Jointly distributed random variables

Samy Tindel

Purdue University

Probability - MA 416

Mostly taken from *A first course in probability* by S. Ross

Outline

- Joint distribution functions
- Independent random variables
- Sums of independent random variables
 - 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- **6** Joint probability distribution of functions of random variables
 - Conditional expectation

Outline

- 2 Independent random variables
- 3 Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

Joint cdf

Definition 1.

Let

- X, Y random variables
- $a, b \in \mathbb{R}$

The joint cdf describes the joint distribution of (X, Y):

 $F(a,b) = \mathbf{P} (X \le a, Y \le b)$

Values of interest in terms of the cdf

Proposition 2.

Let

- X, Y random variables
- F the joint cdf of X, Y

Then the marginals cdf's of X and Y are given by

 $F_X(a) = F(a, \infty), \qquad F_Y(b) = F(\infty, b)$

We also have

$$\begin{aligned} \mathsf{P} \left(\mathsf{a}_1 < X \leq \mathsf{a}_2, \ b_1 < Y \leq b_2 \right) \\ &= \mathsf{F}(\mathsf{a}_2, b_2) - \mathsf{F}(\mathsf{a}_2, b_1) - \mathsf{F}(\mathsf{a}_1, b_2) + \mathsf{F}(\mathsf{a}_1, b_1) \end{aligned}$$

Discrete case: joint pmf

Definition 3.

Consider the following situation:

- X, Y discrete random variables
- X takes values in E_1 , Y takes values in E_2

•
$$x \in E_1$$
 and $y \in E_2$

The joint pmf *p* describes the joint distribution of (X, Y):

$$p(x, y) = \mathbf{P}(X = x, Y = y)$$

Values of interest in terms of the pmf

Proposition 4.

Let

- X, Y random variables
- p the joint pmf of X, Y

Then the marginals pmf's of X and Y are given by

$$p_X(a) = \sum_{b \in E_2} p(a, b), \qquad p_Y(b) = \sum_{a \in E_1} p(a, b)$$

If $a_1 < a_2$ and $b_1 < b_2$, we also have

$$\mathbf{P}(a_1 < X \le a_2, \ b_1 < Y \le b_2) = \sum_{a_1 < i_1 \le a_2, \ b_1 < i_2 \le b_2} p(i_1, i_2)$$

Example: tossing 3 coins (1)

Experiment: Tossing a coin 3 times

Events: We consider

A = "At most one Head" B = "At least one Head and one Tail"

Random variables: Set

$$X_1 = \mathbf{1}_A, \qquad X_2 = \mathbf{1}_B, \qquad X = (X_1, X_2)$$

Example: tossing 3 coins (2)

Model: We take

S = {h, t}³
P({s}) = ¹/₈ for all s ∈ S

Description of $X = (X_1, X_2)$:

3

イロト 不得 トイヨト イヨト

Example: tossing 3 coins (3) Joint pmf for X:

$$\mathbf{P} (X = (0,0)) = \frac{1}{8}, \quad \mathbf{P} (X = (0,1)) = \frac{3}{8}$$

$$\mathbf{P} (X = (1,0)) = \frac{1}{8}, \quad \mathbf{P} (X = (1,1)) = \frac{3}{8}$$

Marginal pmf for X_1 :

$$P(X_1 = 0) = \sum_{i=0}^{1} P(X = (0, i))$$

= $P(X = (0, 0)) + P(X = (0, 1))$
= $\frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $P(X_1 = 1) = \frac{1}{2}$

3

イロト イポト イヨト イヨト

Example: tossing 3 coins (4)

Marginal pmf for X_2 :

$$\mathbf{P}(X_2=0)=rac{1}{4}, \quad \mathbf{P}(X_2=1)=rac{3}{4}$$

Remark:

We have $X_1 \sim \mathcal{B}(1/2)$ and $X_2 \sim \mathcal{B}(3/4)$

Summary in a table:

$$\begin{tabular}{|c|c|c|c|c|c|} \hline X_1 \backslash X_2 & 0 & 1 & \mathsf{Marg.} & X_1 \\ \hline 0 & 1/8 & 3/8 & 1/2 \\ \hline 1 & 1/8 & 3/8 & 1/2 \\ \hline \\ \hline \mathsf{Marg.} & X_2 & 1/4 & 3/4 & 1 \\ \hline \end{tabular}$$

э.

イロト 不得 トイヨト イヨト

Continuous case: joint density

Definition 5.

Consider the following situation:

• X, Y continuous real valued random variables

The random vector (X, Y) is said to be jointly continuous iff for "all" subsets $C \subset \mathbb{R}^2$ we have

$$\mathbf{P}((X,Y)\in C)=\int\int_{(x,y)\in C}f(x,y)\,dxdy$$

~	_
Some v	
Janny	

Values of interest in terms of the density

Let

- *X*, *Y* random variables
- f the joint density of X, Y

Then the marginals densities of X and Y are given by

 $f_X(x) = \int_{\mathbb{R}} f(x, y) \, dy \qquad f_Y(y) = \int_{\mathbb{R}} f(x, y) \, dx$

If $a_1 < a_2$ and $b_1 < b_2$, we also have

$$\mathbf{P}(a_1 < X \le a_2, \ b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x, y) \, dx dy$$

Simple example of bivariate density (1)

Density: Let (X, Y) be a random vector with density

 $2e^{-x}e^{-2y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y)$

Question: Compute

 $\mathbf{P}(X < Y)$

~	_
Some v	
Janny	

Image: A matrix

3

Simple example of bivariate density (2)

Computation: We have

$$P(X < Y) = 2 \int_{0 < x < y < \infty} e^{-x} e^{-2y} dx dy$$

= $2 \int_{0}^{\infty} dy e^{-2y} \int_{0}^{y} e^{-x} dx$
= $2 \int_{0}^{\infty} e^{-2y} (1 - e^{-y}) dy$
= $\frac{1}{3}$

3

イロト イポト イヨト イヨト

Change of variable in the plane (1)

Density: Let (X, Y) be a random vector with density

 $e^{-(x+y)} \mathbf{1}_{(0,\infty)}(x) \mathbf{1}_{(0,\infty)}(y)$

Question:

Compute the density of the r.v $Z = \frac{X}{Y}$

3

Change of variable in the plane (2)

Characterization through expectations: Let $\varphi \in C_b(\mathbb{R})$. Then

$$\mathsf{E}\left[\varphi(Z)\right] = \int_0^\infty \int_0^\infty \varphi\left(\frac{x}{y}\right) e^{-(x+y)} \, dx \, dy$$

Change of variable: Set

$$z = \frac{x}{y}, \quad w = y \quad \iff \quad x = z w, \quad y = w$$

Jacobian:

$$J = w$$

~		_	
~ ~	2214		
	IIV.		

Change of variable in the plane (3)

Computing $\mathbf{E}[\varphi(Z)]$:

$$\mathbf{E} \left[\varphi(Z) \right] = \int_0^\infty \int_0^\infty \varphi(z) \, w e^{-w(z+1)} \, dw dz$$

$$= \int_0^\infty dz \, \varphi(z) \int_0^\infty w \, e^{-w(z+1)} \, dw$$

$$= \int_0^\infty \varphi(z) \, \frac{1}{(1+z)^2} \, dz$$

Density of *Z*:

$$\frac{1}{(1+z)^2} \, \mathbf{1}_{(0,\infty)}(z)$$

~	_
Some v	
Janny	

3

< □ > < 同 >

Joint cdf in higher dimensions

Definition 7.

Let

•
$$X_1, \ldots, X_n$$
 random variables

•
$$a_1,\ldots,a_n\in\mathbb{R}$$

The following joint cdf describes the joint distribution of (X_1, \ldots, X_n) :

$$F(a_1,\ldots,a_n) = \mathbf{P}(X_1 \leq a_1,\ldots,X_n \leq a_n)$$

Joint density in higher dimensions

Definition 8.

Consider the following situation:

• X_1, \ldots, X_n real valued random variables

The random vector (X_1, \ldots, X_n) is said to be jointly continuous iff for "all" subsets $C \subset \mathbb{R}^n$ we have

$$\mathbf{P}((X_1,\ldots,X_n)\in C)=\int_{(x_1,\ldots,x_n)\in C}f(x_1,\ldots,x_n)\,dx_1\cdots dx_n$$

~	
Same.	
. Januv	

Outline

- Independent random variables
 - 3) Sums of independent random variables
 - 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

Definition of independence

Definition 9.

Let

• X, Y random variables

X and Y are said to be independent if for "all" $C, D \subset \mathbb{R}$ we have

 $\mathbf{P}(X \in C, Y \in D) = \mathbf{P}(X \in C) \mathbf{P}(Y \in D)$

Characterizations of independence

Proposition 10.

Let X, Y random variables. Then X and Y are independent in the following cases X = X + XIf the joint cdf F satisfies $F(a, b) = F_X(a) F_Y(b)$, for all $a, b \in \mathbb{R}$ 2 If X, Y are discrete and the joint pmf satisfies $p(x, y) = p_X(x) p_Y(y)$, for all $(x, y) \in E_1 \times E_2$ If X, Y are jointly cont. and the joint density satisfies $f(x, y) = f_X(x) f_Y(y)$, for all $(x, y) \in \mathbb{R}^2$

< □ > < /□ >

Example ctd: tossing 3 coins (1)

Experiment: Tossing a coin 3 times

Events: We consider

A = "At most one Head" B = "At least one Head and one Tail"

Random variables: Set

$$X_1 = \mathbf{1}_A, \qquad X_2 = \mathbf{1}_B, \qquad X = (X_1, X_2)$$

Example ctd: tossing 3 coins (2)

We have seen:

Checking independence: With the help of the table, one can see that

 $P(X = (i, j)) = P(X_1 = i) P(X_2 = j)$, for all $i, j \in \{0, 1\}$

Therefore $X_1 \perp \!\!\!\perp X_2$.

Remark: The relation $X_1 \perp \perp X_2$ is due to the fact that $A \perp \perp B$. \hookrightarrow cf. Conditional probability, Section 4.

э.

Example: Romeo and Juliet (1)

Situation:

- Romeo and Juliet decide to meet on the main square of Verona
- They arrive at independent times between 12pm and 1pm
- Rule: the first to arrive leaves after 10mn

Question:

Compute the probability that Romeo meets Juliet

Example: Romeo and Juliet (2)

Model:

- X =Arrival time for Romeo
- Y = Arrival time for Juliet
- Renormalize everything on [0,1]
- Hypothesis: $X \perp\!\!\!\perp Y$ and $X, Y \sim \mathcal{U}([0,1])$

Joint density: The joint density for (X, Y) is

$$f(x,y) = \mathbf{1}_{[0,1]^2}(x,y) = \mathbf{1}_{[0,1]}(x) \, \mathbf{1}_{[0,1]}(y)$$

Example: Romeo and Juliet (3)

Aim: Compute

$$\mathsf{P}\left(|Y-X| < rac{1}{6}
ight)$$

Complementary: Geometrically one can see that

$$\mathbf{P}\left(|Y-X| \ge \frac{1}{6}\right) = \left(\frac{5}{6}\right)^2$$

Conclusion:

$$P\left(|Y-X| < \frac{1}{6}\right) = 1 - \left(\frac{5}{6}\right)^2 \simeq 30.5\%$$

∃ ⇒

Characterizations of independence

Proposition 11.

Let X, Y random variables. Then X and Y are independent in the following cases If X, Y are discrete and there exist h, g such that p(x, y) = h(x) g(y), for all $(x, y) \in E_1 \times E_2$ 2 If X, Y are jointly cont. and there exist h, g such that f(x, y) = h(x) g(y), for all $(x, y) \in \mathbb{R}^2$

Example of independence (1)

Example 1: If (X, Y) have joint density

$$6e^{-(2x+3y)}\mathbf{1}_{(0,\infty)^2}(x,y),$$

then $X \perp \!\!\!\perp Y$.

3

(日)

Example of independence (2)

Recall joint density:

б
$$e^{-(2x+3y)} \mathbf{1}_{(0,\infty)^2}(x,y)$$

Decomposition of the density:

f(x, y) = h(x) g(y),

with

$$h(x) = 6e^{-2x} \mathbf{1}_{(0,\infty)}(x), \qquad g(y) = e^{-3y} \mathbf{1}_{(0,\infty)}(y)$$

Conclusion:

 $X \perp Y$

Samy T.

э

< □ > < 同 >

Example of non independence (1)

Example 2: If (X, Y) have joint density

$$24xy \, \mathbf{1}_{(0,\infty)^2}(x,y) \mathbf{1}_{(0< x+y<1)},$$

then X, Y are not independent

Image: Image:

Example of non independence (2) Recall density:

 $f(x,y) = 24xy \, \mathbf{1}_{(0,\infty)^2}(x,y) \mathbf{1}_{(0< x+y<1)},$

Non product structure: X, Y satisfy the relation: X + Y < 1.

Checking non independence: We have

$$\mathbf{P}\left((X,Y)\in\left[0,\frac{1}{2}\right]^{2}\right)=\int_{[0,\frac{1}{2}]^{2}}24xy\,dxdy=\frac{3}{8}$$

and

$$\mathbf{P}\left(X \in \left[0, \frac{1}{2}\right]\right) \mathbf{P}\left(Y \in \left[0, \frac{1}{2}\right]\right) = \left(24 \int_0^{\frac{1}{2}} dx \, x \int_0^{1-x} y \, dy\right)^2 = \left(\frac{11}{16}\right)^2$$

Outline

Joint distribution functions

Independent random variables

3 Sums of independent random variables

- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

Density of a sum

Proof

Characterization by expectations: Let $\varphi \in \mathcal{C}(\mathbb{R})$. Then

$$\mathsf{E}\left[\varphi(Z)\right] = \int_{\mathbb{R}^2} \varphi(x+y) f_X(x) f_Y(y) \, dx \, dy$$

Change of variable:

x + y = a and y = b, thus J = 1

Expression for $\mathbf{E}[\varphi(Z)]$:

$$\mathsf{E}\left[\varphi(Z)\right] = \int_{\mathbb{R}} \varphi(a) \left(\int_{\mathbb{R}} f_X(a-b) f_Y(b) \, db \right) da$$

Image: A matrix

3
Triangular distribution

Proof

Application of Proposition 12:

$$f_Z(a) = \int_0^1 f_X(a-y) \, dy = \int_{[0,1] \cap [a-1,a]} dy = |[0,1] \cap [a-1,a]|$$

Case 1: $a \in [0, 1]$: Then $[0, 1] \cap [a - 1, a] = [0, a]$ and $f_Z(a) = a$

Case 2: $a \in (1, 2]$: Then $[0, 1] \cap [a - 1, a] = [a - 1, 1]$ and $f_Z(a) = 2 - a$

≡ nar

Sums of Gamma random variables

Remark: This result includes

- Sums of exponential random variables
- Sums of chi-square random variables

Samy T.

Sums of Gaussian random variables

~	
5 a may /	
. Januv	
<i>ou,</i>	

Example: basketball (1)

Situation:

- A basketball team will play a 44-game season
- 26 games are against class A teams, with probability of win = .4
- 18 games are against class B teams, with probability of win = .7
- Results of the different games are independent.

Question: Approximate the probability that

- The team wins 25 games or more
- The team wins more games against class A teams than it does against class B teams

Example: basketball (2)

Model: We set

- $X_A = \#$ games the team wins against class A
- $X_B = \#$ games the team wins against class B

Then $X_A \perp \!\!\!\perp X_B$ and

$$X_A \sim Bin(26, 0.4), \quad X_B \sim Bin(18, 0.7)$$

Approximation for X_A, X_B : According to DeMoivre-Laplace,

 $X_A \approx \mathcal{N}(10.24; 6.24), \qquad X_B pprox \mathcal{N}(12.60; 3.78)$

Example: basketball (3)

Approximation for $X_A + X_B$: Since $X_A \perp \perp X_B$,

 $X_A + X_B \approx \mathcal{N}(23; 10.2)$

Question 1: We have

3

Image: A matrix

Example: basketball (4)

Approximation for $X_A - X_B$: Since $X_A \perp \perp X_B$,

 $X_A - X_B \approx \mathcal{N}(-2.2; 10.2)$

Question 2: We have

$$\mathbf{P} (X_A - X_B > 0) = \mathbf{P} (X_A - X_B \ge .5)$$

$$= \mathbf{P} \left(\frac{X_A - X_B + 2.2}{\sqrt{10.2}} \ge \frac{.5 + 2.2}{\sqrt{10.2}} \right)$$

$$\simeq 1 - \mathbf{P} (Z < .8530)$$

$$\simeq .1968$$

3

イロト 不得 トイヨト イヨト

Sums of Poisson random variables

Janny I	
O unny 1.	

Proof for 2 random variables

Hypothesis: $X_1 \sim \mathcal{P}(\lambda_1), X_2 \sim \mathcal{P}(\lambda_2)$ and $X_1 \perp \perp X_2$

Computation: For $n \ge 0$,

$$\mathbf{P}(X_{1} + X_{2} = n) = \sum_{k=0}^{n} \mathbf{P}(X_{1} = k) \mathbf{P}(X_{2} = n - k)$$
$$= \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}$$
$$= e^{-(\lambda_{1}+\lambda_{2})} \frac{(\lambda_{1} + \lambda_{2})^{n}}{n!}$$

Image: A matrix

э

Sums of Binomial random variables

~	
Same.	
. Januv	

Outline

- Joint distribution functions
- Independent random variables
- Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

General definition

Definition 18.

Let

- (X, Y) couple of discrete random variables
- Joint pmf p
- Marginal pmf's p_X, p_Y
- y such that $p_Y(y) > 0$

Then the conditional pmf of X given Y = y is defined by

$$p_{X|Y}(x|y) = \mathbf{P}(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}$$

Example ctd: tossing 3 coins (1)

Experiment: Tossing a coin 3 times

Events: We consider

A = "At most one Head" B = "At least one Head and one Tail"

Random variables: Set

$$X_1 = \mathbf{1}_A, \qquad X_2 = \mathbf{1}_B, \qquad X = (X_1, X_2)$$

Example ctd: tossing 3 coins (2) We have seen:

$X_1 \setminus X_2$	0	1	Marg. X_1
0	1/8	3/8	1/2
1	1/8	3/8	1/2
Marg. X_2	1/4	3/4	1

Conditional probabilities given $X_1 = 0$:

$$p_{X_2|X_1}(0|0) = \frac{1/8}{1/2} = \frac{1}{4}, \quad p_{X_2|X_1}(1|0) = \frac{3/8}{1/2} = \frac{3}{4}$$

Conditional probabilities given $X_2 = 1$:

$$p_{X_1|X_2}(0|1) = rac{3/8}{3/4} = rac{1}{2}, \quad p_{X_1|X_2}(1|1) = rac{3/8}{3/4} = rac{1}{2}$$

Image: Image:

Conditioning Poisson random variables

_		
5	2214	
a I	IIV.	

Proof (1)

Expression for the conditional probabilities: Let $0 \le k \le n$. Then invoking $X \perp \!\!\!\perp Y$,

$$P(X = k | X + Y = n) = \frac{P(X = k) P(Y = n - k)}{P(X + Y = n)}$$

Law of X + Y: We have seen

$$X + Y \sim \mathcal{P}(\lambda_1 + \lambda_2)$$

Proof (2)

Computation of the conditional probabilities:

$$\mathbf{P} \left(X = k | X + Y = n \right)$$

= $e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} \left[e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!} \right]^{-1}$
= $\binom{n}{k} p^k (1-p)^{n-k}$

Conclusion:

 $\mathcal{L}(X|X+Y=n) = \mathrm{Bin}(n,p)$

~	_
Some v	
Same	

→ Ξ →

э

Outline

- Joint distribution functions
- Independent random variables
- 3 Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

General definition

Definition 20.

Let

- (X, Y) couple of continuous random variables
- Joint density f
- Marginal densities f_X, f_Y
- y such that $f_Y(y) > 0$

Then the conditional density of X given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Justification of the definition

Heuristics: $f_{X|Y}(x|y)$ can be interpreted as

$$f_{X|Y}(x|y) dx = \frac{f(x,y) dx dy}{f_Y(y) dy}$$

$$\simeq \frac{\mathbf{P} (x \le X \le x + dx, y \le Y \le y + dy)}{\mathbf{P} (y \le Y \le y + dy)}$$

$$= \mathbf{P} (x \le X \le x + dx | y \le Y \le y + dy)$$

Use of the conditional probability: compute probabilities like

$$\mathbf{P}(X \in A | Y = y) = \int_A f_{X|Y}(x|y) \, dx$$

Rigorous definition: see MA 539

	_
Samu	
Janny	

Simple example of continuous conditioning (1)

Density: Let (X, Y) be a random vector with density

$$\frac{e^{-\frac{x}{y}}e^{-y}}{y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y)$$

Question: Compute

 $\mathbf{P}(X > 1 | Y = y)$

~	_
Some v	
Janny	

Simple example of continuous conditioning (2)

Marginal distribution of Y: We have

$$f_{Y}(y) = \int_{0}^{\infty} f(x, y) dx$$

= $\frac{e^{-y}}{y} \left(\int_{0}^{\infty} e^{-\frac{x}{y}} dx \right) \mathbf{1}_{(0,\infty)}(y)$
= $e^{-y} \mathbf{1}_{(0,\infty)}(y)$

Conditional density: For y > 0 we have

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0,\infty)}(x)$$

Namely $\mathcal{L}(X | Y = y) = \mathcal{E}(\frac{1}{y})$

Image: Image:

Simple example of continuous conditioning (3)

Conditional probability:

$$P(X > 1 | Y = y) = \int_{1}^{\infty} f_{X|Y}(x|y) dx$$
$$= \int_{1}^{\infty} \frac{e^{-\frac{x}{y}}}{y} dx$$
$$= e^{-\frac{1}{y}}$$

~	_
5 a may /	
. Januv	

< ∃⇒

Outline

- Joint distribution functions
- Independent random variables
- 3 Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- **6** Joint probability distribution of functions of random variables
 - 7 Conditional expectation

Characterizing r.v by expected values

Notation:

 $\mathcal{C}_b(\mathbb{R}^2)\equiv$ set of continuous and bounded functions on \mathbb{R}^2 .

Theorem 21. Let $X = (X_1, X_2)$ be a r.v in \mathbb{R}^2 . We assume that $\mathbf{E}[\varphi(X_1, X_2)] = \int_{\mathbb{R}^2} \varphi(x_1, x_2) f(x_1, x_2) dx_1 dx_2,$ for all functions $\varphi \in C_b(\mathbb{R}^2)$. Then (X_1, X_2) is continuous, with density f.

Application: change of variable

Problem: Let

- $X = (X_1, X_2)$ random variable with density f.
- Set Y = h(X) with $h : \mathbb{R}^2 \to \mathbb{R}^2$.

We wish to find the density of Y.

Application: change of variable (2)

Recipe: One proceeds as follows • For $\varphi \in C_b(\mathbb{R}^2)$, write

$$\mathbf{E}[\varphi(Y)] = \mathbf{E}[\varphi(h(X))] = \int_{\mathbb{R}^2} \varphi(h(x_1, x_2)) f(x_1, x_2) dx_1 dx_2.$$

Change variables y = h(x) in the integral. After some elementary computations we get

$$\mathsf{E}[\varphi(\mathsf{Y})] = \int_{\mathbb{R}^2} \varphi(\mathsf{y}_1, \mathsf{y}_2) \, \mathsf{g}(\mathsf{y}_1, \mathsf{y}_2) \, \mathsf{d} \mathsf{y}_1 \mathsf{d} \mathsf{y}_2.$$

Solution This characterizes Y, which admits a density g

~	_
5 a may /	
Janny	

Polar coordinates of Gaussian vectors (1)

Standard Gaussian vector in \mathbb{R}^2 : Consider

Polar coordinates: Set

 $(X, Y) = (R\cos(\Theta), R\sin(\Theta))$

Question: Find the joint density of (R, Θ) Polar coordinates of Gaussian vectors (2)

Decomposition of the expected value: For $\varphi \in C_b(\mathbb{R}^2)$,

Expression for A_+ :

$$\begin{aligned} \mathcal{A}_{+} &= \mathbf{E}\left[\varphi\left((X^{2}+Y^{2})^{1/2}, \tan^{-1}\left(\frac{Y}{X}\right)\right) \mathbf{1}_{(X>0)}\right] \\ &= \int_{\mathbb{R}\times\mathbb{R}_{+}}\varphi\left((x^{2}+y^{2})^{1/2}, \tan^{-1}\left(\frac{y}{x}\right)\right) \frac{e^{-\frac{x^{2}+y^{2}}{2}}}{2\pi} \, dxdy \end{aligned}$$

→

Polar coordinates of Gaussian vectors (3)

Change of variable for A_+ : Set

$$x = r \cos(\theta), \qquad y = r \sin(\theta) \implies J(r, \theta) = r$$

Then

$$A_{+} = \int_{\mathbb{R}_{+}\times(0,\pi)} \varphi(r,\theta) \frac{r \, e^{-\frac{r^{2}}{2}}}{2\pi} \, dr d\theta$$

Change of variable for A_- : We find

$$A_{-} = \int_{\mathbb{R}_{+}\times(\pi,2\pi)} \varphi(r,\theta) \, \frac{r \, e^{-\frac{r^{2}}{2}}}{2\pi} \, dr d\theta$$

Polar coordinates of Gaussian vectors (4)

Expression for the expected value:

$$\mathbf{E}\left[\varphi(R,\Theta)\right] = \int_{\mathbb{R}_+\times(0,2\pi)} \varphi(r,\theta) \, \frac{r \, e^{-\frac{r^2}{2}}}{2\pi} \, dr d\theta$$

Joint density for (R, Θ) :

$$f(r,\theta) = \frac{1}{2\pi} \mathbf{1}_{(0,2\pi)}(\theta) \times r \, e^{-\frac{r^2}{2}} \mathbf{1}_{\mathbb{R}_+}(r)$$

Otherwise stated:

- $R \sim \mathsf{Rayleigh}, \, \Theta \sim \mathcal{U}([0, 2\pi])$
- *R* ⊥⊥ Θ

Change of variable: general result

~	
Some v	
Janny	
ou,	

Probability Theory 69 / 84

Outline

- Joint distribution functions
- Independent random variables
- 3 Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

Cond. pmf in the discrete case (repeated)

Cond. expectation in the discrete case

$$\mathbf{E}[X|Y = y] = \sum_{x \in \mathcal{E}} x \, p_{X|Y}(x|y)$$
Binomial example (1)

Situation: Let

- $X, Y \sim Bin(n, p)$ • Z = X + Y
- Problem: We wish to compute

 $\mathbf{E}[X|Z=m]$

~	_
Some v	
Janny	

< 47 ▶

Binomial example (2)

Distribution for *Z*:

$$Z = \sum_{i=1}^n X_i + \sum_{j=1}^n Y_j \sim \mathsf{Bin}(2n, p)$$

Computation for conditional pmf: For $k \leq \min(n, m)$ we have

$$\mathbf{P}(X = k | Z = m) = \frac{\mathbf{P}(X = k, X + Y = m)}{\mathbf{P}(Z = m)}$$
$$= \frac{\mathbf{P}(X = k, Y = m - k)}{\mathbf{P}(Z = m)}$$
$$= \frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2n}{m}}$$

э

イロト 不得 トイヨト イヨト

Binomial example (3)

Conditional pmf: For $k \leq \min(n, m)$ we have

$$p_{X|Z}(k|m) = \frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2n}{m}}$$

Recall: If $V \sim HypG(n, N, m)$ then

$$\mathbf{P}(X=k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$$

Identification of the conditional pmf: We have

 $p_{X|Z}(k|m) = \text{Pmf of HypG}(2n, m, n)$

~	_
5 a may	
Janiv	

Image: Image:

Binomial example (4)

Conditional expectation: Let $V \sim HypG(2n, m, n)$. Then

$$\mathbf{E}\left[X|Z=m\right]=\mathbf{E}[V]$$

Numerical value:

According to the values for hypergeometric distributions,

$$\mathbf{E}\left[X|Z=m\right]=m\times\frac{n}{2n}=\frac{m}{2}$$

Cond. density in the continuous case (repeated)

$$f_Y(x \mid y) = \frac{f_Y(y)}{f_Y(y)}$$

Samy T.

Cond. expectation in the continuous case

Then the conditional exp. of X given Y = y is defined by

$$\mathbf{E}[X|Y=y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$

Example of continuous conditional expectation (1)

Density: Let (X, Y) be a random vector with density

$$\frac{e^{-\frac{x}{y}}e^{-y}}{y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y)$$

Question: Compute

$$\mathsf{E}\left[X \mid Y = y\right]$$

~	_
Samur	
Janny	

Example of continuous conditional expectation (2)

Conditional density: For y > 0 we have seen that

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0,\infty)}(x)$$

Namely
$$\mathcal{L}(X|Y=y) = \mathcal{E}(rac{1}{y})$$

Conditional expectation: We have

$$\mathbf{E}[X|Y = y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$
$$= \int_{0}^{\infty} x \frac{e^{-\frac{x}{y}}}{y}$$
$$= y$$

Image: Image:

Expectation and conditioning

Proposition 27.

Let X, Y be two random variables. Then

• If X, Y are discrete we have

$$\mathbf{E}[X] = \sum_{y} \mathbf{E}[X|Y = y] p_{Y}(y)$$

2 If X, Y are continuous we have

$$\mathsf{E}[X] = \int_{\mathbb{R}} \mathsf{E}\left[X \mid Y = y\right] \, f_Y(y) \, dy$$

Onified notation:

$$\mathbf{E}[X] = \mathbf{E}\left\{\mathbf{E}\left[X \mid Y\right]\right\}$$

Example: sales in a store (1)

Situation:

We consider a store on a given day. We assume

- # of people entering in the store has mean 50
- Amount of money spent by each person is \$8
- Indep. between # persons entering and amount of money spent

Question:

Expected amount of money spent in the store on a given day?

Example: sales in a store (2)

Notation: We set

- N = # of customers entering the store
- X_i = Amount spent by *i*-th customer, for $i \ge 1$
- Z = Total amount spent

Expression for Z: We have (double randomness)

$$Z = \sum_{i=1}^{N} X_i$$

Hypothesis:

- X_i 's follow the same distribution X
- $(X_i)_{i\geq 1} \perp N$

Example: sales in a store (3) Computation:

$$\mathbf{E}[Z] = \mathbf{E}\left\{\mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right\}$$
$$= \sum_{n=1}^{\infty} \mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N = n\right] p_{N}(n)$$
$$= \sum_{n=1}^{\infty} \mathbf{E}\left[\sum_{i=1}^{n} X_{i} \mid N = n\right] p_{N}(n)$$
$$= \sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathbf{E}\left[X_{i} \mid N = n\right] p_{N}(n)$$
$$= \sum_{n=1}^{\infty} n \mathbf{E}[X] p_{N}(n)$$
$$= \mathbf{E}[N] \mathbf{E}[X]$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト ・