MA 416-PROBABILITY

REVIEW PROBLEMS - FINAL

Problem 1. At Dr Gesund's office, the waiting time T is modeled by an exponential random variable with mean 10 mn . Today the office proposes the following deal: if your waiting time is less than 20 mn , you pay the full amount of your visit. Otherwise, you get reimbursed your waiting time minus 20 . We call X the amount which is reimbursed by the office. Find the cdf of X. Then find the probability that you get reimbursed twice in 5 visits.

Problem 2. Let X_{1}, X_{2} be two independent variables with common distribution $\mathcal{E}(\lambda)$. Find the density of $\frac{X_{1}}{X_{1}+X_{2}}$.

Problem 3. Let $A B C D$ be a square with the area 1. Let α, β, γ be random points on $\overline{A B}, \overline{B C}, \overline{C D}$, respectively. Let S be the area of the triangle $\alpha \beta \gamma$. Find $\mathbf{E}[S]$.

Problem 4. Let U_{1}, U_{2} be two independent variables with common distribution $\mathcal{U}([0,1])$. Their Box-Muller transform can be written as

$$
X_{1}=\left(-2 \ln \left(U_{1}\right)\right)^{1 / 2} \cos \left(2 \pi U_{2}\right), \quad X_{2}=\left(-2 \ln \left(U_{1}\right)\right)^{1 / 2} \sin \left(2 \pi U_{2}\right) .
$$

Prove that X_{1}, X_{2} are two independent variables with common distribution $\mathcal{N}(0,1)$.

Problem 5. The number of patients arriving at a hospital from 2 pm to 3 pm with severe symptoms follows a Poisson distribution with mean 1. The hospital ressources are enough to take care of 3 of these patients maximum. What is the probability that the hospital ressources are reached on a given day from 2 pm to 3 pm ? What is the probability that the hospital ressources are reached more than twice on a given week from 2 pm to 3 pm ?

