Final Fall 24 - Scoufions

Problem 1. A student is getting ready to take an important oral examination. There
are n = 3 examiners. We assume for now that the student has a ”Good” day. This means
that each of his examiners will pass him, independently of one another, with probability
pg = 0.8.

1.1. For v =1,2,3, we set
Xi = 1{Examiner i passes the student}, and X = Number of examiners passing the student

Express X as a function of the X;’s.
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1.2. Identify the laws of X; and X.
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1.3. The student will pass the examination if a majority of the examiners pass him. Let
us call A the event ”Student passes the examination”. Compute P(A) for a good day.
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1.4. We now assume that (1) The students also has ”Bad” days, for which the probability
that each of his examiners will pass him becomes p, = 0.4. (2) If G (resp. B) denotes
the event ”Good day” (resp. ”Bad day”), then P(G) = 2 (resp. P(B) = ). By writing
a proper conditioning, compute P(A) in this new situation.
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Problem 2. The time (in hours) required to repair a machine is an exponentially dis-

tributed random variable X with parameter A = %

2.1. Compute the value of E[X] for a random variable X ~ £()) with a general A > 0.

You should not apply the formula directly, you are asked to calculate the corresponding
integral.
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2.2. What is the probability that a repair time exceeds 2 hours?
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2.3. What is the conditional probability that a repair takes at least 11 hours, given that
its duration exceeds 9 hours?
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Problem 3. We have fifty numbers rounded off to the nearest integer and then summed.
We call X; the ¢-th round-off error. The random variables X; are i.i.d with common
distribution U([—0.5,0.5]).

3.1. Compute E[X;]. You should not apply the formula directly, you are asked to
calculate the corresponding integral.
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3.2. Compute Var(X;). You should not apply the formula directly, you are asked to
calculate the corresponding integral.
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3.3. Consider the sum of the errors, S = > | X;. Approximate the probability that S
is larger than 3.
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