MA/STAT 519: Introduction to Probability Fall 2018, Mid-Term Examination
 Instructor: Yip

- This test booklet has FOUR QUESTIONS, totaling 80 points for the whole test. You have 75 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, with no electronic device. One two-sided- 8×11 formula sheet is allowed.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

Name: Answerkey

Question	Score
$\frac{1 .(20 \mathrm{pts})}{}$	
$\frac{2 .(20 \mathrm{pts})}{3 .(20 \mathrm{pts})}$	
$4 .(20 \mathrm{pts})$	
Total $(80 \mathrm{pts})$	

1. Let X and Y be two independent discrete random variables. For each of the following cases, compute the conditional distribution of X given $X+Y$, i.e. find

$$
P(X=i \mid X+Y=j)
$$

If possible, relate the conditional distribution to some common, i.e. well known, distribution.
(a) X is Poisson with parameter λ and Y is Poisson with parameter μ.
(b) X is Binomial with parameter n and p and Y is Binomial with parameter m and p.
(c) X and Y are Geometric with parameter p.

You can use this blank page.
(b)

$$
(*)=\frac{\binom{n}{i}\binom{m}{\bar{i}-i}}{\binom{m+n}{i}} \quad \text { (Hypergeametric) }
$$

(c) $X \sim G \operatorname{com}(p), \quad Y \sim G e a m(p)$

$$
\begin{aligned}
& X+Y \sim \operatorname{Neg} \operatorname{Bin}(2, p) \\
(*)= & \frac{q^{i-1} p q \xi^{i-i-1} p}{\binom{j-1}{2-1} q^{j-2} p^{2}}=\frac{1}{j^{-1}}
\end{aligned}
$$

(uniform, does not depend ni)
2. Suppose n balls are distributed at random into r boxes in such a way that each ball chooses a box independently of each other. Let S be the number of empty boxes. Compute $E S$ and $\operatorname{Var}(S)$.
(Hint: Consider the random variables X_{i} (for $i=1,2, \ldots, r$) which equals 1 if the i-th box is empty and 0 otherwise. Related S and the X_{i} 's.)

$$
\begin{aligned}
& S=x_{1}+x_{2}+\cdots+x_{r} \\
& \begin{array}{l}
E S=E X_{1}+E X_{2}+\cdots+E X_{r} \\
E X_{1}=1 \times P\left(X_{1}=1\right)+0 \times P\left(X_{1}=0\right)
\end{array} \\
& \begin{array}{l}
=P(\underbrace{\left(X_{1}-1\right)}=\left(\frac{(r-1}{r}\right)^{n} \text { no. of balls } \\
\text { Boxt+2 is } \begin{array}{l}
\text { no of boxes } S \text { totalno. of } \\
\text { empty to choose from boxes }
\end{array}
\end{array} \\
& \text { Hence } E S=r\left(\frac{r-1}{r}\right)^{n} \\
& E\left(s^{2}\right)=E\left(\sum_{i=1}^{r} X_{i}\right)^{2} \\
& =E\left(\sum_{i} X_{i}^{2}+\sum_{i \neq j} X_{i} X_{j}\right) \\
& =\sum_{i} E\left(X_{i}^{2}\right)+\sum_{i \neq j} E\left(X_{i} X_{j}\right)
\end{aligned}
$$

- Since $X_{i}=0,1, \quad X_{i}^{2}=X_{i}$

$$
\begin{aligned}
& E\left(X_{i}^{2}\right)=E X_{i}=\left(\frac{r-1}{r}\right)^{n} \quad \text { no. of bose to }
\end{aligned}
$$

Hence $E\left(\delta^{2}\right)=r\left(\frac{r-1}{r}\right)^{n}+r(r-1)\left(\frac{r-2}{r}\right)^{n}$

$$
\begin{aligned}
\operatorname{Van}(S) & =E\left(S^{2}\right)-(E S)^{2} \\
& =r\left(\frac{r-1}{r}\right)^{n}+r(r-1)\left(\frac{r-2}{r}\right)^{n}-\left[r\left(\frac{r-1}{r}\right)^{n}\right]^{2}
\end{aligned}
$$

3. McDonald's newest promotion is putting a toy inside every one of its hamburger. Suppose there are N distinct types of toys and each of them is equally likely to be put inside any of the hamburger. What is the expected value and variance of the number of hamburgers you need to order (or eat) before you have a complete set of the N toys.
(Hint: consider the number of hamburgers you need to order (or eat) in between getting one and two dinstinct types of toys, two and three distinct types of toys, and so forth.)

$$
\begin{aligned}
& E(\operatorname{geam}(p))=\frac{1}{p} \quad \operatorname{Var}\left(G_{\operatorname{lam}}(p)\right)=\frac{q}{p^{2}} \\
& \begin{aligned}
E S & =E T_{1}+E T / 2+\cdots+E / N \\
& =1+\frac{N}{N-1}+\frac{N}{N-2}+\cdots+\frac{N}{2} \\
& =N\left(1+\frac{1}{2}+\cdots+\frac{1}{N}\right) \\
\operatorname{Van}(S) & =\operatorname{Van}\left(T_{1}\right)+\operatorname{Van}\left(\frac{T}{2}\right)+\cdots+\operatorname{Var}\left(T_{N}\right)
\end{aligned}
\end{aligned}
$$

(since the Ti's are independent)

$$
\begin{aligned}
& =0+\frac{\frac{1}{N}}{\left(\frac{N-1}{N}\right)^{2}}+\frac{\frac{2}{N}}{\left(\frac{N-2}{N}\right)^{2}}+\cdots+\frac{\frac{N-1}{N}}{(\lambda)^{2}} \\
& =\frac{N}{(N-1)^{2}}+\frac{2 N}{(N-2)^{2}}+\cdots+\frac{(N-1) N}{1^{2}} \\
& =N\left[\frac{1}{(N-1)^{2}}+\frac{2}{(N-2)^{2}}+\cdots+\frac{N-1}{(1)^{2}}\right]
\end{aligned}
$$

4. Consider a box with M white balls and N black balls. You are asked to get n balls (at random) out of the box without replacement. Let X be the number of white balls obtained.
(a) Find the probability distribution of X.
(b) Find the expectation and variance of X.
(Hint: imagine that you get the balls sequentially, one by one. Introduce the indicator functions $X_{i}=1$ for $i=1, \ldots n$ defined as X_{i} equals one if i-th ball is white and zero otherwise. Relate X and the X_{i} 's.)
(c) Now suppose M and N tends to infinity such that $\frac{M}{M+N} \longrightarrow p$. Derive and identify the limiting probability distribution of X.
(d) Under the same limiting procedure, find the limiting expectation and variance of X.

$$
E X_{1}=P\left(X_{1}=1\right)=\frac{M}{M+N} \text { no. of white balls }
$$

Hence

$$
\begin{aligned}
E X & =n E X_{1}=\frac{n M}{M+N} \quad \begin{aligned}
& \text { Hence } \\
& E\left(X^{2}\right)\left.=\sum_{i} E X_{i}^{2}+\sum_{i \neq j} E X_{i} X_{j}\right) \\
&=\sum_{i} P\left(X_{i}=1\right)+\sum_{i \neq j} P\left(X_{i=1} X_{j}=1\right) \\
&=\sum_{i} \frac{M}{M+N}+\sum_{i \neq j} \frac{M(M-1)}{(M+N)(M+N-1)} \\
&=\frac{n M}{M+N}+n(n-1) M(M-1) \\
&(M+N)(M+N-1)
\end{aligned} \\
V a(X) & =E\left(X^{2}\right)-(E X)^{2} \\
& =\frac{n M}{M+N}+\frac{n(n-1) M(M-1)}{(M+N)(M+N-1)}-\left(\frac{n M}{M+N}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } P(X=i)=\frac{\binom{M}{i}\binom{N}{n-i}}{\binom{M+N}{n}} \\
& =\frac{\frac{M(M-1) \cdots(M-i+1)}{i!} \frac{N(N-1)(N-2) \cdots(N-n+i+1)}{(n-i)!}}{\frac{(M+N)(M+N-1) \cdots(M+N-n+1)}{n!}} \\
& =\frac{n!}{i!(n-i)!} \times(M(M-1) \ldots(M-i+1)) \leftarrow i \text { terms } \\
& \times(N(N-1) \cdots(N-n+i+1) \notin n-i \text { terms } \\
& (M+N)(M+N-1) \cdots(M+N-n+1) \\
& \text { Q } n \text { terms } \\
& =\binom{n}{i}\left(\frac{M}{M+N}\right)\left(\frac{M-1}{M+N-1}\right)\left(\frac{M-2}{M+N-2}\right) \ldots\left(\frac{M-i+1}{M+N-i+1}\right) \times \\
& \times\left(\frac{N}{M+N-i}\right)\left(\frac{N-1}{M+N-i-1}\right) \cdots\left(\frac{N-n+i+1}{M+N-n+1}\right) \\
& \xrightarrow[N+N]{M, N \rightarrow+\infty} \\
& \binom{m}{i} p^{i} q^{n-i} \\
& \sim \operatorname{Sin}(n, p) \\
& \frac{M}{M+N} \rightarrow p \\
& \frac{N}{M+N} \rightarrow 1-D=q
\end{aligned}
$$

Note: The answer also makes intuitive Sense as $M, N \rightarrow+\infty$, it does not make any differeme whether it is with on without replacement.
(d) Hence

$$
E X \rightarrow n p, \operatorname{Va}(X) \rightarrow n p q
$$

The above can also be checked chrectly from the formula:

$$
\begin{aligned}
E X & =\frac{n M}{M+N} \rightarrow n p \\
V_{m}(X) & =\frac{n M}{M+N}+\frac{n(n-1) M(M-1)}{(M+N)(M+N-1)}-\left(\frac{n M}{M+N}\right)^{2} \\
& \rightarrow n p+n(n-1) p^{2}-n^{2} p^{2} \\
& =n p-n p^{2}=n p(1-p)=n p q .
\end{aligned}
$$

