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Introduction

Experiment: tossing 3 coins

Model:

S = {h, t}3, P({s}) = 1
8 for all s ∈ S

Result of the experiment: we are interested in the quantity

X (s) = "# Heads obtained when s is realized"
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Introduction (2)

Table for the outcomes:

s X (s) s X (s)
(t, t, t) 0 (h, t, t) 1
(t, t, h) 1 (h, t, h) 2
(t, h, t) 1 (h, h, t) 2
(t, h, h) 2 (h, h, h) 3
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Introduction (3)

Information about X :
X is considered as an application, i.e.

X : S → {0, 1, 2, 3}.

Then we wish to understand sets like

X−1({2}) = {(t, h, h), (h, t, h), (h, h, t)}

or quantities like
P
(
X−1({2})

)
= 3

8 .

This will be formalized in this chapter
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Example: time of first success (1)

Experiment:
Coin having probability p of coming up heads
Independent trials: flipping the coin
Stopping rule: either H occurs or n flips made

Random variable:

X = # of times the coin is flipped

State space:
X ∈ {1, . . . , n}
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Example: time of first success (2)

Probabilities for j < n:

P(X = j) = P ({(t, . . . , t, h)}) = (1− p)j−1p

Probability for j = n:

P(X = n) = P ({(t, . . . , t, h); (t, . . . , t, t)}) = (1− p)n−1
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Example: time of first success (3)

Checking the sum of probabilities:

P
 n⋃

j=1
{X = j}

 =
n∑

j=1
P ({X = j})

= p
n−1∑
j=1

(1− p)j−1 + (1− p)n

= 1
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Cumulative distribution function

Let
P a probability on a sample space S
X : S → E a random variable, with E ⊂ R

For x ∈ R we define

F (x) = P (X ≤ x)

Then the function F is called cumulative distribution function
or distribution function

Definition 1.
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General definition

Let
P a probability on a sample space S
X : S → E a random variable

Hypothesis: E is countable, i.e

E = {xi ; i ≥ 1}

Then we say that X is a discrete random variable

Definition 2.
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Probability mass function

Let
P a probability on a sample space S
E = {xi ; i ≥ 1} countable state space
X : S → E discrete random variable

For i ≥ 1 we set
p(xi) = P (X = xi)

Then the probability mass function of X is the family

{p(xi); i ≥ 1}

Definition 3.
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Remarks
Sum of the pmf: If p is the pmf of X , then∑

i≥1
p(xi) = 1

Graph of a pmf: Bar graphs are often used.
Below an example for X = sum of two dice

Samy T. Random variables Probability Theory 14 / 113



Example of pmf computation (1)

Definition of the pmf: Let X be a r.v with pmf given by

p(i) = c λ
i

i ! , i ≥ 0,

where c > 0 is a normalizing constant

Question: Compute
1 P(X = 0)
2 P(X > 2)
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Example of pmf computation (2)

Computing c : We must have

c
∞∑

i=0

λi

i ! = 1

Thus
c = e−λ

Computing P(X = 0): We have

P(X = 0) = e−λλ
0

0! = e−λ
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Example of pmf computation (3)

Computing P(X > 2): We have

P (X > 2) = 1− P (X ≤ 2)

Thus
P (X > 2) = 1− e−λ

(
1 + λ + λ2

2

)
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Cdf for discrete random variables

Let
P a probability on a sample space S
E = {xi ; i ≥ 1} countable state space, with E ⊂ R
X : S → E discrete random variable
F cdf of X and p pmf of X

Then
1 F can be expressed as

F (a) =
∑

i≥1; xi≤a
p(xi)

2 F is a step function

Proposition 4.
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Example of discrete cdf (1)

Definition of the random variable:
Consider X : S → {1, 2, 3, 4} given by

p(1) = 1
4 , p(2) = 1

2 , p(3) = 1
8 , p(4) = 1

8
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Example of discrete cdf (2)

Graph of F :
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Expected value for discrete random variables

Let
P a probability on a sample space S
E = {xi ; i ≥ 1} countable state space, with E ⊂ R
X : S → E discrete random variable
p pmf of X

Then we define

E [X ] =
∑
i≥1

xi P (X = xi) =
∑
i≥1

xi p(xi)

Definition 5.
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Justification of the definition

Experiment:
Run independent copies of the random variable X
For i-th copy, the measurement is zi

Result (to be proved much later):

lim
n→∞

1
n

n∑
i=1

zi = E[X ]
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Example: dice rolling (1)

Definition of the random variable: we consider

X = outcome when we roll a fair dice
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Example: dice rolling (2)

Recall: we consider

X = outcome when we roll a fair dice

Pmf: We have E = {1, . . . , 6} and

p(1) = · · · = p(6) = 1
6

Expected value: We get

E[X ] =
6∑

i=1
i p(i) = 1

6

6∑
i=1

i = 7
2
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Example: indicator of an event (1)

Definition of the random variable:
Let A event with P(A) = p and set

1A =

1 if A occurs
0 if Ac occurs
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Example: indicator of an event (2)

Recall:
Let A event with P(A) = p and set

1A =

1 if A occurs
0 if Ac occurs

Pmf:
p(0) = 1− p, p(1) = p

Expected value:
E[1A] = p
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First attempt of a definition

Problem: Let
X discrete random variable
Y = g(X ) for a function g

How can we compute E[g(X )]?

First strategy:
Y = g(X ) is a discrete random variable
Determine the pmf pY of Y
Compute E[Y ] according to Definition 5
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First attempt: example (1)

Definition of a random variable X :
Let X : S → {−1, 0, 1} with

P(X = −1) = .2, P(X = 0) = .5, P(X = 1) = .3

We wish to compute E[X 2]
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First attempt: example (2)

Definition of a random variable Y : Set Y = X 2.
Then Y ∈ {0, 1} and

P(Y = 0) = P(X = 0) = .5
P(Y = 1) = P(X = −1) + P(X = 1) = .5
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First attempt: example (3)

Recall: For Y = X 2 we have

P(Y = 0) = .5, P(Y = 1) = .5

Expected value:
E
[
X 2
]

= E [Y ] = .5
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Definition of E[g(X )]

Let
X discrete random variable
p pmf of X
g real valued function

Then
E [g(X )] =

∑
i≥1

g(xi) p(xi) (1)

Proposition 6.
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Proof
Values of Y : We set Y = g(X ) and

{yj ; j ≥ 1} = values of g(xi) for i ≥ 1

Expression for the rhs of (1): gather according to yj∑
i≥1

g(xi) p(xi) =
∑
j≥1

∑
i ; g(xi )=yj

yj p(xi)

=
∑
j≥1

yj
∑

i ; g(xi )=yj

p(xi)

=
∑
j≥1

yj P (g(X ) = yj)

=
∑
j≥1

yj P (Y = yj)

= E [g(X )]
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Previous example reloaded

Definition of a random variable X :
Let X : S → {−1, 0, 1} with

P(X = −1) = .2, P(X = 0) = .5, P(X = 1) = .3

We wish to compute E[X 2]

Application of (1):

E
[
X 2
]

=
∑

i=−1,0,1
i2p(xi) = .5
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Example: seasonal product (1)
Situation:

Product sold seasonally
Profit b for each unit sold
Loss ` for each unit left unsold
Product has to be stocked in advance
↪→ s units stocked

Random variable:
X = # units of product ordered
Pmf p for X

Question:
Find optimal s in order to maximize profits
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Example: seasonal product (2)
Some random variables: We set

X = # units ordered, with pmf p
Ys = profit when s units stocked

Expression for Ys :

Ys = (b X − (s − X ) `) 1(X≤s) + s b 1(X>s)

Expression for E[Ys ]:

E [Ys ] =
s∑

i=0
(b i − (s − i) `) p(i) +

∞∑
i=s+1

s b p(i)
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Example: seasonal product (3)

Simplification for E[Ys ]: We get

E [Ys ] = s b + (b + `)
s∑

i=0
(i − s) p(i)

Growth of s 7→ E[Ys ]: We have

E [Ys+1]− E [Ys ] = b − (b + `)
s∑

i=0
p(i)
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Example: seasonal product (4)
Growth of s 7→ E[Ys ] (Ctd): We obtain

E [Ys+1]− E [Ys ] > 0 ⇐⇒
s∑

i=0
p(i) < b

b + `
(2)

Optimization:
The lhs of (2) is ↗
The rhs of (2) is constant
Thus there exists a s∗ such that

E [Y0] < · · · < E [Ys∗−1] < E [Ys∗] > E [Ys∗+1] > · · ·

Conclusion: s∗ leads to maximal expected profit
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Expectation and linear transformations

Let
X discrete random variable
p pmf of X
a, b ∈ R constants

Then
E [aX + b] = a E [X ] + b

Proposition 7.
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Proof

Application of relation (1):

E [aX + b] =
∑
i≥1

(a xi + b) p(xi)

= a
∑
i≥1

xi p(xi) + b
∑
i≥1

p(xi)

= a E [X ] + b
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Definition of variance

Let
X discrete random variable
p pmf of X
µ = E[X ]

Then we define Var(X ) by

Var(X ) = E
[
(X − µ)2

]

Definition 8.
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Interpretation
Expected value: For a r.v X , E[X ] represents
the mean value of X .

Variance: For a r.v X , Var(X ) represents
the dispersion of X wrt its mean value.

A greater Var(X ) means
The system represented by X has a lot of randomness
This system is unpredictable

Standard deviation: For physical reasons, it is better to introduce

σX :=
√
Var(X ).
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Interpretation (2)
Illustration (from descriptive stats): We wish to compare the
performances of 2 soccer players on their last 5 games

Griezmann 5 0 0 0 0
Messi 1 1 1 1 1

Recall: for a set of data {xi ; i ≤ n}, we have
Empirical mean: x̄n = 1

n
∑n

i=1 xi
Empirical variance: s2

n = 1
n
∑n

i=1(xi − x̄n)2

Standard deviation: sn =
√
s2

n

On our data set: x̄G = x̄M = 1 goal/game
↪→ Same goal average
However, sG = 2 goals/game while sM = 0 goals/game
↪→ M more reliable (less random) than G
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Alternative expression for the variance

Let
X discrete random variable
p pmf of X
µ = E[X ]

Then Var(X ) can be written as

Var(X ) = E[X 2]− µ2 = E[X 2]− (E[X ])2

Proposition 9.
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Example: rolling a dice
Random variable:

X = outcome when one rolls 1 dice

Variance computation: We find

E[X ] = 7
2 , E[X 2] = 91

6

Therefore
Var(X ) = 91

6 −
(7
2

)2
= 35

12

Standard deviation:

σX =
√
35
12 ' 1.71
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Variance and linear transformations

Let
X discrete random variable
p pmf of X
a, b ∈ R constants

Then
Var (aX + b) = a2 Var(X )

Proposition 10.

Samy T. Random variables Probability Theory 48 / 113



Outline
1 Random variables
2 Discrete random variables
3 Expected value
4 Expectation of a function of a random variable
5 Variance
6 The Bernoulli and binomial random variables
7 The Poisson random variable
8 Other discrete random variables
9 Expected value of sums of random variables
10 Properties of the cumulative distribution function

Samy T. Random variables Probability Theory 49 / 113



Bernoulli random variable (1)

Notation:

X ∼ B(p) with p ∈ (0, 1)

State space:

{0, 1}

Pmf:
P(X = 0) = 1− p, P(X = 1) = p

Expected value and variance:

E[X ] = p, Var(X ) = p(1− p)

Samy T. Random variables Probability Theory 50 / 113



Bernoulli random variable (2)

Use 1, success in a binary game:
Example 1: coin tossing

I X = 1 if H, X = 0 if T
I We get X ∼ B(1/2)

Example 2: dice rolling
I X = 1 if outcome = 3, X = 0 otherwise
I We get X ∼ B(1/6)

Use 2, answer yes/no in a poll
X = 1 if a person feels optimistic about the future
X = 0 otherwise
We get X ∼ B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:
Lifespan: 1654-1705, in Switzerland
Discovers constant e
Establishes divergence of ∑ 1

n
Contributions in diff. eq
First law of large numbers
Bernoulli:
family of 8 prominent mathematicians
Fierce math fights between brothers
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Binomial random variable (1)
Notation:

X ∼ Bin(n, p), for n ≥ 1, p ∈ (0, 1)

State space:

{0, 1, . . . , n}

Pmf:
P(X = k) =

(
n
k

)
pk (1− p)n−k , 0 ≤ k ≤ n

Expected value and variance:

E[X ] = np, Var(X ) = np(1− p)
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:
Example: Roll a dice 9 times.
X = # of 3 obtained
We get X ∼ Bin(9, 1/6)
P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:
Example: stock of 1000 pants with 10% defects
Draw 15 times a pant at random
X = # of pants with a defect
We get X ∼ Bin(15, 1/10)
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Binomial random variable (3)

0 1 2 3 4 5 6
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Figure: Pmf for Bin(6; 0.5). x-axis: k. y -axis: P(X = k)
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Binomial random variable (4)

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

Figure: Pmf for Bin(30; 0.5). x-axis: k. y -axis: P(X = k)
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Example: wheel of fortune (1)

Game:
Player bets on 1, . . . , 6 (say 1)
3 dice rolled
If 1 does not appear, loose $1
If 1 appear i times, win $i

Question:
Find average win

Samy T. Random variables Probability Theory 57 / 113



Example: wheel of fortune (2)

Binomial random variable:
Let X = # times 1 appears
Then X ∼ Bin(3, 1

6)

Expression for the win: Set W = win. Then
W = ϕ(X ) with
↪→ ϕ(0) = −1 and ϕ(i) = i for i = 1, 2, 3
Other expression:

W = X − 1(X=0)
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Example: wheel of fortune (3)

Average win:

E[W ] = E[X ]− P(X = 0)

= 1
2 −

(5
6

)3

= − 17
216

Conclusion: The average win is

E[W ] ' −$0.079

Samy T. Random variables Probability Theory 59 / 113



Pmf variations for a binomial r.v

Let
X ∼ Bin(n, p)
q = Pmf of X
k∗ = b(n + 1)pc

Then we have
k 7→ q(k) is ↗ if k < k∗

k 7→ q(k) is ↘ if k > k∗

Maximum of q attained for k = k∗

Proposition 11.
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Proof

Pmf computation: We have

q(k)
q(k − 1) = P(X = k)

P(X = k − 1) = (n − k + 1)p
k(1− p)

Pmf growth: We get

P(X = k) ≥ P(X = k − 1) ⇐⇒ k ≤ (n + 1)p
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Poisson random variable (1)

Notation:

P(λ) for λ ∈ R+

State space:

E = N ∪ {0}

Pmf:
P(X = k) = e−λ λ

k

k! , k ≥ 0

Expected value and variance:

E[X ] = λ, Var(X ) = λ
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Poisson random variable (2)

Use (examples):
# customers getting into a shop from 2pm to 5pm
# buses stopping at a bus stop in a period of 35mn
# jobs reaching a server from 12am to 6am

Empirical rule:
If n→∞, p → 0 and np → λ, we approximate Bin(n, p) by P(λ).
This is usually applied for

p ≤ 0.1 and np ≤ 5
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Poisson random variable (3)
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Figure: Pmf of P(2). x-axis: k. y -axis: P(X = k)
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Poisson random variable (4)
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Figure: Pmf of P(5). x-axis: k. y -axis: P(X = k)
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Siméon Poisson

Some facts about Poisson:
Lifespan: 1781-1840, in ' Paris
Engineer, Physicist and Mathematician
Breakthroughs in electromagnetism
Contributions in partial diff. eq
celestial mechanics, Fourier series
Marginal contributions in probability

A quote by Poisson:
Life is good for only two things: doing mathematics and teaching it!!
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Example: drawing defective items (1)

Experiment:
Item produced by a certain machine will be defective
↪→ with probability .1
Sample of 10 items drawn

Question:
Probability that the sample contains at most 1 defective item
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Example: drawing defective items (2)

Random variable: Let

X = # of defective items

Then
X ∼ Bin(n, p), with n = 10, p = .1

Exact probability: We have to compute

P(X ≤ 1) = P(X = 0) + P(X = 1)
= (0.9)10 + 10× 0.1× (0.9)9

= .7361
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Example: drawing defective items (3)

Approximation: We use

Bin(10, .1) ' P(1)

Approximate probability: We have to compute

P(X ≤ 1) = P(X = 0) + P(X = 1)
' e−1 (1 + 1)
= .7358
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Poisson paradigm

Situation: Consider
n events E1, . . . ,En

pi = P(Ei)
Weak dependence of the Ei : P(EiEj) . 1

n
limn→∞

∑n
i=1 pi = λ

Heuristic limit: Under the conditions above we expect that

Xn =
n∑

i=1
1Ei → P(λ) (3)

Samy T. Random variables Probability Theory 71 / 113



Example: matching problem (1)

Situation:
n men take off their hats
Hats are mixed up
Then each man selects his hat at random
Match: if a man selects his own hat

Question: Compute
P(Ek) with Ek = "exactly k matches"
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Example: matching problem (2)

Recall: We have found

P(Ek) = 1
k!

n−k∑
j=2

(−1)j

j!

Thus
lim

n→∞
P(Ek) = e−1

k!

New events: We set

Gi = "Person i selects his own hat"
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Example: matching problem (3)
Probabilities for Gi : We have

P(Gi) = 1
n , P (Gi |Gj) = 1

n − 1

Random variable of interest:

X =
n∑

i=1
1Gi =⇒ P(Ek) = P (X = k)

Poisson paradigm: From (3) we have X ' P(1). Therefore

P(Ek) = P (X = k) ' P (P(1) = k) = e−1

k!
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Geometric random variable

Notation:
X ∼ G(p), for p ∈ (0, 1)

State space:
E = N = {1, 2, 3, . . .}

Pmf:
P(X = k) = p (1− p)k−1, k ≥ 1

Expected value and variance:

E[X ] = 1
p , Var(X ) = 1− p

p2
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Geometric random variable (2)
Use:

Independent trials, with P(success) = p
X = # trials until first success

Example: dice rolling
Set X = 1st roll for which outcome = 6
We have X ∼ G(1/6)

Computing some probabilities for the example:

P(X = 5) =
(5
6

)4 1
6 ' 0.08

P(X ≥ 7) =
(5
6

)6
' 0.33
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Geometric random variable (3)

Computation of E[X ]: Set q = 1− p. Then

E[X ] =
∞∑

i=1
iqi−1p

=
∞∑

i=1
(i − 1)qi−1p +

∞∑
i=1

qi−1p

= q E[X ] + 1

Conclusion:
E[X ] = 1

p
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Tail of a geometric random variable

Let
X ∼ G(p)
n ≥ 1

Then we have
P (X ≥ n) = (1− p)n−1

Proposition 12.
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Negative binomial random variable (1)
Notation:

X ∼ Nbin(r , p), for r ∈ N∗, p ∈ (0, 1)

State space:

{r , r + 1, r + 2 . . .}

Pmf:
P(X = k) =

(
k − 1
r − 1

)
pr (1− p)k−r , k ≥ r

Expected value and variance:

E[X ] = r
p , Var(X ) = r(1− p)

p2
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Negative binomial random variable (2)

Use:
Independent trials, with P(success) = p
X = # trials until r successes

Justification:

(X = k)
=

(r − 1 successes in (k − 1) 1st trials) ∩ (k-th trial is a success)

Thus
P(X = k) =

(
k − 1
r − 1

)
pr (1− p)k−r

Samy T. Random variables Probability Theory 81 / 113



Moments of negative binomial random variable

Let
X ∼ Nbin(r , p), for r ≥ 1, p ∈ (0, 1)
Y ∼ Nbin(r + 1, p)
l ≥ 1

Then
E
[
X l
]

= r
p E

[
(Y − 1)l−1

]

Proposition 13.
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Proof (1)
Definition of the l-th moment: We have

E
[
X l
]

=
∞∑

k=r
k l
(
k − 1
r − 1

)
pr (1− p)k−r

Relation for combination numbers:

k
(
k − 1
r − 1

)
= r

(
k
r

)

Consequence:

E
[
X l
]

= r
∞∑

k=r
k l−1

(
k
r

)
pr (1− p)k−r
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Proof (2)
Recall:

E
[
X l
]

= r
∞∑

k=r
k l−1

(
k
r

)
pr (1− p)k−r

From r to r + 1:

E
[
X l
]

= r
p

∞∑
k=r

k l−1
(

k
(r + 1)− 1

)
pr+1 (1− p)(k+1)−(r+1)

Change of variable j = k + 1:

E
[
X l
]

= r
p

∞∑
j=r+1

(j − 1)l−1
(

j − 1
(r + 1)− 1

)
pr+1 (1− p)j−(r+1)

= r
p E

[
(Y − 1)l−1

]
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Computation of expectation and variance

Consequence of Proposition 13:

E[X ] = r
p , Var(X ) = r(1− p)

p2
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The Banach match problem (1)

Situation:
Pipe smoking mathematician with 2 matchboxes
1 box in left hand pocket, 1 box in right hand pocket
Each time a match is needed, selected at random
Both boxes contain initially N matches

Question:
When one box is empty,
what is the probability that k matches are left in the other box?
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Stefan Banach

Some facts about Banach:
Lifespan: 1892-1945, in Krakow and Lviv
Among greatest 20-th century
mathematicians
Founder of a new field
↪→ Functional Analysis
Survived 2 world wars in tough
conditions
Then dies in 1945 from lung cancer
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The Banach match problem (2)

Event: Define Ek by

(Math. discovers that rh box is empty & k matches in lh box)

Expression in terms of a negative binomial:

Ek = (X = N + 1 + N − k) = (X = 2N − k + 1) ,

where
X ∼ Nbin

(
r = N + 1, p = 1

2

)
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The Banach match problem (3)

Probability of Ek : We get

P(Ek) = P (X = 2N − k + 1) =
(
2N − k

N

)(1
2

)2N−k+1

Solution to the problem:
By symmetry between left and right, we get

2P(Ek) =
(
2N − k

N

)(1
2

)2N−k
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Hypergeometric random variable (1)

Use: Consider the experiment
Urn containing N balls
m white balls, N −m black balls
Sample of size n is drawn without replacement
Set X = # white balls drawn

Then
X ∼ HypG(n,N ,m)
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Hypergeometric random variable (2)
Notation:

X ∼ HypG(n,N ,m), for N ∈ N∗, m, n ≤ N , p ∈ (0, 1)

State space:

{0, . . . , n}

Pmf:

P(X = k) =

(
m
k

)(
N−m
n−k

)
(

N
n

) , 0 ≤ k ≤ n

Expected value and variance: Set p = m
n . Then

E[X ] = np, Var(X ) = np(1− p)
(
1− n − 1

N − 1

)
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Hypergeometric and binomial

Let
X ∼ HypG(n,N ,m),
Recall that p = m

N

Hypothesis:
n� m,N , i � m,N

Then
P(X = i) '

(
n
i

)
pi(1− p)n−i

Proposition 14.
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Proof
Expression for P(X = i):

P(X = i) =

(
m
i

)(
N−m
n−i

)
(

N
n

)
= m!

(m − i)!i !
(N −m)!

(N −m − n + i)!(n − i)!
(N − n)!n!

N!

=
(
n
i

) i−1∏
j=0

m − j
N − j

n−i−1∏
k=0

N −m − k
N − i − k

Approximation: If i , j , k � m,N above, we get

P(X = i) '
(
n
i

)
pi(1− p)n−i
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Example: electric components (1)

Situation: We have
Lots of electric components of size 10
We inspect 3 components per lot
↪→ Acceptance if all 3 components are non defective
30% of lots have 4 defective components
70% of lots have 1 defective component

Question:
What is the proportion of rejected lots?

Samy T. Random variables Probability Theory 94 / 113



Example: electric components (2)

Events: We define
A = Acceptance of a lot
L1 = Lot with 1 defective component drawn
L4 = Lot with 4 defective components drawn

Conditioning: We have

P(A) = P(A| L1)P(L1) + P(A| L4)P(L4)

and
P(L1) = .7, P(L4) = .3,
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Example: electric components (3)

Hypergeometric random variable: We check that

P(A| L1) = P(X1 = 0), where X1 ∼ HypG(3, 10, 1)

Thus

P(A| L1) =

(
1
0

)(
9
3

)
(

10
3

)
Conclusion:

P(A) =

(
1
0

)(
9
3

)
(

10
3

) × 0.7 +

(
4
0

)(
6
3

)
(

10
3

) × 0.3 = 54%

Samy T. Random variables Probability Theory 96 / 113



Outline
1 Random variables
2 Discrete random variables
3 Expected value
4 Expectation of a function of a random variable
5 Variance
6 The Bernoulli and binomial random variables
7 The Poisson random variable
8 Other discrete random variables
9 Expected value of sums of random variables
10 Properties of the cumulative distribution function

Samy T. Random variables Probability Theory 97 / 113



Another expression for E[X ]

Let
P a probability on a sample space S
X : S → E a random variable

Hypothesis: S is countable, i.e

S = {si ; i ≥ 1}

Then setting p(si) = P({si}) we have

E[X ] =
∑
i≥1

X (si)p(si)

Proposition 15.
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Proof (1)
Recall: We have

E [X ] =
∑
i≥1

xi P (X = xi)

Level set: We define

Si = {s ∈ S; X (s) = xi}

Expression for E[X ]:

E [X ] =
∑
i≥1

xi
∑
sj∈Si

p(sj)

=
∑
i≥1

∑
sj∈Si

X (sj) p(sj)
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Proof (2)

Conclusion: Since {Si ; i ≥ 1} is a partition of S,

E[X ] =
∑
i≥1

X (si)p(si)
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Expectation of sums

Let
P a probability on a sample space S
X1, . . . ,Xn : S → R n random variables

Hypothesis: S is countable, i.e

S = {si ; i ≥ 1}

Then
E
[ n∑

i=1
Xi

]
=

n∑
i=1

E [Xi ]

Proposition 16.
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Proof
Notation: Set

Z =
n∑

i=1
Xi

Expression for E[Z ]: According to Proposition 15,

E[Z ] =
∑
s∈S

Z (s)p(s)

=
∑
s∈S

( n∑
i=1

Xi(s)
)
p(s)

=
n∑

i=1

∑
s∈S

Xi(s)p(s)


=
n∑

i=1
E [Xi ]
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Example: number of successes (1)

Experiment:
n trials
Success for i-th trial with probability pi

X = # of successes

Question:
Expression for E[X ] and Var(X )
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Example: number of successes (2)

Expression for X : Let

Xi = 1(success for i-th trial)

Then
X =

n∑
i=1

Xi

Expression for E[X ]: Thanks to Proposition 16, we have

E[X ] =
n∑

i=1
pi
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Example: number of successes (3)

Expression for E[X 2]: We invoke the two facts
1 X 2

i = Xi
2 If i 6= j , XiXj = 1(Xi =1,Xj =1)

Therefore

E[X 2] =
n∑

i=1
E[X 2

i ] +
∑
i 6=j

E[XiXj ]

yields

E[X 2] =
n∑

i=1
pi +

∑
i 6=j

P (Xi = 1, Xj = 1)
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Example: number of successes (4)

Particular case, binomial: In this case we have
The Xi ’s are independent
pi = p

New expression for E[X 2]:

E[X 2] = np + n(n − 1)p2

Expression for Var(X ):

Var(X ) = np(1− p)
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Example: number of successes (5)
Particular case, hypergeometric: We have

pi = m
N

P (Xi = 1, Xj = 1) = P(Xi = 1)P (Xj = 1|Xi = 1)

= m
N

m − 1
N − 1

New expression for E[X 2]:

E[X 2] = np + n(n − 1)p m − 1
N − 1

Expression for Var(X ):

Var(X ) = np(1− p)
(
1− n − 1

N − 1

)
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Continuity of the cdf

Let
P a probability on a sample space S
X : S → E a random variable, with E ⊂ R
F the cdf of X , i.e F (x) = P(X ≤ x)

Then the function F satisfies
1 F is a nondecreasing function
2 limb→∞ F (b) = 1
3 limb→−∞ F (b) = 0
4 F is right continuous

Proposition 17.
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Proof of item 1

Inclusion property: Let a < b. Then

(X ≤ a) ⊂ (X ≤ b)

Consequence on probabilities:

P(X ≤ a) ≤ P(X ≤ b)
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Proof of item 2
Definition of an increasing sequence: Let bn ↗∞ and

En = (X ≤ bn)

Then
lim

n→∞
En = (X <∞)

Consequence on probabilities:

1 = P(X <∞)

= P
(
lim

n→∞
En

)
= lim

n→∞
P (En) (Since n 7→ En is increasing)

= lim
n→∞

F (bn)
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Example of cdf (1)
Definition of the function: We set

F (x) = x
2 1[0,1)(x) + 2

3 1[1,2)(x) + 11
12 1[2,3)(x) + 1[3,∞)(x)
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Example of cdf (2)

Information read on the cdf: One can check that
P(X < 3) = 11

12
P(X = 1) = 1

6
P(X > 1

2) = 3
4

P(2 < X ≤ 4) = 1
12
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