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@ Joint distribution functions

=] = - = a



Joint cdf

— Definition 1. \
Let

e X, Y random variables
@ a,beR

The joint cdf describes the joint distribution of (X, Y):

F(a,b) =P(X < a, Y <b)
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Values of interest in terms of the cdf
,—[Proposition 2.}

Let

e X, Y random variables
@ F the joint cdf of X, Y

Then the marginals cdf's of X and Y are given by
Fx(a) = F(a, ), Fy(b) = F(o0, b)
We also have

P(31<XSBQ, b1< YSbg)
= F(a2, b2) — F(ag, bl) — F(al, b2) + F(al, bl)

\.

J
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Discrete case: joint pmf

— Definition 3. \

Consider the following situation:

e X, Y discrete random variables
@ X takes values in E;, Y takes values in E;
e xeE andyekE

The joint pmf p describes the joint distribution of (X, Y):

p(va):P(sza Y:)/)
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Values of interest in terms of the pmf

,—[Proposition 4.]
Let
@ X, Y random variables

@ p the joint pmf of X, Y

Then the marginals pmf’s of X and Y are given by

PX(a) = Z p(a./ b)a

py(b) = >_ p(a, b)

\.

beE;

If a1 < a» and b; < by, we also have

P(31<X§32,b1<Y§b2):

acky

>

a<in<a, b1<i<b

P (i17 12)

Samy T. Joint r.v
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Example: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

Xl - 1A7 X2 - 137 X = (X17X2)

SEIAN Joint r.v

Probability Theory 8 /84



Example: tossing 3 coins (2)

Model: We take
o S={ht}3
e P({s}) = % forallse S

Description of X = (X1, X2):

s X(s) s X(s)
(t,t,t) | (1,0) | (h,t,t) | (1,1)
(t,t,h) [ (1,1) ]| (h,t,h)|(0,1)
(t,h,t) | (1,1) | (h,h,t)|(0,1)
(t,h, h) | (0,1) | (h, h,h) | (0,0)

Probability Theory 9 /84



Example: tossing 3 coins (3)
Joint pmf for X:

P(X=(00) = 5 P(X=(01)=
P(X=(10) = 5, P(X=(11)=
Marginal pmf for Xi:
P(Xi=0) = ;)P(X:(O,i))
— P(X=(0,0))+P(X=(0,1))
103 1
878 2
PG =1) = %

Probabiity Theory 10 / 84



Example: tossing 3 coins (4)

Marginal pmf for X;:

1 3
P(X;=0)=-, P(Xx=1)=-
( 2 O) 47 ( 2 ) 4
Remark:
We have X; ~ B(1/2) and X, ~ B(3/4)
Summary in a table:
X1\ Xz 0 1 || Marg. X;
0 1/8(3/8 1/2
1 1/8(3/8 1/2
Marg. X; |1/4|3/4| 1

Samy T. Joint r.v
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Continuous case: joint density

—~ Definition 5.

Consider the following situation:

@ X, Y continuous real valued random variables

The random vector (X, Y) is said to be jointly continuous
iff for "all" subsets C C R? we have

P((X,Y)e ()= //Xy f(x,y) dxdy

Probabiity Theory 12 / 84



Values of interest in terms of the density

,—[Proposition 6.} \
Let
e X, Y random variables
e f the joint density of X, Y

Then the marginals densities of X and Y are given by

f(x) = [ ) dy  foly) = [ Fx,y)dx

If a1 < a» and b; < by, we also have

a b
Pai < X < a, by < ngz):/Q/be(x,y)dxdy
al 1

\. J
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Simple example of bivariate density (1)

Density: Let (X, Y) be a random vector with density
2™ 1(g00)(X) L(0.00) (¥)

Question: Compute
P(X<Y)

Probabiity Theory 14/ 84



Simple example of bivariate density (2)

Computation: We have

PX<Y) = 2 e e ¥ dxdy

0<x<y<oo

o0 y
= 2/ dye_2y/ e “dx
0 0

_ 2/°° e¥(1—e)dy
0
1

3

Probabiity Theory 15 / 84



Change of variable in the plane (1)

Density: Let (X, Y) be a random vector with density
e M) 1 0,00) (%) L0,00) (¥)

Question:
Compute the density of the r.v Z = £

Probabiity Theory 16 / 84



Change of variable in the plane (2)

Characterization through expectations: Let ¢ € Cp(R). Then

E[p(2)] = /OOO /OOO @ (;) e~ ) dxdy

Change of variable: Set
bs

z=—

y

Jacobian:

Probabilty Theory 17/ 84



Change of variable in the plane (3)

Computing E[p(Z)]:
E[o(2)] = /0 /0 o (2) we ") dwdz
= /oo dz o (z) /oo w e D gy
0 0
= /OO (2) ! dz
~ b7 (1+2)?
Density of Z:

1
(142 00)

Probabiity Theory 18 / 84



Joint cdf in higher dimensions

— Definition 7. |

Let
e Xi,...,X, random variables

@ a;,...,a, €R

The following joint cdf describes
the joint distribution of (X1, ..., X,):

F(a,...,an) =P (X1 <ay,..., X, < ap)

Samy T. Joint r.v

Probability Theory
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Joint density in higher dimensions

—~ Definition 8.

Consider the following situation:

iff for "all" subsets C C R"” we have

e Xi,...,X, real valued random variables

P((Xl,...,X,,)eC):/ Flx,. ..,

The random vector (Xi, ..., X,) is said to be jointly continuous

Samy T. Joint r.v

Probability Theory
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© Independent random variables
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Definition of independence

— Definition 9. | w
Let
e X, Y random variables

X and Y are said to be independent if for "all' C,D C R we
have

PXeC, YeD)=P(XeCO)P(Y D)

Probabiity Theory 22/ 84



Characterizations of independence

,—[Proposition 10.] \

Let X, Y random variables.
Then X and Y are independent in the following cases

Q If the joint cdf F satisfies
F(a,b) = Fx(a) Fy(b), forall a,beR
Q If X, Y are discrete and the joint pmf satisfies
p(x,y) = px(x) py(y), forall (x,y) € E X E,
Q If X, Y are jointly cont. and the joint density satisfies

f(x,y) = fx(x) fy(y), forall (x,y) € R

\.
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Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

Xl - 1A7 X2 - 137 X = (X17X2)

SEIAN Joint r.v

Probability Theory 24 / 84



Example ctd: tossing 3 coins (2)
We have seen:

Xl\Xz 0 1 Marg. Xl
0 1/8(3/8| 1/2
1 1/8(3/8] 1/2
Marg. Xz [1/4]3/4 | 1

Checking independence: With the help of the table, one can see that

PX=(ij)=PXi=i)P(Xo=j), forall ije {01}
Therefore X; 1L X,.

Remark: The relation X; L X, is due to the fact that A 1L B.
— cf. Conditional probability, Section 4.

Probabiity Theory 25 / 84



Example: Romeo and Juliet (1)

Situation:

@ Romeo and Juliet decide to meet on the main square of Verona
@ They arrive at independent times between 12pm and 1pm
@ Rule: the first to arrive leaves after 10mn

Question:
Compute the probability that Romeo meets Juliet

Probabiity Theory 26 / 84



Example: Romeo and Juliet (2)

Model:
@ X = Arrival time for Romeo
@ Y = Arrival time for Juliet

@ Renormalize everything on [0, 1]
@ Hypothesis: X 1L Y and X, Y ~ U([0,1])

Joint density: The joint density for (X, Y) is

fix,y) = 1[0,1]2(X,)’) = 1[0,1](X) 1[071]()/)

Probabiity Theory 27 / 84



Example: Romeo and Juliet (3)

Aim: Compute

1
PlIY —X| < —)
(1y=xi<3
Complementary: Geometrically one can see that
2
(v-x13)- ()
6 6

Conclusion:

P<|Y Xy<1)—1 (5)2~305°/
6) 6) 77

Samy T. Joint r.v
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Characterizations of independence

,—[Proposition 11.] \

Let X, Y random variables.
Then X and Y are independent in the following cases

@ If X, Y are discrete and there exist h, g such that

p(x,y) = h(x) g(y), forall (x,y) € E x E,

Q@ If X, Y are jointly cont. and there exist h, g such that

f(x,y) = h(x) g(y), forall (x,y) € R?

Probabiity Theory 29/ 84



Example of independence (1)

Example 1: If (X, Y) have joint density
663 14 2 (x, ),

then X 1L Y.

Probabiity Theory 30 / 84



Example of independence (2)

Recall joint density:

6e—(2x+3y) :I-(O,oo)2 (Xa y)

Decomposition of the density:

f(x,y) = h(x)g(y),

with
h(x) =6 > 1po)(x),  &(y)=e > 1Lp0)(y)

Conclusion:
X11Y

Probabiity Theory 31/ 84



Example of non independence (1)

Example 2: If (X, Y') have joint density

24xy 1(0,00)2()@ }/)1(0<X+y<1)7

then X, Y are not independent

Probabiity Theory 32 / 84



Example of non independence (2)
Recall density:

f(x,y) = 24xy 1(0,00)2(X7y)1(0<x+y<1)7

Non product structure:
X, Y satisfy the relation: X+ Y < 1.

Checking non independence: We have

172 3
P((X,Y 0,—} :/ Ddxy dxdy = >
(( )E[ 5 ) o DY XY =

and

P (xe o)) (velod]) = (oo oo [ rer) = (55)

Probabiity Theory 33 / 84
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© Sums of independent random variables
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Density of a sum

,—[Proposition 12.]

Let
@ X, Y continuous random variables
@ Hypothesis: X 1L Y
e Set Z=X+Y

Then the density of Z is given by

fo(a) = [+ 1 (2) = [ fx(a—y) Frly) dy

Probabiity Theory 35 / 84



Proof

Characterization by expectations: Let ¢ € C(R). Then
El(2)] = [ elx+y)h()f(y) ddy

Change of variable:
x+y=aandy=0>b,thus J=1

Expression for E[¢(Z)]:

E[2(2)] :/Rgo(a)(/R fi(a — b) fy(b) db)da

Probabiity Theory 36 / 84



Triangular distribution

,—[Proposition 13.]
Let

1)
o X, Y ~U(0,1])
@ Hypothesis: X 1L Y
e Set Z=X+Y

_

Then the density of Z is given by

fz(a) = alpy(a) + (2 —a) I z(a)

Probability Theory
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Proof
Application of Proposition 12:
1
fo(a) = [ fla—y)dy = [ dy = 1[0,1] N [a 1,3
0 [0,1]n[a—1,4]

Case 1: a€ [0,1]: Then [0,1]N[a—1,a] = [0, a] and

fz(a) = a

Case 2: a€ (1,2]: Then [0,1]N[a—1,a] =[a—1,1] and

fz(a)=2—a

Probabiity Theory 38 / 84



Sums of Gamma random variables

\.

,—[Proposition 14.]

Let
@ Xi,..., X, independent random variables
o X,' ~ r(t,', )\)
] Z = 27:1 X,'

Then

Z~T (Z t, /\>
i=1

Remark: This result includes

Samy T. Joint r.v

@ Sums of exponential random variables

@ Sums of chi-square random variables

Probability Theory
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Sums of Gaussian random variables

,—[Proposition 15.] \

Let

@ Xi,..., X, independent random variables

o X; ~ N(ui,07)

e Z=%".X
Then . .

ZnN (zﬂ,,zaiz)
i=1 i=1

vy Y Probabiity Theoy 40/ 84



Example: basketball (1)

Situation:
@ A basketball team will play a 44-game season
@ 26 games are against class A teams, with probability of win =
@ 18 games are against class B teams, with probability of win = .7

@ Results of the different games are independent.

Question: Approximate the probability that
© The team wins 25 games or more

© The team wins more games against class A teams than it does
against class B teams

Probabiity Theory 41/ 84



Example: basketball (2)

Model: We set
@ X, = # games the team wins against class A
@ Xg = # games the team wins against class B

Then X4 1L X and

X, ~ Bin(26,0.4), Xg ~ Bin(18,0.7)

Approximation for X, Xg: According to DeMoivre-Laplace,

X~ N(10.24;6.24),  Xp~ N(12.60;3.78)

Probabiity Theory 42 / 84



Example: basketball (3)

Approximation for X, + Xg: Since X5 1L Xp,

Xa + Xg ~ N (23;10.2)

Question 1: We have

P(Xs+Xg>25) = P(Xa+ Xg > 24.5)
(XA + Xg — 23 - 245 — 23)

V102 T V102
~ 1—P(Z < 4739)
~ 3178

Probabiity Theory 43 / 84



Example: basketball (4)

Approximation for X, — Xg: Since X4 1L Xp,

Xa — Xg ~ N(—2.2;10.2)

Question 2: We have

P(XA—XB>0) = P(XA—XBZS)
(XA—XB+2.2 S .5+2.2>

1/10.2 — 4/10.2
~ 1—-P(Z < .8530)
~ .1968

—



Sums of Poisson random variables

,—[Proposition 16.] \

Let

@ Xi,..., X, independent random variables

o X;i ~P(\)

e Z=%".X
Then .

Z~p (z /\,->
i=1

Probabiity Theory 45 / 84



Proof for 2 random variables

Hypothesis:
X1 ~ P()\l), X2 ~ P()\z) and X1 AL X2

Computation: For n >0,

P(X1+X2:n) = ZP(X]_:k)P(X2:n—k)
k=0
2 —)\1)\_§ -2 Ag_k

= Y e

€ (n— k)

o Outx) (A £ A2)"
n!

Probabiity Theory 46 / 84



Sums of Binomial random variables

,—[Proposition 17.] \

Let

@ Xi,..., X, independent random variables

e X; ~ Bin(n;, p)

e Z=%".X
Then .

Z ~ Bin (Z n,-,p)
i=1

Probabiity Theory 47/ 84
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@ Conditional distributions: discrete case
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General definition

r—[Definition 18.]
Let

@ (X,Y) couple of discrete random variables
e Joint pmf p

e Marginal pmf's px, py

@ y such that py(y) >0

Then the conditional pmf of X given Y = y is defined by

CP(X =Y =)= PX:Y)

Probabiity Theory 49 / 84



Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

Xl - 1A7 X2 - 137 X = (X17X2)

SEIAN Joint r.v

Probability Theory 50 / 84



Example ctd: tossing 3 coins (2)

We have seen:

X1\ Xz 0 1 | Marg. X;
0 [1/8(3/8| 1,2
1 [1/8[3/8] 1)2
Marg. X; [1/4]3/4 | 1

Conditional probabilities given X; = O:

18

1
47

pX2|X1(1| O) = 175

Conditional probabilities given X, = 1:

_3/8

1
2a

PX1|X2(1| 1)

Samy T. Joint r.v

3/8
3/4

3

4

1

2

Probability Theory
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Conditioning Poisson random variables

,—[Proposition 19.] \
Let
o X ~ P()\l), Y ~ P()\Q)
e X1Y
Then
L(X|X+Y = n)=Bin(n, p)

Probabiity Theory 52 / 84



Proof (1)

Expression for the conditional probabilities:
Let 0 < k < n. Then invoking X 1L Y,

P(X=kKP(Y=n—k)
P(X+Y =n)

P(X=klX+Y=n)=

Law of X + Y: We have seen

X+Y ~P+ M)

B vy Probability Theory 53 / 84



Proof (2)

Computation of the conditional probabilities:
P(X=kl|X+Y =n)

M e M T oo Gt A2
K o=kl n!

= (Z) pra—p)

Conclusion:

1
=€

L(X|X+Y = n)=Bin(n, p)

Probabiity Theory 54 / 84
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© Conditional distributions: continuous case

=] = - = a



General definition

r—[Definition 20.}
Let

(X, Y) couple of continuous random variables

°
@ Joint density f

@ Marginal densities fx, fy
@ y such that fy(y) >0

Then the conditional density of X given Y = y is defined by

f(x,y)
f; xly)= :
x|y (x| y) £ 00)

Probability Theory 56 / 84



Justification of the definition

Heuristics: fx|y(x|y) can be interpreted as

f(x,y) dxdy

fy(y) dy
P(x<X<x+dx,y<Y <y+dy)

fxv (x| y) dx

P(y <Y <y+dy)
= P(x<X<x+dx|ly<Y<y+dy)

Use of the conditional probability: compute probabilities like
P(XEAlY=y)= /A v (x| y) dx

Rigorous definition: see MA 539

Probability Theory
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Simple example of continuous conditioning (1)

Density: Let (X, Y) be a random vector with density

X

e vre v

1(0,00)(x) L(0,00)(¥)

Question: Compute
PX>1Y=y)

Probabiity Theory 58 / 84



Simple example of continuous conditioning (2)

Marginal distribution of Y: We have
fr(y) =

-y 00 x
= </o e dX> Lio,00)(¥)
= e’ 1(0,00) (.y)

f(x,y)dx

k‘mﬁ

Conditional density: For y > 0 we have

fxiy(x]y) =

Namely L(X|Y =y) = 5(%)

Probabiity Theory 59 / 84



Simple example of continuous conditioning (3)

Conditional probability:

PX>1Y=y) = / v (x| y) dx

Probabiity Theory 60 / 84
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@ Joint probability distribution of functions of random variables
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Characterizing r.v by expected values

Notation:
Cy(R?) = set of continuous and bounded functions on R2.

r—[Theorem 21.} \
Let X = (X1, X2) be a r.vin R?. We assume that

E[gO(Xl X2)] = / (X]_7X2) f(Xl,XQ) C/deXg7

for all functions ¢ € Cy(RR?).

Then (X1, X3) is continuous, with density f.

\.
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Application: change of variable

Problem: Let
e X = (X1, X3) random variable with density f.
e Set Y = h(X) with h: R? — R?.

We wish to find the density of Y.

Probabiity Theory 63 / 84



Application: change of variable (2)

Recipe: One proceeds as follows
@ For ¢ € Cy(R?), write

El(Y)] = E[p(h(X))] = [ ¢(h(a, ) (1, ) dad.

@ Change variables y = h(x) in the integral.
After some elementary computations we get

E[o( )]—/ ©(y1,y2) 8(y1, y2) dyrdys.

© This characterizes Y, which admits a density g

Probabiity Theory 64 / 84



Polar coordinates of Gaussian vectors (1)

Standard Gaussian vector in R?: Consider
e X, Y ~N(0,1), with X 1L Y
o Z=(X,Y)

Polar coordinates: Set

(X,Y) = (Rcos(©), Rsin(©))

Question:
Find the joint density of (R, ©)

Probabiity Theory 65 / 84



Polar coordinates of Gaussian vectors (2)

Decomposition of the expected value: For ¢ € Cp(R?),

E[p(R,©)] = E[¢(R,©)1(v=0)] +E [p(R.0)Ly<o)]
= AL+ A

Expression for A, :

Y
A+ = E |ﬁ0 ((X2 + Y2)1/2,tan_1 (Y)) 1(X>0)‘|

= / © ((x2 +y*)2 tan™? (Z)> € dxdy
RxR, X 2T

Probabiity Theory 66 / 84



Polar coordinates of Gaussian vectors (3)
Change of variable for A,: Set

x = r cos(f),

y=rsin(0) = J(r,0)=r
Then ,
re =
A :/ 9 drdf
* R4 x(0,7) #(r.9) 27 :

Change of variable for A_: We find

N

r

A= (r,0) 5~ drdo
T R+X(7r,27r)(p 7 2T

Samy T. Joint r.v
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Polar coordinates of Gaussian vectors (4)

Expression for the expected value:

re

NS

drdf

Ep(RON=[  o(r0)

R, x(0,27)

Joint density fOf (R, @)
f(r,0) = z 102n)(0) X re rzzl]R (r)
) o (0,27)

Otherwise stated:
e R ~ Rayleigh, © ~ U([0, 27])
e RI1 O

Probabiity Theory 68 / 84



Change of variable: general result

r—[Theorem 22.}
Let

e X = (Xi,Xy) continuous random variable
o Density: fx

e g diffeomorphism of R?

° Y =g(X)

Then Y has a density fy given by

fy(y) = fX (gil(y)> J(Y) l{y:g(x) for some x}

Probabiity Theory 69 / 84
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Cond. pmf in the discrete case (repeated)

r—[Definition 23.}
Let

@ (X,Y) couple of discrete random variables
e Joint pmf p

e Marginal pmf's px, py

@ y such that py(y) >0

Then the conditional pmf of X given Y = y is defined by

CP(X =Y =)= PX:Y)

Probabiity Theory 71/ 84



Cond. expectation in the discrete case

r—[Definition 24.}
Let

(X, Y) couple of discrete random variables
Joint pmf p

Marginal pmf’s px, py, y such that py(y) >0
px|y(x|y) conditional distribution

Then the conditional exp. of X given Y = y is defined by

E[X]Y =y] :ZXPX\Y(XW)

xe€
\ 7

Probability Theory 72/ 84



Binomial example (1)

Situation: Let
e X,Y ~ Bin(n, p)
e /=X+Y

Problem: We wish to compute

E[X|Z = m]

Probabiity Theory 73 / 84



Binomial example (2)

Distribution for Z:

n n

Z=> Xi+>_Y;~Bin(2n,p)

i=1 j=1

Computation for conditional pmf: For k < min(n, m) we have

P(X=k X+VY=

P(Z=m)
 P(X=k Y=m—k)
B P(Z =m)

(D))
()

Probabiity Theory 74 / 84



Binomial example (3)

Conditional pmf: For k < min(n, m) we have

i = W)
px|z(k| m) (i:,)

Recall: If V ~ HypG(n, N, m) then

Identification of the conditional pmf: We have

px|z(k| m) = Pmf of HypG(2n, m, n)

Samy T. Joint r.v

Probability Theory
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Binomial example (4)

Conditional expectation: Let V ~ HypG(2n, m, n). Then
E[X|Z = m] = E[V]

Numerical value:
According to the values for hypergeometric distributions,

Probabiity Theory 76 / 84



Cond. density in the continuous case (repeated)

r—[Definition 25.}
Let

(X, Y) couple of continuous random variables

°
@ Joint density f

@ Marginal densities fx, fy
@ y such that fy(y) >0

Then the conditional density of X given Y = y is defined by

f(x,y)
f; x|y)= 4
x|y (x| y) £ 00)

Probability Theory 77/ 84



Cond. expectation in the continuous case

r—[Definition 26.} \
Let

@ (X, Y) couple of continuous random variables
@ Joint density f

e Marginal densities fx, fy, y such that fy(y) >0
e fx|v(x|y) conditional density

Then the conditional exp. of X given Y = y is defined by

E[X|Y =y]= /Rxfx‘y(x|y) dx

Probabiity Theory 78 / 84



Example of continuous conditional expectation (1)

Density: Let (X, Y) be a random vector with density

X

e vre v

1(0,00)(x) L(0,00)(¥)

Question: Compute
EX]Y =y]

Probabiity Theory 79 / 84



Example of continuous conditional expectation (2)

Conditional density: For y > 0 we have seen that

fxy(xly) = ff(:(;/y)) = eyy 1(0,00) (%)

Namely L(X|Y =y) = 5(%)
Conditional expectation: We have

EIX|Y=)y] =

T

x fx|y(x|y) dx

X
o0 e v
= X

Probabiity Theory 80 / 84



Expectation and conditioning

,—[Proposition 27.]
Let X, Y be two random variables. Then
Q If X, Y are discrete we have

EIX] =Y E[X|Y =y] pv(y)

@ If X, Y are continuous we have
E[X] = [ EIX|Y =] f(y)dy
© Unified notation:

E[X] = E{E[X| Y]}

\. J
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Example: sales in a store (1)

Situation:
We consider a store on a given day. We assume

@ # of people entering in the store has mean 50
@ Amount of money spent by each person is $8

@ Indep. between # persons entering and amount of money spent

Question:
Expected amount of money spent in the store on a given day?
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Example: sales in a store (2)

Notation: We set
@ N = # of customers entering the store
@ X; = Amount spent by i-th customer, for i > 1
@ Z = Total amount spent

Expression for Z: We have (double randomness)

Hypothesis:
@ X;'s follow the same distribution X
] (Xi)iZ]- 1N
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Example: sales in a store (3)

Computation:

E[7] - E{E :éx,] N”
~ e[S x| =] o)
- iE_ZXw—n] ()
- g;E[X\N—n]pN()
- ;nE[X]pN(n)
— E[NE[X]
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