
\begin{aligned}
& \mathbf{P}(X=(0,0))=\frac{1}{8}, \quad \mathbf{P}(X=(0,1))=\frac{3}{8} \\
& \mathbf{P}(X=(1,0))=\frac{1}{8}, \quad \mathbf{P}(X=(1,1))=\frac{3}{8}
\end{aligned}
$$

Marginal pmf for X_{1} :

$$
\begin{aligned}
\mathbf{P}\left(X_{1}=0\right) & =\sum_{i=0}^{1} \mathbf{P}(X=(0, i)) \\
& =\mathbf{P}(X=(0,0))+\mathbf{P}(X=(0,1)) \\
& =\frac{1}{8}+\frac{3}{8}=\frac{1}{2} \\
\mathbf{P}\left(X_{1}=1\right) & =\frac{1}{2}
\end{aligned}
$$

Example: tossing 3 coins (4)

Marginal pmf for X_{2} :

$$
\mathbf{P}\left(X_{2}=0\right)=\frac{1}{4}, \quad \mathbf{P}\left(X_{2}=1\right)=\frac{3}{4}
$$

Remark:
We have $X_{1} \sim \mathcal{B}(1 / 2)$ and $X_{2} \sim \mathcal{B}(3 / 4)$
Summary in a table:

$X_{1} \backslash X_{2}$	0	1	Marg. X_{1}
0	$1 / 8$	$3 / 8$	$1 / 2$
1	$1 / 8$	$3 / 8$	$1 / 2$
Marg. X_{2}	$1 / 4$	$3 / 4$	1

Continuous case: joint density

Definition 5.

Consider the following situation:

- X, Y continuous real valued random variables

The random vector (X, Y) is said to be jointly continuous iff for "all" subsets $C \subset \mathbb{R}^{2}$ we have

$$
\mathbf{P}((X, Y) \in C)=\iint_{(x, y) \in C} f(x, y) d x d y
$$

Values of interest in terms of the density

Proposition 6.

Let

- X, Y random variables
- f the joint density of X, Y

Then the marginals densities of X and Y are given by

$$
f_{X}(x)=\int_{\mathbb{R}} f(x, y) d y \quad f_{Y}(y)=\int_{\mathbb{R}} f(x, y) d x
$$

If $a_{1}<a_{2}$ and $b_{1}<b_{2}$, we also have

$$
\mathbf{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f(x, y) d x d y
$$

Simple example of bivariate density (1)

Density: Let (X, Y) be a random vector with density

$$
2 e^{-x} e^{-2 y} \mathbf{1}_{(0, \infty)}(x) \mathbf{1}_{(0, \infty)}(y)
$$

Question: Compute

$$
\mathbf{P}(X<Y)
$$

Simple example of bivariate density (2)

Computation: We have

$$
\begin{aligned}
\mathbf{P}(X<Y) & =2 \int_{0<x<y<\infty} e^{-x} e^{-2 y} d x d y \\
& =2 \int_{0}^{\infty} d y e^{-2 y} \int_{0}^{y} e^{-x} d x \\
& =2 \int_{0}^{\infty} e^{-2 y}\left(1-e^{-y}\right) d y \\
& =\frac{1}{3}
\end{aligned}
$$

Change of variable in the plane (1)

Density: Let (X, Y) be a random vector with density

$$
e^{-(x+y)} \mathbf{1}_{(0, \infty)}(x) \mathbf{1}_{(0, \infty)}(y)
$$

Question:
Compute the density of the r.v $Z=\frac{X}{Y}$

Change of variable in the plane (2)

Characterization through expectations: Let $\varphi \in \mathcal{C}_{b}(\mathbb{R})$. Then

$$
\mathbf{E}[\varphi(Z)]=\int_{0}^{\infty} \int_{0}^{\infty} \varphi\left(\frac{x}{y}\right) e^{-(x+y)} d x d y
$$

Change of variable: Set

$$
z=\frac{x}{y}, \quad w=y \quad \Longleftrightarrow \quad x=z w, \quad y=w
$$

Jacobian:

$$
J=w
$$

Change of variable in the plane (3)

Computing $\mathrm{E}[\varphi(Z)]$:

$$
\begin{aligned}
\mathbf{E}[\varphi(Z)] & =\int_{0}^{\infty} \int_{0}^{\infty} \varphi(z) w e^{-w(z+1)} d w d z \\
& =\int_{0}^{\infty} d z \varphi(z) \int_{0}^{\infty} w e^{-w(z+1)} d w \\
& =\int_{0}^{\infty} \varphi(z) \frac{1}{(1+z)^{2}} d z
\end{aligned}
$$

Density of Z :

$$
\frac{1}{(1+z)^{2}} \mathbf{1}_{(0, \infty)}(z)
$$

Joint cdf in higher dimensions

Definition 7.

Let

- X_{1}, \ldots, X_{n} random variables
- $a_{1}, \ldots, a_{n} \in \mathbb{R}$

The following joint cdf describes the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$:

$$
F\left(a_{1}, \ldots, a_{n}\right)=\mathbf{P}\left(X_{1} \leq a_{1}, \ldots, X_{n} \leq a_{n}\right)
$$

Joint density in higher dimensions

Definition 8.

Consider the following situation:

- X_{1}, \ldots, X_{n} real valued random variables

The random vector $\left(X_{1}, \ldots, X_{n}\right)$ is said to be jointly continuous iff for "all" subsets $C \subset \mathbb{R}^{n}$ we have

$$
\mathbf{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in C\right)=\int_{\left(x_{1}, \ldots, x_{n}\right) \in C} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Outline

(1) Joint distribution functions
(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Definition of independence

Definition 9.

Let

- X, Y random variables
X and Y are said to be independent if for "all" $C, D \subset \mathbb{R}$ we have

$$
\mathbf{P}(X \in C, Y \in D)=\mathbf{P}(X \in C) \mathbf{P}(Y \in D)
$$

Characterizations of independence

Proposition 10.

Let X, Y random variables.
Then X and Y are independent in the following cases
(1) If the joint cdf F satisfies

$$
F(a, b)=F_{X}(a) F_{Y}(b), \quad \text { for all } a, b \in \mathbb{R}
$$

(2) If X, Y are discrete and the joint pmf satisfies

$$
p(x, y)=p_{X}(x) p_{Y}(y), \quad \text { for all }(x, y) \in E_{1} \times E_{2}
$$

(0) If X, Y are jointly cont. and the joint density satisfies

$$
f(x, y)=f_{X}(x) f_{Y}(y), \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times
Events: We consider

$$
\begin{gathered}
A=\text { "At most one Head" } \\
B=\text { "At least one Head and one Tail" }
\end{gathered}
$$

Random variables: Set

$$
X_{1}=\mathbf{1}_{A}, \quad X_{2}=\mathbf{1}_{B}, \quad X=\left(X_{1}, X_{2}\right)
$$

Example ctd: tossing 3 coins (2)

We have seen:

$X_{1} \backslash X_{2}$	0	1	Marg. X_{1}
0	$1 / 8$	$3 / 8$	$1 / 2$
1	$1 / 8$	$3 / 8$	$1 / 2$
Marg. X_{2}	$1 / 4$	$3 / 4$	1

Checking independence: With the help of the table, one can see that

$$
\mathbf{P}(X=(i, j))=\mathbf{P}\left(X_{1}=i\right) \mathbf{P}\left(X_{2}=j\right), \quad \text { for all } \quad i, j \in\{0,1\}
$$

Therefore $X_{1} \Perp X_{2}$.
Remark: The relation $X_{1} \Perp X_{2}$ is due to the fact that $A \Perp B$. $\hookrightarrow c f$. Conditional probability, Section 4.

Example: Romeo and Juliet (1)

Situation:

- Romeo and Juliet decide to meet on the main square of Verona
- They arrive at independent times between 12 pm and 1 pm
- Rule: the first to arrive leaves after 10 mn

Question:
Compute the probability that Romeo meets Juliet

Example: Romeo and Juliet (2)

Model:

- $X=$ Arrival time for Romeo
- $Y=$ Arrival time for Juliet
- Renormalize everything on $[0,1]$
- Hypothesis: $X \Perp Y$ and $X, Y \sim \mathcal{U}([0,1])$

Joint density: The joint density for (X, Y) is

$$
f(x, y)=\mathbf{1}_{[0,1]^{2}}(x, y)=\mathbf{1}_{[0,1]}(x) \mathbf{1}_{[0,1]}(y)
$$

Example: Romeo and Juliet (3)

Aim: Compute

$$
\mathbf{P}\left(|Y-X|<\frac{1}{6}\right)
$$

Complementary: Geometrically one can see that

$$
\mathbf{P}\left(|Y-X| \geq \frac{1}{6}\right)=\left(\frac{5}{6}\right)^{2}
$$

Conclusion:

$$
\mathbf{P}\left(|Y-X|<\frac{1}{6}\right)=1-\left(\frac{5}{6}\right)^{2} \simeq 30.5 \%
$$

Characterizations of independence

Proposition 11.

Let X, Y random variables.
Then X and Y are independent in the following cases
(1) If X, Y are discrete and there exist h, g such that

$$
p(x, y)=h(x) g(y), \quad \text { for all }(x, y) \in E_{1} \times E_{2}
$$

(2) If X, Y are jointly cont. and there exist h, g such that

$$
f(x, y)=h(x) g(y), \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Example of independence (1)

Example 1: If (X, Y) have joint density

$$
6 e^{-(2 x+3 y)} \mathbf{1}_{(0, \infty)^{2}}(x, y)
$$

then $X \Perp Y$.

Example of independence (2)

Recall joint density:

$$
6 e^{-(2 x+3 y)} \mathbf{1}_{(0, \infty)^{2}}(x, y)
$$

Decomposition of the density:

$$
f(x, y)=h(x) g(y)
$$

with

$$
h(x)=6 e^{-2 x} \mathbf{1}_{(0, \infty)}(x), \quad g(y)=e^{-3 y} \mathbf{1}_{(0, \infty)}(y)
$$

Conclusion:

$$
X \Perp Y
$$

Example of non independence (1)

Example 2: If (X, Y) have joint density

$$
24 x y \mathbf{1}_{(0, \infty)^{2}}(x, y) \mathbf{1}_{(0<x+y<1)},
$$

then X, Y are not independent

Example of non independence (2)

Recall density:

$$
f(x, y)=24 x y \mathbf{1}_{(0, \infty)^{2}}(x, y) \mathbf{1}_{(0<x+y<1)}
$$

Non product structure:
X, Y satisfy the relation: $X+Y<1$.
Checking non independence: We have

$$
\mathbf{P}\left((X, Y) \in\left[0, \frac{1}{2}\right]^{2}\right)=\int_{\left[0, \frac{1}{2}\right]^{2}} 24 x y d x d y=\frac{3}{8}
$$

and
$\mathbf{P}\left(X \in\left[0, \frac{1}{2}\right]\right) \mathbf{P}\left(Y \in\left[0, \frac{1}{2}\right]\right)=\left(24 \int_{0}^{\frac{1}{2}} d x x \int_{0}^{1-x} y d y\right)^{2}=\left(\frac{11}{16}\right)^{2}$

Outline

(1) Joint distribution functions

(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Density of a sum

Proposition 12.

Let

- X, Y continuous random variables
- Hypothesis: $X \Perp Y$
- Set $Z=X+Y$

Then the density of Z is given by

$$
f_{Z}(a)=\left[f_{X} * f_{Y}\right](a)=\int_{\mathbb{R}} f_{X}(a-y) f_{Y}(y) d y
$$

Proof

Characterization by expectations: Let $\varphi \in \mathcal{C}(\mathbb{R})$. Then

$$
\mathbf{E}[\varphi(Z)]=\int_{\mathbb{R}^{2}} \varphi(x+y) f_{X}(x) f_{Y}(y) d x d y
$$

Change of variable:
$x+y=a$ and $y=b$, thus $J=1$
Expression for $\mathbf{E}[\varphi(Z)]$:

$$
\mathbf{E}[\varphi(Z)]=\int_{\mathbb{R}} \varphi(a)\left(\int_{\mathbb{R}} f_{X}(a-b) f_{Y}(b) d b\right) d a
$$

Triangular distribution

Proposition 13.

Let

- $X, Y \sim \mathcal{U}([0,1])$
- Hypothesis: $X \Perp Y$
- Set $Z=X+Y$

Then the density of Z is given by

$$
f_{Z}(a)=a \mathbf{1}_{[0,1]}(a)+(2-a) \mathbf{1}_{[1,2]}(a)
$$

Proof

Application of Proposition 12:

$$
f_{Z}(a)=\int_{0}^{1} f_{X}(a-y) d y=\int_{[0,1] \cap[a-1, a]} d y=|[0,1] \cap[a-1, a]|
$$

Case 1: $a \in[0,1]$: Then $[0,1] \cap[a-1, a]=[0, a]$ and

$$
f_{Z}(a)=a
$$

Case 2: $a \in(1,2]$: Then $[0,1] \cap[a-1, a]=[a-1,1]$ and

$$
f_{Z}(a)=2-a
$$

Sums of Gamma random variables

Proposition 14.

Let

- X_{1}, \ldots, X_{n} independent random variables
- $X_{i} \sim \Gamma\left(t_{i}, \lambda\right)$
- $Z=\sum_{i=1}^{n} X_{i}$

Then

$$
Z \sim \Gamma\left(\sum_{i=1}^{n} t_{i}, \lambda\right)
$$

Remark: This result includes

- Sums of exponential random variables
- Sums of chi-square random variables

Sums of Gaussian random variables

Proposition 15.

Let

- X_{1}, \ldots, X_{n} independent random variables
- $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$
- $Z=\sum_{i=1}^{n} X_{i}$

Then

$$
Z \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Example: basketball (1)

Situation:

- A basketball team will play a 44-game season
- 26 games are against class A teams, with probability of win $=.4$
- 18 games are against class B teams, with probability of win $=.7$
- Results of the different games are independent.

Question: Approximate the probability that
(1) The team wins 25 games or more
(2) The team wins more games against class A teams than it does against class B teams

Example: basketball (2)

Model: We set

- $X_{A}=\#$ games the team wins against class A
- $X_{B}=\#$ games the team wins against class B

Then $X_{A} \Perp X_{B}$ and

$$
X_{A} \sim \operatorname{Bin}(26,0.4), \quad X_{B} \sim \operatorname{Bin}(18,0.7)
$$

Approximation for X_{A}, X_{B} : According to DeMoivre-Laplace,

$$
X_{A} \approx \mathcal{N}(10.24 ; 6.24), \quad X_{B} \approx \mathcal{N}(12.60 ; 3.78)
$$

Example: basketball (3)

Approximation for $X_{A}+X_{B}$: Since $X_{A} \Perp X_{B}$,

$$
X_{A}+X_{B} \approx \mathcal{N}(23 ; 10.2)
$$

Question 1: We have

$$
\begin{aligned}
\mathbf{P}\left(X_{A}+X_{B} \geq 25\right) & =\mathbf{P}\left(X_{A}+X_{B} \geq 24.5\right) \\
& =\mathbf{P}\left(\frac{X_{A}+X_{B}-23}{\sqrt{10.2}} \geq \frac{24.5-23}{\sqrt{10.2}}\right) \\
& \simeq 1-\mathbf{P}(Z<.4739) \\
& \simeq .3178
\end{aligned}
$$

Example: basketball (4)

Approximation for $X_{A}-X_{B}$: Since $X_{A} \Perp X_{B}$,

$$
X_{A}-X_{B} \approx \mathcal{N}(-2.2 ; 10.2)
$$

Question 2: We have

$$
\begin{aligned}
\mathbf{P}\left(X_{A}-X_{B}>0\right) & =\mathbf{P}\left(X_{A}-X_{B} \geq .5\right) \\
& =\mathbf{P}\left(\frac{X_{A}-X_{B}+2.2}{\sqrt{10.2}} \geq \frac{.5+2.2}{\sqrt{10.2}}\right) \\
& \simeq 1-\mathbf{P}(Z<.8530) \\
& \simeq .1968
\end{aligned}
$$

Sums of Poisson random variables

Proposition 16.

Let

- X_{1}, \ldots, X_{n} independent random variables
- $X_{i} \sim \mathcal{P}\left(\lambda_{i}\right)$
- $Z=\sum_{i=1}^{n} X_{i}$

Then

$$
Z \sim \mathcal{P}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

Proof for 2 random variables

Hypothesis:
$X_{1} \sim \mathcal{P}\left(\lambda_{1}\right), X_{2} \sim \mathcal{P}\left(\lambda_{2}\right)$ and $X_{1} \Perp X_{2}$
Computation: For $n \geq 0$,

$$
\begin{aligned}
\mathbf{P}\left(X_{1}+X_{2}=n\right) & =\sum_{k=0}^{n} \mathbf{P}\left(X_{1}=k\right) \mathbf{P}\left(X_{2}=n-k\right) \\
& =\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} \\
& =e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}
\end{aligned}
$$

Sums of Binomial random variables

Proposition 17.

Let

- X_{1}, \ldots, X_{n} independent random variables
- $X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right)$
- $Z=\sum_{i=1}^{n} X_{i}$

Then

$$
Z \sim \operatorname{Bin}\left(\sum_{i=1}^{n} n_{i}, p\right)
$$

Outline

(1) Joint distribution functions
(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

General definition

Definition 18.

Let

- (X, Y) couple of discrete random variables
- Joint pmf p
- Marginal pmf's p_{X}, p_{Y}
- y such that $p_{Y}(y)>0$

Then the conditional pmf of X given $Y=y$ is defined by

$$
p_{X \mid Y}(x \mid y)=\mathbf{P}(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times
Events: We consider

$$
\begin{gathered}
A=\text { "At most one Head" } \\
B=\text { "At least one Head and one Tail" }
\end{gathered}
$$

Random variables: Set

$$
X_{1}=\mathbf{1}_{A}, \quad X_{2}=\mathbf{1}_{B}, \quad X=\left(X_{1}, X_{2}\right)
$$

Example ctd: tossing 3 coins (2)

We have seen:

$X_{1} \backslash X_{2}$	0	1	Marg. X_{1}
0	$1 / 8$	$3 / 8$	$1 / 2$
1	$1 / 8$	$3 / 8$	$1 / 2$
Marg. X_{2}	$1 / 4$	$3 / 4$	1

Conditional probabilities given $X_{1}=0$:

$$
p_{X_{2} \mid X_{1}}(0 \mid 0)=\frac{1 / 8}{1 / 2}=\frac{1}{4}, \quad p_{X_{2} \mid X_{1}}(1 \mid 0)=\frac{3 / 8}{1 / 2}=\frac{3}{4}
$$

Conditional probabilities given $X_{2}=1$:

$$
p_{X_{1} \mid X_{2}}(0 \mid 1)=\frac{3 / 8}{3 / 4}=\frac{1}{2}, \quad p_{X_{1} \mid X_{2}}(1 \mid 1)=\frac{3 / 8}{3 / 4}=\frac{1}{2}
$$

Conditioning Poisson random variables

Proposition 19.

Let

- $X \sim \mathcal{P}\left(\lambda_{1}\right), Y \sim \mathcal{P}\left(\lambda_{2}\right)$
- $X \Perp Y$
- $p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$

Then

$$
\mathcal{L}(X \mid X+Y=n)=\operatorname{Bin}(n, p)
$$

Proof (1)

Expression for the conditional probabilities:
Let $0 \leq k \leq n$. Then invoking $X \Perp Y$,

$$
\mathbf{P}(X=k \mid X+Y=n)=\frac{\mathbf{P}(X=k) \mathbf{P}(Y=n-k)}{\mathbf{P}(X+Y=n)}
$$

Law of $X+Y$: We have seen

$$
X+Y \sim \mathcal{P}\left(\lambda_{1}+\lambda_{2}\right)
$$

Proof (2)

Computation of the conditional probabilities:

$$
\begin{aligned}
& \mathbf{P}(X=k \mid X+Y=n) \\
& =e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}\left[e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}\right]^{-1} \\
& =\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Conclusion:

$$
\mathcal{L}(X \mid X+Y=n)=\operatorname{Bin}(n, p)
$$

Outline

(1) Joint distribution functions

(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

General definition

Definition 20.

Let

- (X, Y) couple of continuous random variables
- Joint density f
- Marginal densities f_{X}, f_{Y}
- y such that $f_{Y}(y)>0$

Then the conditional density of X given $Y=y$ is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Justification of the definition

Heuristics: $f_{X \mid Y}(x \mid y)$ can be interpreted as

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) d x & =\frac{f(x, y) d x d y}{f_{Y}(y) d y} \\
& \simeq \frac{\mathbf{P}(x \leq X \leq x+d x, y \leq Y \leq y+d y)}{\mathbf{P}(y \leq Y \leq y+d y)} \\
& =\mathbf{P}(x \leq X \leq x+d x \mid y \leq Y \leq y+d y)
\end{aligned}
$$

Use of the conditional probability: compute probabilities like

$$
\mathbf{P}(X \in A \mid Y=y)=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

Rigorous definition: see MA 539

Simple example of continuous conditioning (1)

Density: Let (X, Y) be a random vector with density

$$
\frac{e^{-\frac{x}{y}} e^{-y}}{y} \mathbf{1}_{(0, \infty)}(x) \mathbf{1}_{(0, \infty)}(y)
$$

Question: Compute

$$
\mathbf{P}(X>1 \mid Y=y)
$$

Simple example of continuous conditioning (2)

Marginal distribution of Y : We have

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{\infty} f(x, y) d x \\
& =\frac{e^{-y}}{y}\left(\int_{0}^{\infty} e^{-\frac{x}{y}} d x\right) \mathbf{1}_{(0, \infty)}(y) \\
& =e^{-y} \mathbf{1}_{(0, \infty)}(y)
\end{aligned}
$$

Conditional density: For $y>0$ we have

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0, \infty)}(x)
$$

Namely $\mathcal{L}(X \mid Y=y)=\mathcal{E}\left(\frac{1}{y}\right)$

Simple example of continuous conditioning (3)

Conditional probability:

$$
\begin{aligned}
\mathbf{P}(X>1 \mid Y=y) & =\int_{1}^{\infty} f_{X \mid Y}(x \mid y) d x \\
& =\int_{1}^{\infty} \frac{e^{-\frac{x}{y}}}{y} d x \\
& =e^{-\frac{1}{y}}
\end{aligned}
$$

Outline

(1) Joint distribution functions
(2) Independent random variables
(3) Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
(6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Characterizing r.v by expected values

Notation:
$C_{b}\left(\mathbb{R}^{2}\right) \equiv$ set of continuous and bounded functions on \mathbb{R}^{2}.
Theorem 21.
Let $X=\left(X_{1}, X_{2}\right)$ be a r.v in \mathbb{R}^{2}. We assume that

$$
\mathbf{E}\left[\varphi\left(X_{1}, X_{2}\right)\right]=\int_{\mathbb{R}^{2}} \varphi\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2},
$$

for all functions $\varphi \in C_{b}\left(\mathbb{R}^{2}\right)$.
Then $\left(X_{1}, X_{2}\right)$ is continuous, with density f.

Application: change of variable

Problem: Let

- $X=\left(X_{1}, X_{2}\right)$ random variable with density f.
- Set $Y=h(X)$ with $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

We wish to find the density of Y.

Application: change of variable (2)

Recipe: One proceeds as follows
(1) For $\varphi \in C_{b}\left(\mathbb{R}^{2}\right)$, write

$$
\mathbf{E}[\varphi(Y)]=\mathbf{E}[\varphi(h(X))]=\int_{\mathbb{R}^{2}} \varphi\left(h\left(x_{1}, x_{2}\right)\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} .
$$

(2) Change variables $y=h(x)$ in the integral.

After some elementary computations we get

$$
\mathbf{E}[\varphi(Y)]=\int_{\mathbb{R}^{2}} \varphi\left(y_{1}, y_{2}\right) g\left(y_{1}, y_{2}\right) d y_{1} d y_{2} .
$$

(0) This characterizes Y, which admits a density g

Polar coordinates of Gaussian vectors (1)

Standard Gaussian vector in \mathbb{R}^{2} : Consider

- $X, Y \sim \mathcal{N}(0,1)$, with $X \Perp Y$
- $Z=(X, Y)$

Polar coordinates: Set

$$
(X, Y)=(R \cos (\Theta), R \sin (\Theta))
$$

Question:
Find the joint density of (R, Θ)

Polar coordinates of Gaussian vectors (2)

Decomposition of the expected value: For $\varphi \in \mathcal{C}_{b}\left(\mathbb{R}^{2}\right)$,

$$
\begin{aligned}
\mathbf{E}[\varphi(R, \Theta)] & =\mathbf{E}\left[\varphi(R, \Theta) \mathbf{1}_{(Y>0)}\right]+\mathbf{E}\left[\varphi(R, \Theta) \mathbf{1}_{(Y<0)}\right] \\
& \equiv A_{+}+A_{-}
\end{aligned}
$$

Expression for A_{+}:

$$
\begin{aligned}
A_{+} & =\mathbf{E}\left[\varphi\left(\left(X^{2}+Y^{2}\right)^{1 / 2}, \tan ^{-1}\left(\frac{Y}{X}\right)\right) \mathbf{1}_{(x>0)}\right] \\
& =\int_{\mathbb{R} \times \mathbb{R}_{+}} \varphi\left(\left(x^{2}+y^{2}\right)^{1 / 2}, \tan ^{-1}\left(\frac{y}{x}\right)\right) \frac{e^{-\frac{x^{2}+y^{2}}{2}}}{2 \pi} d x d y
\end{aligned}
$$

Polar coordinates of Gaussian vectors (3)

Change of variable for A_{+}: Set

$$
x=r \cos (\theta), \quad y=r \sin (\theta) \quad \Longrightarrow \quad J(r, \theta)=r
$$

Then

$$
A_{+}=\int_{\mathbb{R}_{+} \times(0, \pi)} \varphi(r, \theta) \frac{r e^{-\frac{r^{2}}{2}}}{2 \pi} d r d \theta
$$

Change of variable for A_{-}: We find

$$
A_{-}=\int_{\mathbb{R}_{+} \times(\pi, 2 \pi)} \varphi(r, \theta) \frac{r e^{-\frac{r^{2}}{2}}}{2 \pi} d r d \theta
$$

Polar coordinates of Gaussian vectors (4)

Expression for the expected value:

$$
\mathbf{E}[\varphi(R, \Theta)]=\int_{\mathbb{R}_{+} \times(0,2 \pi)} \varphi(r, \theta) \frac{r e^{-\frac{r^{2}}{2}}}{2 \pi} d r d \theta
$$

Joint density for (R, Θ) :

$$
f(r, \theta)=\frac{1}{2 \pi} \mathbf{1}_{(0,2 \pi)}(\theta) \times r e^{-\frac{r^{2}}{2}} \mathbf{1}_{\mathbb{R}_{+}}(r)
$$

Otherwise stated:

- $R \sim$ Rayleigh, $\Theta \sim \mathcal{U}([0,2 \pi])$
- $R \Perp \Theta$

Change of variable: general result

Theorem 22.

Let

- $X=\left(X_{1}, X_{2}\right)$ continuous random variable
- Density: f_{X}
- g diffeomorphism of \mathbb{R}^{2}
- $Y=g(X)$

Then Y has a density f_{Y} given by

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) J(y) \boldsymbol{1}_{\{y=g(x) \text { for some } x\}}
$$

Outline

(1) Joint distribution functions
(2) Independent random variables

3 Sums of independent random variables
(4) Conditional distributions: discrete case
(5) Conditional distributions: continuous case
6) Joint probability distribution of functions of random variables
(7) Conditional expectation

Cond. pmf in the discrete case (repeated)

Definition 23.

Let

- (X, Y) couple of discrete random variables
- Joint pmf p
- Marginal pmf's p_{X}, p_{Y}
- y such that $p_{Y}(y)>0$

Then the conditional pmf of X given $Y=y$ is defined by

$$
p_{X \mid Y}(x \mid y)=\mathbf{P}(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

Cond. expectation in the discrete case

Definition 24.

Let

- (X, Y) couple of discrete random variables
- Joint pmf p
- Marginal pmf's p_{X}, p_{Y}, y such that $p_{Y}(y)>0$
- $p_{X \mid Y}(x \mid y)$ conditional distribution

Then the conditional exp. of X given $Y=y$ is defined by

$$
\mathbf{E}[X \mid Y=y]=\sum_{x \in \mathcal{E}} x p_{X \mid Y}(x \mid y)
$$

Binomial example (1)

Situation: Let

- $X, Y \sim \operatorname{Bin}(n, p)$
- $Z=X+Y$

Problem: We wish to compute

$$
\mathbf{E}[X \mid Z=m]
$$

Binomial example (2)

Distribution for Z :

$$
Z=\sum_{i=1}^{n} X_{i}+\sum_{j=1}^{n} Y_{j} \sim \operatorname{Bin}(2 n, p)
$$

Computation for conditional pmf: For $k \leq \min (n, m)$ we have

$$
\begin{aligned}
\mathbf{P}(X=k \mid Z=m) & =\frac{\mathbf{P}(X=k, X+Y=m)}{\mathbf{P}(Z=m)} \\
& =\frac{\mathbf{P}(X=k, Y=m-k)}{\mathbf{P}(Z=m)} \\
& =\frac{\binom{n}{k}\binom{n}{m}}{\binom{2 n}{m}}
\end{aligned}
$$

Binomial example (3)

Conditional pmf: For $k \leq \min (n, m)$ we have

$$
p_{X \mid Z}(k \mid m)=\frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2 n}{m}}
$$

Recall: If $V \sim \operatorname{HypG}(n, N, m)$ then

$$
\mathbf{P}(X=k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}
$$

Identification of the conditional pmf: We have

$$
p_{X \mid Z}(k \mid m)=\operatorname{Pmf} \text { of } \operatorname{HypG}(2 n, m, n)
$$

Binomial example (4)

Conditional expectation: Let $V \sim \operatorname{HypG}(2 n, m, n)$. Then

$$
\mathbf{E}[X \mid Z=m]=\mathbf{E}[V]
$$

Numerical value:
According to the values for hypergeometric distributions,

$$
\mathbf{E}[X \mid Z=m]=m \times \frac{n}{2 n}=\frac{m}{2}
$$

Cond. density in the continuous case (repeated)

Definition 25.

Let

- (X, Y) couple of continuous random variables
- Joint density f
- Marginal densities f_{X}, f_{Y}
- y such that $f_{Y}(y)>0$

Then the conditional density of X given $Y=y$ is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Cond. expectation in the continuous case

Definition 26.

Let

- (X, Y) couple of continuous random variables
- Joint density f
- Marginal densities f_{X}, f_{Y}, y such that $f_{Y}(y)>0$
- $f_{X \mid Y}(x \mid y)$ conditional density

Then the conditional exp. of X given $Y=y$ is defined by

$$
\mathbf{E}[X \mid Y=y]=\int_{\mathbb{R}} x f_{X \mid Y}(x \mid y) d x
$$

Example of continuous conditional expectation (1)

Density: Let (X, Y) be a random vector with density

$$
\frac{e^{-\frac{x}{y}} e^{-y}}{y} \mathbf{1}_{(0, \infty)}(x) \mathbf{1}_{(0, \infty)}(y)
$$

Question: Compute

$$
\mathbf{E}[X \mid Y=y]
$$

Example of continuous conditional expectation (2)

Conditional density: For $y>0$ we have seen that

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0, \infty)}(x)
$$

Namely $\mathcal{L}(X \mid Y=y)=\mathcal{E}\left(\frac{1}{y}\right)$
Conditional expectation: We have

$$
\begin{aligned}
\mathbf{E}[X \mid Y=y] & =\int_{\mathbb{R}} x f_{X \mid Y}(x \mid y) d x \\
& =\int_{0}^{\infty} x \frac{e^{-\frac{x}{y}}}{y} \\
& =y
\end{aligned}
$$

Expectation and conditioning

Proposition 27.

Let X, Y be two random variables. Then
(1) If X, Y are discrete we have

$$
\mathbf{E}[X]=\sum_{y} \mathbf{E}[X \mid Y=y] p_{Y}(y)
$$

(2) If X, Y are continuous we have

$$
\mathbf{E}[X]=\int_{\mathbb{R}} \mathbf{E}[X \mid Y=y] f_{Y}(y) d y
$$

(Unified notation:

$$
\mathbf{E}[X]=\mathbf{E}\{\mathbf{E}[X \mid Y]\}
$$

Example: sales in a store (1)

Situation:
We consider a store on a given day. We assume

- \# of people entering in the store has mean 50
- Amount of money spent by each person is \$8
- Indep. between \# persons entering and amount of money spent

Question:
Expected amount of money spent in the store on a given day?

Example: sales in a store (2)

Notation: We set

- $N=\#$ of customers entering the store
- $X_{i}=$ Amount spent by i-th customer, for $i \geq 1$
- $Z=$ Total amount spent

Expression for Z : We have (double randomness)

$$
Z=\sum_{i=1}^{N} X_{i}
$$

Hypothesis:

- X_{i} 's follow the same distribution X
- $\left(X_{i}\right)_{i \geq 1} \Perp N$

Example: sales in a store (3)

Computation:

$$
\begin{aligned}
\mathbf{E}[Z] & =\mathbf{E}\left\{\mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right\} \\
& =\sum_{n=1}^{\infty} \mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N=n\right] p_{N}(n) \\
& =\sum_{n=1}^{\infty} \mathbf{E}\left[\sum_{i=1}^{n} X_{i} \mid N=n\right] p_{N}(n) \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathbf{E}\left[X_{i} \mid N=n\right] p_{N}(n) \\
& =\sum_{n=1}^{\infty} n \mathbf{E}[X] p_{N}(n) \\
& =\mathbf{E}[N] \mathbf{E}[X]
\end{aligned}
$$

