Combinatorial analysis

Samy Tindel

Purdue University

Introduction to Probability Theory - MA 519

Mostly taken from A first course in probability by S . Ross

PURDUE

Outline

(1) Introduction
(2) The basic principle of counting
(3) Permutations
(4) Combinations
(5) Multinomial coefficients

Outline

(1) Introduction

2 The basic principle of counting

(3) Permutations

4 Combinations
(5) Multinomial coefficients

A simple example of counting

A communication system:

- Setup: n antennas lined up
- Functional system:
\hookrightarrow when no 2 consecutive defective antennas
- We know that m antennas are defective

Problem: compute
P (functional system)

A simple example of counting (2)

Particular instance of the previous situation:

- Take $n=4$ and $m=2$
- Possible configurations:

$$
\begin{array}{lll}
0011 & 0101 & 0110 \\
1001 & 1010 & 1100
\end{array}
$$

- We get 3 working configurations among 6 , and thus

$$
\mathbf{P}(\text { functional system })=\frac{1}{2}
$$

Conclusion: need an effective way to count, that is

> Combinatorial analysis

Outline

(1) Introduction

(2) The basic principle of counting

(3) Permutations

4 Combinations

(5) Multinomial coefficients

Basic principle of counting

Theorem 1.

Suppose 2 experiments to be performed and

- For Experiment 1, we have m possible outcomes
- For each outcome of Experiment 1
\hookrightarrow We have n outcomes for Experiment 2
Then
Total number of possible outcomes is $m \times n$

Proof

Sketch of the proof: Set
$(i, j) \equiv$ Outcome i for Experiment 1 \& Outcome j for Experiment 2
Then enumerate possibilities

Application of basic principle of counting

Example: Small community with

- 10 women
- Each woman has 3 chidren

We have to pick one pair as mother \& child of the year
Question:
How many possibilities?

Generalized principle of counting

Theorem 2.

Suppose r experiments to be performed and

- For Experiment 1, we have n_{1} possible outcomes
- For each outcome of Experiment i
\hookrightarrow We have n_{i+1} outcomes for Experiment $i+1$
Then total number of possible outcomes is

$$
\prod_{i=1}^{r} n_{i}=n_{1} \times n_{2} \times \cdots \times n_{r}
$$

Application of basic principle of counting

Example 1: Find \# possible 7 place license plates if

- First 3 places are letters
- Final 4 places are numbers

Answer: 175,760,000
Example 2: Find \# possible 7 place license plates if

- First 3 places are letters
- Final 4 places are numbers
- No repetition among letters or numbers

Answer: 78,624,000

Outline

(1) Introduction

2 The basic principle of counting

(3) Permutations

(4) Combinations

(5) Multinomial coefficients

Permutations

Definition:
A permutation of n objects is an ordered sequence of those n objects.
Property:
Two permutations only differ according to the order of the objects
Counting:
Let P_{n} be the number of permutations for n objects. Then

$$
P_{n}=n!=n \times(n-1) \cdots \times 2=\prod_{j=1}^{n} j
$$

Example of permutation

Example: 3 balls, Red, Black, Green
Permutations: RBG, RGB, BRG, BGR, GBN, GBR $\hookrightarrow 6$ possibilities

Formula: $P_{3}=3!=6$

Proof for the counting number P_{n}

Sketch of the proof:
Direct application of Theorem 2

Example of permutation (1)

Problem:
Count possible arrangements of letters in PEPPER

Example of permutation (2)

Solution 1:
Consider all letters as distinct objects

$$
P_{1} E_{1} P_{2} P_{3} E_{2} R
$$

Then

$$
P_{6}=6!=720 \text { possibilities }
$$

Example of permutation (3)

Solution 2:
Do not distinguish P's and E's.
Then

$$
\frac{P_{6}}{P_{3} P_{2}}=\frac{6!}{3!2!}=60 \text { possibilities }
$$

Outline

(1) Introduction

2 The basic principle of counting

(3) Permutations

4 Combinations

(5) Multinomial coefficients

Combinations

Definition:
A combination of p objects among n objects is non ordered subset of p objects.

Property:
Two combinations only differ according to nature of their objects
Counting:
The number of combinations of p objects among n objects is

$$
\binom{n}{p}=\frac{n!}{p!(n-p)!}
$$

Proof of counting

Combination when order is relevant:
Number of possibilities is

$$
n \times(n-1) \cdots \times(n-p+1)=\frac{n!}{(n-p)!}
$$

Combination when order is irrelevant: We divide by \# permutations of p objects Number of possibilities is

$$
\frac{n \times(n-1) \cdots \times(n-p+1)}{p!}=\frac{n!}{p!(n-p)!}=\binom{n}{p}
$$

Example of combination (1)

Situation:

- We have a group of 5 women and 7 men
- We wish to form a committee with 2 women and 3 men

Problem:

- Find the number of possibilities

Example of combination (2)

Number of possibilities:

$$
\binom{5}{2}\binom{7}{3}=350
$$

Example of combination (3)

Situation 2:

- We have a group of 5 women and 7 men
- We wish to form a committee with 2 women and 3 men
- 2 men refuse to serve together

Problem:

- Find the number of possibilities

Example of combination (4)

New number of possibilities:

$$
\binom{5}{2}\left\{\binom{7}{3}-\binom{2}{2}\binom{5}{1}\right\}=300
$$

Binomial theorem

Theorem 3.
Let

- $x_{1}, x_{2} \in \mathbb{R}$
- $n \geq 1$

Then

$$
\left(x_{1}+x_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} x_{2}^{n-k}
$$

Combinatorial proof

First expansion:

$$
\left(x_{1}+x_{2}\right)^{n}=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

Definition of a family of sets:

$$
A_{k}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n} ; \text { there are } k j \text { 's such that } i_{j}=1\right\} .
$$

New expansion: we have (convention: $\left|A_{k}\right| \equiv \operatorname{Card}\left(A_{k}\right)$)

$$
\begin{aligned}
\left(x_{1}+x_{2}\right)^{n} & =\sum_{k=0}^{n}\left|A_{k}\right| x_{1}^{k} x_{2}^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} x_{2}^{n-k}
\end{aligned}
$$

Application of the binomial theorem

Proposition 4.

Let

- A a set with $|A|=n$
- $\mathcal{P}_{n} \equiv$ collection of all subsets of A

Then

$$
\left|\mathcal{P}_{n}\right|=2^{n}
$$

Proof

Decomposition of $\left|\mathcal{P}_{n}\right|$: Write

$$
\begin{aligned}
\left|\mathcal{P}_{n}\right| & =\sum_{k=0}^{n} \mid \text { Subsets of } A \text { with } k \text { elements } \mid \\
& =\sum_{k=0}^{n}\binom{n}{k}
\end{aligned}
$$

Application of the binomial theorem:

$$
\begin{aligned}
\left|\mathcal{P}_{n}\right| & =(1+1)^{n} \\
& =2^{n}
\end{aligned}
$$

Outline

(1) Introduction

(2) The basic principle of counting

(3) Permutations

(4) Combinations
(5) Multinomial coefficients

Multinomial coefficients

Divisions of n objects into r groups with size n_{1}, \ldots, n_{r} : We have

- n objects and r groups
- We want n_{j} objects in group j and $\sum_{j=1}^{r} n_{j}=n$

Notation: Set

$$
\binom{n}{n_{1}, \ldots, n_{r}}=\frac{n!}{\prod_{j=1}^{r}\left(n_{j}!\right)}
$$

Counting: We have
\# Divisions of n objects into r groups with size n_{1}, \ldots, n_{r}

$$
\binom{\overline{\bar{n}}}{n_{1}, \ldots, n_{r}}
$$

Proof of counting

Number of choices for the ith group:

$$
\binom{n-\sum_{j=1}^{i-1} n_{j}}{n_{i}}
$$

Number of divisions: We have
\# Divisions of n objects into r groups with size n_{1}, \ldots, n_{r}

$$
\begin{aligned}
& =\prod_{i=1}^{r}\binom{n-\sum_{j=1}^{i-1} n_{j}}{n_{i}} \\
& =\binom{n}{n_{1}, \ldots, n_{r}}
\end{aligned}
$$

Example of multinomial coefficient (1)

Situation: Police department with 10 officers and

- 5 have to patrol the streets
- 2 are permanently working at the station
- 3 are on reserve at the station

Problem:
How many divisions do we get?

Example of multinomial coefficient (2)

Answer:

$$
\frac{10!}{5!2!3!}=2520
$$

Tournament example

Situation: Tournament with $n=2^{m}$ players
\hookrightarrow How many outcomes?
Particular case:
Take $m=3$, thus $n=8$
Number of rounds: 3

Tournament example (2)

Counting number of outcomes for the first round:

Counting number of outcomes for second and third round:

$$
\frac{4!}{2!} \text { and } \frac{2!}{1!}
$$

Conclusion:

$$
\frac{8!}{4!} \frac{4!}{2!} \frac{2!}{1!}=8!=40,320 \text { possible outcomes }
$$

Multinomial theorem

Theorem 5.

Let

- $x_{1}, x_{2}, \ldots, x_{r} \in \mathbb{R}$
- $n \geq 1$

Then

$$
\left(x_{1}+x_{2}+\ldots+x_{r}\right)^{n}=\sum_{\left(n_{1}, \ldots, n_{r}\right) \in A_{n, r}}\binom{n}{n_{1}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}}
$$

where

$$
A_{n, r}=\left\{\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r} ; n_{1}+n_{2}+\cdots+n_{r}=n\right\}
$$

