Axioms of Probability

Samy Tindel

Purdue University

Introduction to Probability Theory - MA 519

Mostly taken from *A first course in probability* by S. Ross

Outline

Introduction

- 2 Sample space and events
- Axioms of probability
- 4 Some simple propositions
- 5 Sample spaces having equally likely outcomes
- 6 Probability as a continuous set function

Outline

Introduction

4 A b

Aim: Introduce

- Sample space
- Events of an experiment
- Probability of an event
- Show how probabilities can be computed in certain situations

Outline

Introduction

- 3 Axioms of probability
- 4 Some simple propositions
- 5 Sample spaces having equally likely outcomes
- 6 Probability as a continuous set function

Situation: We run an experiment for which

- Specific outcome is unknown
- Set S of possible outcomes is known

Terminology:

In the context above \boldsymbol{S} is called sample space

Examples of sample spaces

Tossing two dice: We have

$$S = \{1, 2, 3, 4, 5, 6\}^2$$

= {(*i*, *j*); *i*, *j* = 1, 2, 3, 4, 5, 6}

Lifetime of a transistor: We have

$$S = \mathbb{R}_+ = \{x \in \mathbb{R}; 0 \le x < \infty\}$$

Events

Definition 1.

Consider

- Experiment with sample space S
- A subset E of S

Then

E is called event

э

イロト イポト イヨト イヨト

Example of event (1)

Tossing two dice: We have

$$S = \{1, 2, 3, 4, 5, 6\}^2$$

Event: We define

E = (Sum of dice is equal to 7)

Image: Image:

Example of event (2)

Description of E as a subset:

 $E = \{(1, 6); (2, 5); (3, 4); (4, 3); (5, 2); (6, 1)\} \subset S$

Image: A matrix

3

Second example of event (1)

Lifetime of a transistor: We have

$$S = \mathbb{R}_+ = \{x \in \mathbb{R}; \ 0 \le x < \infty\}$$

Event: We define

E = (Transistor does not last longer than 5 hours)

A B < A B </p>

Image: A matrix

Second example of event (2)

Description of E as a subset:

 $E = [0, 5] \subset S$

Samy T.	

3

Image: A matrix

Operations on events

Complement: A^c is the set of elements of E not in A

Two dice example:

 E^c = "Sum of two dice different from 7"

Union, Intersection: For the two dice example, if

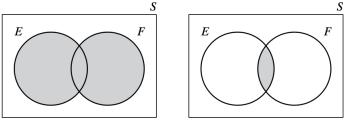
B = "Sum of two dice is divisible by 3" C = "Sum of two dice is divisible by 4"

Then

 $B \cup C$ = "Sum of two dice is divisible by 3 or 4" $B \cap C = BC$ = "Sum of two dice is divisible by 3 and 4"

Illustration (1)

Union and intersection:



(a) Shaded region: $E \cup F$.

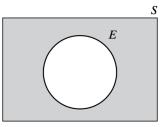
(b) Shaded region: EF.

Image: A matrix

э

Illustration (2)

Complement:



(c) Shaded region: E^c .

Samy	

Image: A matrix

æ

Illustration (3)

Subset:

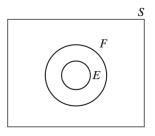


Figure: $E \subset F$

Samy	

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Laws for elementary operations

Commutative law:

$$E \cup F = F \cup E$$
, $EF = FE$

Associative law:

$$(E \cup F) \cup G = E \cup (F \cup G), \qquad E(FG) = (EF)G$$

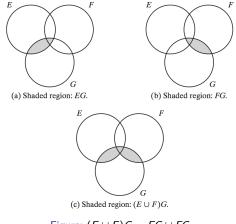
Distributive laws:

$$(E \cup F)G = EG \cup EF$$

(EF) $\cup G = (E \cup G)(F \cup G)$

Illustration

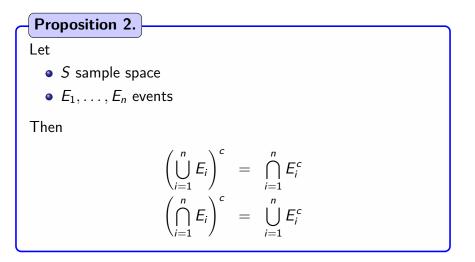
Distributive law:



э

イロト イヨト イヨト イヨト

De Morgan's laws



Samy	

Proof (1)

Proof of $(\bigcup_{i=1}^{n} E_i)^c \subset \bigcap_{i=1}^{n} E_i^c$: Assume $x \in (\bigcup_{i=1}^{n} E_i)^c$ Then

$$\begin{array}{rcl} x \not\in \cup_{i=1}^{n} E_{i} & \Longrightarrow & \text{for all } i \leq n, \, x \notin E_{i} \\ & \Longrightarrow & \text{for all } i \leq n, \, x \in E_{i}^{c} \\ & \Longrightarrow & x \in \cap_{i=1}^{n} E_{i}^{c} \end{array}$$

э

イロト イポト イヨト イヨト

Proof (2)

Proof of $\bigcap_{i=1}^{n} E_i^c \subset (\bigcup_{i=1}^{n} E_i)^c$:

Assume $x \in \bigcap_{i=1}^{n} E_i^c$ Then

for all
$$i \le n, x \in E_i^c \implies$$
 for all $i \le n, x \notin E_i$
 $\implies x \notin \bigcup_{i=1}^n E_i$
 $\implies x \in (\bigcup_{i=1}^n E_i)^c$

ж

(日)

Outline

Introduction

- 2 Sample space and events
- Axioms of probability
 - 4 Some simple propositions
 - 5 Sample spaces having equally likely outcomes
- 6 Probability as a continuous set function

Samy	

Definition of probability

Definition 3.

2

A probability is an application which assigns a number (chances to occur) to any event E. It must satisfy 3 axioms

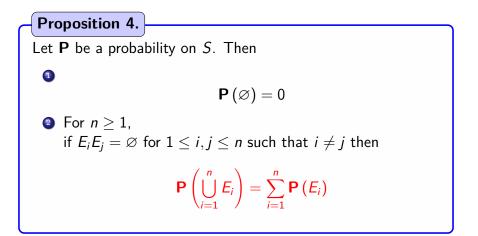
$$0 \leq \mathbf{P}(S) \leq 1$$

$$P(5) = 1$$

● If $E_i E_j = \emptyset$ for $i, j \ge 1$ such that $i \ne j$, then

$$\mathsf{P}\left(igcup_{i=1}^{\infty} E_i
ight) = \sum_{i=1}^{\infty} \mathsf{P}\left(E_i
ight)$$

Easy consequence of the axioms



Samy	

Example: dice tossing

Experiment: tossing one dice

Model: $S = \{1, \ldots, 6\}$ and

$$\mathbf{P}(\{s\}) = \frac{1}{6}, \text{ for all } s \in S$$

Probability of an event: If E = "even number obtained", then

$$\begin{aligned} \mathbf{P}(E) &= \mathbf{P}(\{2,4,6\}) = \mathbf{P}(\{2\} \cup \{4\} \cup \{6\}) \\ &= \mathbf{P}(\{2\}) + \mathbf{P}(\{4\}) + \mathbf{P}(\{6\}) = \frac{3}{6} = \frac{1}{2} \end{aligned}$$

Outline

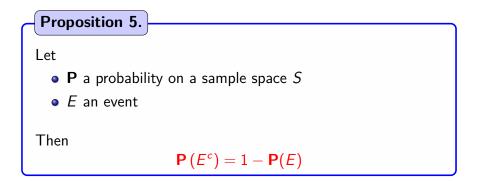
Introduction

- 2 Sample space and events
- 3 Axioms of probability
- 4 Some simple propositions
- 5 Sample spaces having equally likely outcomes
- 6 Probability as a continuous set function

4 1 1 1 4 1 1 1

4 A b

Probability of a complement



Proof

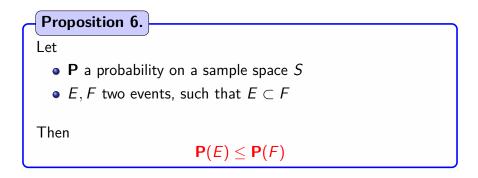
Use Axioms 2 and 3:

$1 = \mathbf{P}(S) = \mathbf{P}(E \cup E^{c}) = \mathbf{P}(E) + \mathbf{P}(E^{c})$

ж

イロト イポト イヨト イヨト

Probability of a subset



< ⊒ >

- ∢ 🗗 ▶

Proof

Decomposition of *F*: Write

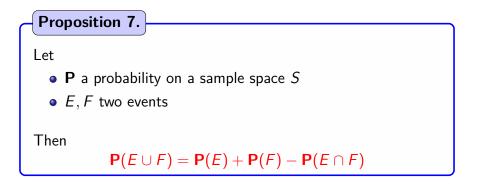
$$F = E \cup E^c F$$

Use Axioms 1 and 3: Since E and $E^{c}F$ are disjoint,

$$\mathbf{P}(F) = \mathbf{P}(E \cup E^{c}F) = \mathbf{P}(E) + \mathbf{P}(E^{c}F) \ge \mathbf{P}(E)$$

3

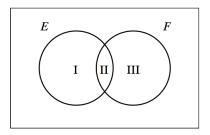
Probability of a non disjoint union



Proof

Decomposition of $E \cup F$:

$E \cup F = \mathrm{I} \cup \mathrm{II} \cup \mathrm{III}$



Samy	

Ξ.

イロト イボト イヨト イヨト

Decomposition for probabilities: We have

$$P(E \cup F) = P(I) + P(II) + P(III)$$

$$P(E) = P(I) + P(II)$$

$$P(F) = P(II) + P(III)$$

Conclusion: Since $II = E \cap F$, we get

 $\mathbf{P}(E \cup F) = \mathbf{P}(E) + \mathbf{P}(F) - \mathbf{P}(II) = \mathbf{P}(E) + \mathbf{P}(F) - \mathbf{P}(E \cap F)$

3

(日)

Application of Propositions 5 and 7

Experiment: dice tossing $\hookrightarrow S = \{1, \dots, 6\}$ and $\mathbf{P}(\{s\}) = \frac{1}{6}$ for all $s \in S$

Events:

We consider A = "even outcome" and B = "outcome multiple of 3" $\Rightarrow A = \{2, 4, 6\}$ and $B = \{3, 6\}$ $\Rightarrow \mathbf{P}(A) = 1/2$ and $\mathbf{P}(B) = 1/3$

Applying Propositions 5 and 7: $P(A^c) = 1 - P(A) = 1/2$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1/2 + 1/3 - P(\{6\}) = 2/3$

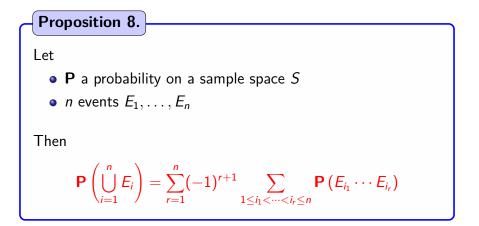
Verification:

$$A^c = \{1, 3, 5\} \Rightarrow \mathbf{P}(A^c) = 1/2$$

 $A \cup B = \{2, 3, 4, 6\} \Rightarrow \mathbf{P}(A \cup B) = 4/6 = 2/3$

э.

Inclusion-exclusion identity



Proof for n = 3

Apply Proposition 7:

$$\mathbf{P}(E_1 \cup E_2 \cup E_3) = \mathbf{P}(E_1 \cup E_2) + \mathbf{P}(E_3) - \mathbf{P}((E_1 \cup E_2)E_3) \\ = \mathbf{P}(E_1 \cup E_2) + \mathbf{P}(E_3) - \mathbf{P}(E_1E_3 \cup E_2E_3)$$

Apply Proposition 7 to $E_1 \cup E_2$ and $E_1E_3 \cup E_2E_3$:

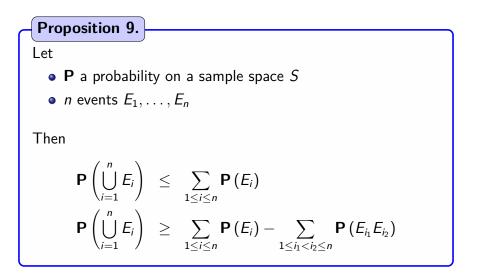
$$\mathbf{P}(E_{1} \cup E_{2} \cup E_{3}) = \sum_{1 \le i_{1} \le 3} \mathbf{P}(E_{i_{1}}) - \sum_{1 \le i_{1} < i_{2} \le 3} \mathbf{P}(E_{i_{1}}E_{i_{2}}) + \mathbf{P}(E_{1}E_{2}E_{3})$$

Case of general *n*: By induction

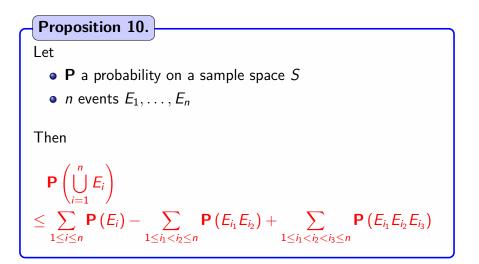
Image: Image:

3

Bounds for $\mathbf{P}(\bigcup_{i=1}^{n} E_i)$



Bounds for $\mathbf{P}(\bigcup_{i=1}^{n} E_i)$ – Ctd



3

A B A A B A

Proof

Notation: Set

$$B_i = E_1^c \cdots E_{i-1}^c$$

Identity:

$$\mathbf{P}\left(\cup_{i=1}^{n} E_{i}\right) = \mathbf{P}(E_{1}) + \sum_{i=2}^{n} \mathbf{P}\left(B_{i} E_{i}\right)$$

Second identity: Since $B_i = (\bigcup_{i < i} E_i)^c$,

$$\mathbf{P}(B_i E_i) = \mathbf{P}(E_i) - \mathbf{P}(\cup_{j < i} E_j E_i)$$

Partial conclusion:

$$\mathbf{P}\left(\cup_{i=1}^{n} E_{i}\right) = \sum_{1 \leq i \leq n} \mathbf{P}(E_{i}) - \sum_{1 \leq i \leq n} \mathbf{P}\left(\cup_{j < i} E_{j} E_{i}\right)$$

< □ > < 同 >

э

Proof (2) Recall:

$$\mathbf{P}\left(\cup_{i=1}^{n} E_{i}\right) = \sum_{1 \leq i \leq n} \mathbf{P}(E_{i}) - \sum_{1 \leq i \leq n} \mathbf{P}\left(\cup_{j < i} E_{j} E_{i}\right)$$
(1)

Direct consequence of (1):

$$\mathbf{P}\left(\cup_{i=1}^{n} E_{i}\right) \leq \sum_{1 \leq i \leq n} \mathbf{P}(E_{i})$$
(2)

< □ > < 同 >

Application of (2) to $\mathbf{P}(\bigcup_{i < i} E_i E_i)$:

$$\mathbf{P}\left(\cup_{j$$

Plugging into (1) we get

$$\mathbf{P}\left(\cup_{i=1}^{n} E_{i}\right) \geq \sum_{1 \leq i \leq n} \mathbf{P}(E_{i}) - \sum_{j < i} \mathbf{P}(E_{j}E_{i})$$

3

Outline

Introduction

- 2 Sample space and events
- 3 Axioms of probability
- 4 Some simple propositions
- 5 Sample spaces having equally likely outcomes
 - 6 Probability as a continuous set function

Model

Hypothesis: We assume

- $S = \{s_1, \ldots, s_N\}$ finite.
- $\mathbf{P}(\{s_i\}) = \frac{1}{N}$ for all $1 \le i \le N$

Alert:

This is an important but very particular case of probability space

Example: tossing 4 dice

$$\hookrightarrow S = \{1, \dots, 6\}^4$$
 and
 $\mathbf{P}(\{(1, 1, 1, 1)\}) = \mathbf{P}(\{(1, 1, 1, 2)\}) = \dots = \mathbf{P}(\{(6, 6, 6, 6)\}))$
 $= \frac{1}{6^4} = \frac{1}{1296}$

Computing probabilities

Proposition 11.

Hypothesis: We assume

•
$$S = \{s_1, ..., s_N\}$$
 finite.

•
$$\mathbf{P}(\{s_i\}) = \frac{1}{N}$$
 for all $1 \le i \le N$

In this situation, let $E \subset S$ be an event. Then

$$\mathbf{P}(E) = \frac{\operatorname{Card}(E)}{N} = \frac{|E|}{N} = \frac{\# \text{ outcomes in } E}{\# \text{ outcomes in } S}$$

Example: tossing one dice

Model: tossing one dice, that is

$$S = \{1, \ldots, 6\}, \qquad \mathbf{P}(\{s_i\}) = \frac{1}{6}$$

Computing a simple probability: Let E = "even outcome". Then

$$\mathbf{P}(E) = \frac{|E|}{N} = \frac{3}{6} = \frac{1}{2}$$

Main problem: compute |E| in more complex situations \hookrightarrow Counting

Example: drawing balls (1)

Situation: We have

- A bowl with 6 White and 5 Black balls
- We draw 3 balls

Problem: Compute

$\mathbf{P}(E)$, with E = "Draw 1 W and 2 B"

Example: drawing balls (2)

Model 1: We take

- $S = \{ \text{Ordered triples of balls, tagged from 1 to 11} \}$
- $\mathbf{P} = \text{Uniform probability on } S$

Computing |S|: We have

$$|S| = 11 \cdot 10 \cdot 9 = 990$$

Decomposition of *E*: We have

 $E = WBB \cup BWB \cup BBW$

Example: drawing balls (3)

Counting *E*:

 $|E| = |WBB| + |BWB| + |BBW| = 3 \times (6 \times 5 \times 4) = 360$

Probability of *E*: We get

$$\mathbf{P}(E) = \frac{|E|}{|S|} = \frac{360}{990} = \frac{4}{11} = 36.4\%$$

3

イロト 不得 トイヨト イヨト

Example: drawing balls (4)

Model 2: We take

- $S = \{$ Non ordered triples of balls, tagged from 1 to 11 $\}$
- $\mathbf{P} = \text{Uniform probability on } S$

Computing |S|: We have

$$|S| = \binom{11}{3} = 165$$

Decomposition of E: We have

 $E = \{$ Triples with 2 B and 1 W $\}$

Samy	

Image: A matrix

Example: drawing balls (5)

Counting *E*:

$$|E| = \begin{pmatrix} 5\\2 \end{pmatrix} \times \begin{pmatrix} 6\\1 \end{pmatrix} = 60$$

Probability of *E*: We get

$$\mathbf{P}(E) = \frac{|E|}{|S|} = \frac{60}{165} = \frac{4}{11} = 36.4\%$$

Remark:

When experiment \equiv draw *k* objects from *n* objects, two choices:

- Considered the ordered set of possible draws
- Onsider the draws as unordered

Example: poker game (1)

Situation: Deck of 52 cards and

- Hand: 5 cards
- Straight: distinct consecutive values, not of the same suit

Problem: Compute

 $\mathbf{P}(E)$, with E = "Straight is drawn"

Example: poker game (2)

Model: We take

- *S* = {Non ordered hands of cards}
- $\mathbf{P} = \text{Uniform probability on } S$

Computing |S|: We have

$$|S| = {52 \choose 5} = 2,598,960$$

Decomposition of E: We have

 $E = \{ Straight hands \}$

э

Image: A matrix

Example: poker game (3)

Counting *E*: We have

- # possible 1,2,3,4,5: 4⁵
- # possible 1,2,3,4,5 not of the same suit: $4^5 4$
- # possible values of straights: 10

Thus

$$|E| = 10(4^5 - 4) = 10,200$$

Probability of *E*: We get

$$\mathbf{P}(E) = \frac{|E|}{|S|} = \frac{10(4^5 - 4)}{\binom{52}{5}} = 0.39\%$$

Example: roommate pairing (1)

Situation: We have

- A football team with 20 Offensive and 20 Defensive players
- Players are paired by 2 for roommates
- Pairing made at random

Problem: Find probability of

- No offensive-defensive roommate pairs
- 2i offensive-defensive roommate pairs

Example: roommate pairing (2)

Model: We take

- *S* = {Non ordered pairings of 40 players}
- $\mathbf{P} = \text{Uniform probability on } S$

Computing |S|: We have

$$|S| = \frac{1}{20!} \binom{40}{2, 2, \dots, 2} = \frac{40!}{2^{20} 20!} \simeq 3.20 \ 10^{23}$$

First event E_0 : We set

 $E_0 = \{$ No Offensive-Defensive pairing $\}$

Image: A matrix

Example: roommate pairing (3)

Counting E_0 : We have

$$|E_0| = (\# O-O \text{ pairings}) \times (\# D-D \text{ pairings})$$

= $\left(\frac{20!}{2^{10} 10!}\right)^2$

Computing $\mathbf{P}(E_0)$:

$$\mathbf{P}(E_0) = \frac{|E_0|}{|S|} = \frac{(20!)^3}{(10!)^2 40!} \simeq 1.34 \ 10^{-6}$$

3

< □ > < 同 >

Example: roommate pairing (4) Events E_{2i} : We set

 $E_{2i} = \{2i \text{ Offensive-Defensive pairings}\}$

Counting E_{2i} : We have

• # selections of 2*i* O & 2*i* D:
$$\binom{20}{2i}^2$$

• # (20 - i) 0 & D intra-pairings:
$$(\frac{(20-2i)!}{2^{10-i}(10-i)!})^2$$

Thus we get

$$|E_{2i}| = {\binom{20}{2i}}^2 (2i)! \left(\frac{(20-2i)!}{2^{10-i} (10-i)!}\right)^2$$

3

イロト 不得 トイヨト イヨト

Example: roommate pairing (5)

Computing $\mathbf{P}(E_{2i})$:

$$\mathbf{P}(E_{2i}) = \frac{|E_{2i}|}{|S|} = \frac{\binom{20}{2i}^2 (2i)! \left(\frac{(20-2i)!}{2^{10-i} (10-i)!}\right)^2}{\frac{40!}{2^{20} 20!}}$$

Some values of $\mathbf{P}(E_{2i})$:

$$\mathbf{P}(E_0) \simeq 1.34 \ 10^{-6}$$

 $\mathbf{P}(E_{10}) \simeq 0.35$
 $\mathbf{P}(E_{20}) \simeq 7.6 \ 10^{-6}$

э

(日)

Example: husband-wife placement (1)

Situation: We have

- A round table
- 10 married couples
- Placement at random

Problem: Find probability that

- n couples sit next to each other
- On the state of the state of

Example: husband-wife placement (2)

Model: We take

- $S = {\text{Permutations of 20 persons}}/{\text{Cyclic transformations}}$
- $\mathbf{P} = \text{Uniform probability on } S$

Computing |S|: We have

$$|S| = \frac{20!}{20} = 19!$$

Events E_i : We set

 $E_i = \{i \text{th husband sits next to his wife}\}$

Samy	

Example: husband-wife placement (3)

Basic idea: Let $i_1 < \cdots < i_n$. Then on $E_{i_1} \cdots E_{i_n}$

- The *n* couples i_1, \ldots, i_n are considered as one entity
- We are left with the placement of 20 n entities

Counting $E_{i_1} \cdots E_{i_n}$: We have

- # placements of (20 n) entities: (20 n 1)!
- # wife-husband placements next to each other: 2^n

Thus

$$|E_{i_1}\cdots E_{i_n}|=2^n(19-n)!$$

Example: husband-wife placement (4)

Second event, *n* couples sit together: For $1 \le n \le 10$, define

$$A_n = \{n \text{ couples sitting next to each other}\} \\ = \bigcup_{1 \le i_1 < \dots < i_n \le 10} (E_{i_1} \cdots E_{i_n})$$

Then

$$\mathbf{P}(A_n) = \sum_{1 \le i_1 < \dots < i_n \le 10} \mathbf{P}(E_{i_1} \cdots E_{i_n})$$
$$\mathbf{P}(A_n) = {\binom{10}{n}} \frac{2^n (19 - n)!}{19!}$$

Image: A matrix

Example: husband-wife placement (5)

Third event, no couple sits together: Define

 $A_0 = \{$ no couple sitting next to each other $\}$

Then

$$A_0^c = \{ \text{at least one couple sitting next to each other} \} \\ = \bigcup_{i=1}^{10} E_i$$

Image: Image:

Example: husband-wife placement (6)

Computing $P(A_0^c)$: Thanks to Proposition 8

$$\begin{aligned} \mathbf{P}(A_0^c) &= \mathbf{P}\left(\bigcup_{i=1}^{10} E_i\right) \\ &= \sum_{n=1}^{10} (-1)^{n+1} \sum_{1 \le i_1 < \cdots < i_n \le 10} \mathbf{P}\left(E_{i_1} \cdots E_{i_n}\right) \\ &= \sum_{n=1}^{10} (-1)^{n+1} \binom{10}{n} \frac{2^n (19-n)!}{19!} \end{aligned}$$

Computing $\mathbf{P}(A_0)$: We get

$$\mathbf{P}(A_0) = 1 + \sum_{n=1}^{10} (-1)^n {\binom{10}{n}} \frac{2^n (19-n)!}{19!}$$

3

(日)

Outline

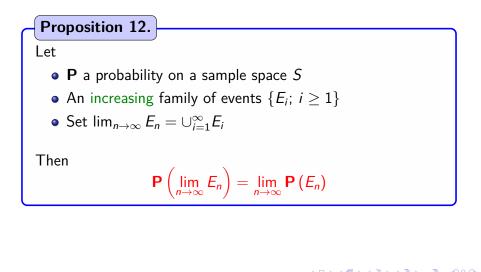
Introduction

- 2 Sample space and events
- 3 Axioms of probability
- 4 Some simple propositions
- 5 Sample spaces having equally likely outcomes
- 6 Probability as a continuous set function

Samy	

4 1 1 1 4 1 1 1

Probabilities for increasing sequences

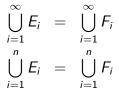


Proof (1)

Decomposition with exclusive sets: Define

 $F_n = E_n E_{n-1}^c$

Then the F_i are mutually exclusive and we have



Proof (2)

Computation for $P(\lim_{n\to\infty} E_n)$:

Р(

$$\begin{aligned} \left(\lim_{n \to \infty} E_n \right) &= \mathbf{P} \left(\bigcup_{i=1}^{\infty} E_i \right) \\ &= \mathbf{P} \left(\bigcup_{i=1}^{\infty} F_i \right) \\ &= \sum_{i=1}^{\infty} \mathbf{P} \left(F_i \right) \\ &= \lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{P} \left(F_i \right) \\ &= \lim_{n \to \infty} \mathbf{P} \left(\bigcup_{i=1}^{n} F_i \right) \\ &= \lim_{n \to \infty} \mathbf{P} \left(\bigcup_{i=1}^{n} E_i \right) \\ &= \lim_{n \to \infty} \mathbf{P} \left(E_n \right) \end{aligned}$$

Samy T.

3

イロト イボト イヨト イヨト

Probabilities for decreasing sequences

