Conditional probability and independence

Samy Tindel

Purdue University

Probability Theory 1 - MA 519

Mostly taken from A first course in probability by S. Ross

Outline

(1) Introduction
(2) Conditional probabilities
(3) Bayes's formula
(4) Independent events
(5) Conditional probability as a probability

Outline

(1) Introduction

(2) Conditional probabilities

(3) Bayes's formula

4 Independent events
(5) Conditional probability as a probability

Global objective

Aim: Introduce conditional probability, whose interest is twofold
(1) Quantify the effect of a prior information on probabilities
(2) If no prior information is available, then independence \hookrightarrow simplification in probability computations

Outline

(1) Introduction

(2) Conditional probabilities

(3) Bayes's formula
(4) Independent events

(5) Conditional probability as a probability

Example of conditioning

Dice tossing: We consider the following situation

- We throw 2 dice
- We look for \mathbf{P} (sum of 2 faces is 9)

Without prior information:

$$
\mathbf{P}(\text { sum of } 2 \text { faces is } 9)=\frac{1}{9}
$$

With additional information: If first face is $=4$. Then

- Only 6 possible results: $(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
- Among them, only $(4,5)$ give sum $=9$
- Probability of having sum $=9$ becomes $\frac{1}{6}$

General definition

Definition 1.

Let

- P a probability on a sample space S
- E, F two events, such that $\mathbf{P}(F)>0$

Then

$$
\mathbf{P}(E \mid F)=\frac{\mathbf{P}(E F)}{\mathbf{P}(F)}
$$

Example: examination (1)

Situation:

Student taking a one hour exam
Hypothesis: For $x \in[0,1]$ we have

$$
\begin{equation*}
\mathbf{P}\left(L_{x}\right)=\frac{x}{2} \tag{1}
\end{equation*}
$$

where the event L_{x} is defined by

$$
L_{x}=\{\text { student finishes the exam in less than } x \text { hour }\}
$$

Question: Given that the student is still working after . 75 h \hookrightarrow Find probability that the full hour is used

Example: examination (2)

Model: We wish to find

$$
\mathbf{P}\left(L_{1}^{c} \mid L_{.75}^{c}\right)
$$

Computation: We have

$$
\begin{aligned}
\mathbf{P}\left(L_{1}^{c} \mid L_{.75}^{c}\right) & =\frac{\mathbf{P}\left(L_{1}^{c} L_{.75}^{c}\right)}{\mathbf{P}\left(L_{.75}^{c}\right)} \\
& =\frac{\mathbf{P}\left(L_{1}^{c}\right)}{\mathbf{P}\left(L_{.75}^{c}\right)} \\
& =\frac{1-\mathbf{P}\left(L_{1}\right)}{1-\mathbf{P}\left(L_{.75}\right)}
\end{aligned}
$$

Conclusion: Applying (1) we get

$$
\mathbf{P}\left(L_{1}^{c} \mid L_{.75}^{c}\right)=.8
$$

Simplification for uniform probabilities

General situation: We assume

- $S=\left\{s_{1}, \ldots, s_{N}\right\}$ finite.
- $\mathbf{P}\left(\left\{s_{i}\right\}\right)=\frac{1}{N}$ for all $1 \leq i \leq N$

Alert:
This is an important but very particular case of probability space
Conditional probabilities in this case:
Reduced sample space, i.e
Conditional on F, all outcomes in F are equally likely

Example: family distribution (1)

Situation:
The Popescu family has 10 kids
Questions:
(1) If we know that 9 kids are girls
\hookrightarrow find the probability that all 10 kids are girls
(2) If we know that the first 9 kids are girls
\hookrightarrow find the probability that all 10 kids are girls

Example: family distribution (2)

Model:

- $S=\{G, B\}^{10}$
- Uniform probability: for all $s \in S$,

$$
\mathbf{P}(\{s\})=\frac{1}{2^{10}}
$$

Example: family distribution (3)

First conditioning: We take

$$
\begin{aligned}
& F_{1}= \\
& \{(G, \ldots, G) ;(G, \ldots, G, B) ;(G, \ldots, G, B, G) ; \cdots ;(B, G, \ldots, G)\}
\end{aligned}
$$

Reduced sample space:
Each outcome in F_{1} has probability $\frac{1}{11}$
Conditional probability:

$$
\mathbf{P}\left(\{(G, \ldots, G)\} \mid F_{1}\right)=\frac{1}{11}
$$

Example: family distribution (4)

Second conditioning: We take

$$
F_{2}=\{(G, \ldots, G) ;(G, \ldots, G, B)\}
$$

Reduced sample space:
Each outcome in F_{2} has probability $\frac{1}{2}$
Conditional probability:

$$
\mathbf{P}\left(\{(G, \ldots, G)\} \mid F_{2}\right)=\frac{1}{2}
$$

Example: bridge game (1)

Bridge game:

- 4 players, E, W, N, S
- 52 cards dealt out equally to players

Conditioning: We condition on the set

$$
F=\{N+S \text { have a total of } 8 \text { spades }\}
$$

Question: Conditioned on F,
Probability that E has 3 of the remaining 5 spades

Example: bridge game (2)

Model: We take

$$
S=\{\text { Divisions of } 52 \text { cards in } 4 \text { groups }\}
$$

and we have

- Uniform probability on S
- $|S|=\binom{52}{13,13,13,13} \simeq 5.3610^{28}$

Reduced sample space: Conditioned on F,
$\tilde{S}=\{$ Combinations of 13 cards among 26 cards with 5 spades $\}$

Example: bridge game (3)

Conditional probability:
$\mathbf{P}(E$ has 3 of the remaining 5 spades $\mid F)=\frac{\binom{5}{3}\binom{21}{10}}{\binom{26}{13}} \simeq .339$

Intersection and conditioning

Situation:

- Urn with 8 Red and 4 White balls
- Draw 2 balls without replacement

Question: Let

- $R_{1}=1$ st ball drawn is red
- $R_{2}=2$ nd ball drawn is red

Then find $\mathbf{P}\left(R_{1} R_{2}\right)$

Intersection and conditioning (2)

Recall:

- Urn with 8 Red and 4 White balls
- Draw 2 balls without replacement

Computation: We have

$$
\mathbf{P}\left(R_{1} R_{2}\right)=\mathbf{P}\left(R_{1}\right) \mathbf{P}\left(R_{2} \mid R_{1}\right)
$$

Thus

$$
\mathbf{P}\left(R_{1} R_{2}\right)=\frac{8}{12} \frac{7}{11}=\frac{14}{33} \simeq .42
$$

The multiplication rule

Proposition 2.

Let

- P a probability on a sample space S
- $E_{1}, \ldots, E_{n} n$ events

Then

$$
\begin{equation*}
\mathbf{P}\left(E_{1} \cdots E_{n}\right)=\mathbf{P}\left(E_{1}\right) \prod_{k=1}^{n-1} \mathbf{P}\left(E_{k+1} \mid E_{1} \cdots E_{k}\right) \tag{2}
\end{equation*}
$$

Proof

Expression for the rhs of (2):

$$
\mathbf{P}\left(E_{1}\right) \frac{\mathbf{P}\left(E_{1} E_{2}\right)}{\mathbf{P}\left(E_{1}\right)} \frac{\mathbf{P}\left(E_{1} E_{2} E_{3}\right)}{\mathbf{P}\left(E_{1} E_{2}\right)} \cdots \frac{\mathbf{P}\left(E_{1} \cdots E_{n-1} E_{n}\right)}{\mathbf{P}\left(E_{1} \cdots E_{n-1}\right)}
$$

Conclusion:
By telescopic simplification

Example: deck of cards (1)

Situation:

- Ordinary deck of 52 cards
- Division into 4 piles of 13 cards

Question: If

$$
E=\{\text { each pile has one ace }\}
$$

compute $\mathbf{P}(E)$

Example: deck of cards (2)

Model: Set
$E_{1}=$ \{the ace of S is in any one of the piles $\}$
$E_{2}=$ \{the ace of S and the ace of H are in different piles $\}$
$E_{3}=$ the aces of $\mathrm{S}, \mathrm{H} \& \mathrm{D}$ are all in different piles $\}$
$E_{4}=\{$ all 4 aces are in different piles $\}$

We wish to compute

$$
\mathbf{P}\left(E_{1} E_{2} E_{3} E_{4}\right)
$$

Example: deck of cards (3)

Applying the multiplication rule: write

$$
\mathbf{P}\left(E_{1} E_{2} E_{3} E_{4}\right)=\mathbf{P}\left(E_{1}\right) \mathbf{P}\left(E_{2} \mid E_{1}\right) \mathbf{P}\left(E_{3} \mid E_{1} E_{2}\right) \mathbf{P}\left(E_{4} \mid E_{1} E_{2} E_{3}\right)
$$

Computation of $\mathbf{P}\left(E_{1}\right)$: Trivially

$$
\mathbf{P}\left(E_{1}\right)=1
$$

Computation of $\mathbf{P}\left(E_{2} \mid E_{1}\right)$: Given E_{1},

- Reduced space is
\{51 labels given to all cards except for ace S \}
- $\mathbf{P}\left(E_{2} \mid E_{1}\right)=\frac{51-12}{51}=\frac{39}{51}$

Example: deck of cards (4)

Other conditioned probabilities:

$$
\begin{aligned}
\mathbf{P}\left(E_{3} \mid E_{1} E_{2}\right) & =\frac{50-24}{50}=\frac{26}{50}, \\
\mathbf{P}\left(E_{4} \mid E_{1} E_{2} E_{3}\right) & =\frac{49-36}{49}=\frac{13}{49}
\end{aligned}
$$

Conclusion: We get

$$
\begin{aligned}
\mathbf{P}(E) & =\mathbf{P}\left(E_{1}\right) \mathbf{P}\left(E_{2} \mid E_{1}\right) \mathbf{P}\left(E_{3} \mid E_{1} E_{2}\right) \mathbf{P}\left(E_{4} \mid E_{1} E_{2} E_{3}\right) \\
& =\frac{39 \cdot 26 \cdot 13}{51 \cdot 50 \cdot 49} \simeq .105
\end{aligned}
$$

Outline

(1) Introduction

(2) Conditional probabilities

(3) Bayes's formula
(4) Independent events
(5) Conditional probability as a probability

Thomas Bayes

Some facts about Bayes:

- England, 1701-1760
- Presbyterian minister
- Philosopher and statistician
- Wrote 2 books in entire life
- Bayes formula unpublished

Decomposition of $\mathbf{P}(E)$

Proposition 3.

Let

- P a probability on a sample space S
- E, F two events with $0<\mathbf{P}(F)<1$

Then

$$
\mathbf{P}(E)=\mathbf{P}(E \mid F) \mathbf{P}(F)+\mathbf{P}\left(E \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)
$$

Bayes's formula

Proposition 4.

Let

- P a probability on a sample space S
- E, F two events with $0<\mathbf{P}(F)<1$

Then

$$
\mathbf{P}(F \mid E)=\frac{\mathbf{P}(E \mid F) \mathbf{P}(F)}{\mathbf{P}(E \mid F) \mathbf{P}(F)+\mathbf{P}\left(E \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)}
$$

Example: insurance company (1)

Situation:

- Two classes of people: those who are accident prone and those who are not.
- Accident prone: probability .4 of accident in a one-year period
- Not accident prone: probab .2 of accident in a one-year period
- 30% of population is accident prone

Question:
Probability that a new policyholder will have an accident within a year of purchasing a policy?

Example: insurance company (2)

Model: Define

- $A_{1}=$ Policy holder has an accident in 1 year
- $A=$ Accident prone

Then

- $S=\left\{\left(A_{1}, A\right) ;\left(A_{1}^{c}, A\right) ;\left(A_{1}, A^{c}\right) ;\left(A_{1}^{c}, A^{c}\right)\right\}$
- Probability: given indirectly by conditioning

Aim:
Compute $\mathbf{P}\left(A_{1}\right)$

Example: insurance company (3)

Given data:

$$
\mathbf{P}\left(A_{1} \mid A\right)=.4, \quad \mathbf{P}\left(A_{1} \mid A^{c}\right)=.2, \quad \mathbf{P}(A)=.3
$$

Application of Proposition 3:

$$
\mathbf{P}\left(A_{1}\right)=\mathbf{P}\left(A_{1} \mid A\right) \mathbf{P}(A)+\mathbf{P}\left(A_{1} \mid A^{c}\right) \mathbf{P}\left(A^{c}\right)
$$

We get

$$
\mathbf{P}\left(A_{1}\right)=0.4 \times 0.3+0.2 \times 0.7=26 \%
$$

Example: swine flu (1)

Situation:
We assume that 20% of a pork population has swine flu.
A test made by a lab gives the following results:

- Among 50 tested porks with flu, 2 are not detected
- Among 30 tested porks without flu, 1 is declared sick

Question:
Probability that a pork is healthy while his test is positive?

Example: swine flu (2)

Model: We set $F=$ "Flu", $T=$ "Positive test"
We have

$$
\mathbf{P}(F)=\frac{1}{5}, \quad \mathbf{P}\left(T^{c} \mid F\right)=\frac{1}{25}, \quad \mathbf{P}\left(T \mid F^{c}\right)=\frac{1}{30}
$$

Aim:
Compute $\mathbf{P}\left(F^{c} \mid T\right)$

Example: swine flu (3)

Application of Proposition 4:

$$
\begin{aligned}
\mathbf{P}\left(F^{c} \mid T\right) & =\frac{\mathbf{P}\left(T \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)}{\mathbf{P}\left(T \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)+\mathbf{P}(T \mid F) \mathbf{P}(F)} \\
& =\frac{\mathbf{P}\left(T \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)}{\mathbf{P}\left(T \mid F^{c}\right) \mathbf{P}\left(F^{c}\right)+\left[1-\mathbf{P}\left(T^{c} \mid F\right)\right] \mathbf{P}(F)} \\
& =0.12
\end{aligned}
$$

Conclusion:
12% chance of killing swines without proper justification

Henri Poincaré

Some facts about Poincaré:

- Born in Nancy, 1854-1912
- Cousin of Raymond Poincaré \hookrightarrow French president during WW1
- Mathematician and engineer
- Numerous contributions in
- Celestial mechanics
- Relativity
- Gravitational waves
- Topology
- Differential equation

Poincoug

An example by Poincaré (1)

Situation:

- We are on a train
- Someone gets on the train and proposes to play a card game
- The unknown person wins

Question:
Probability that this person has cheated?

An example by Poincaré (2)

Model: We set

- $p=$ probability to win without cheating
- $q=$ probability that the unknown person has cheated
- $W=$ "The unknown person wins"
- $C=$ "The unknown person has cheated"

Hypothesis on probabilities: We assume

$$
\mathbf{P}\left(W \mid C^{c}\right)=p, \quad \mathbf{P}(W \mid C)=1, \quad \mathbf{P}(C)=q
$$

Aim:
Compute $\mathbf{P}(C \mid W)$

Applications (4)

Application of Proposition 4:

$$
\begin{aligned}
\mathbf{P}(C \mid W) & =\frac{\mathbf{P}(W \mid C) \mathbf{P}(C)}{\mathbf{P}(W \mid C) \mathbf{P}(C)+\mathbf{P}\left(W \mid C^{c}\right) \mathbf{P}\left(C^{c}\right)} \\
& =\frac{q}{q+p(1-q)}
\end{aligned}
$$

Remarks:
(1) We have $\mathbf{P}(C \mid W) \geq q=\mathbf{P}(C)$.
\hookrightarrow the unknown's win increases his probability to cheat
(2) We have

$$
\lim _{p \rightarrow 0} \mathbf{P}(C \mid W)=1
$$

Odds

Definition 5.

Let

- P a probability on a sample space S
- A an event

We define the odds of A by

$$
\frac{\mathbf{P}(A)}{\mathbf{P}\left(A^{c}\right)}=\frac{\mathbf{P}(A)}{1-\mathbf{P}(A)}
$$

Odds and conditioning

Proposition 6.

Situation: We have

- An hypothesis H, true with probability $\mathbf{P}(H)$
- A new evidence E

Formula: The odds of H after evidence E are given by

$$
\frac{\mathbf{P}(H \mid E)}{\mathbf{P}\left(H^{c} \mid E\right)}=\frac{\mathbf{P}(H)}{\mathbf{P}\left(H^{c}\right)} \frac{\mathbf{P}(E \mid H)}{\mathbf{P}\left(E \mid H^{c}\right)}
$$

Proof

Inversion of conditioning: We have

$$
\begin{aligned}
\mathbf{P}(H \mid E) & =\frac{\mathbf{P}(E \mid H) \mathbf{P}(H)}{\mathbf{P}(E)} \\
\mathbf{P}\left(H^{c} \mid E\right) & =\frac{\mathbf{P}\left(E \mid H^{c}\right) \mathbf{P}\left(H^{c}\right)}{\mathbf{P}(E)}
\end{aligned}
$$

Conclusion:

$$
\frac{\mathbf{P}(H \mid E)}{\mathbf{P}\left(H^{c} \mid E\right)}=\frac{\mathbf{P}(H)}{\mathbf{P}\left(H^{c}\right)} \frac{\mathbf{P}(E \mid H)}{\mathbf{P}\left(E \mid H^{c}\right)}
$$

Example: coin tossing (1)

Situation:

- Urn contains two type A coins and one type B coin.
- When a type A coin is flipped, it comes up heads with probability $\frac{1}{4}$
- When a type B coin is flipped, it comes up heads with probability $\frac{3}{4}$
- A coin is randomly chosen from the urn and flipped

Question:
Given that the flip landed on heads
\hookrightarrow What is the probability that it was a type A coin?

Example: coin tossing (2)

Model: We set

- $A=$ type A coin flipped
- $B=$ type B coin flipped
- $H=$ Head obtained

Data:

$$
\mathbf{P}(A)=\frac{2}{3}, \quad \mathbf{P}(H \mid A)=\frac{1}{4}, \quad \mathbf{P}(H \mid B)=\frac{3}{4}
$$

Aim:
Compute $\mathbf{P}(A \mid H)$

Example: coin tossing (3)

Application of Proposition 6:

$$
\frac{\mathbf{P}(A \mid H)}{\mathbf{P}(B \mid H)}=\frac{\mathbf{P}(A)}{\mathbf{P}(B)} \frac{\mathbf{P}(H \mid A)}{\mathbf{P}(H \mid B)}
$$

Numerical result: We get

$$
\frac{\mathbf{P}(A \mid H)}{\mathbf{P}(B \mid H)}=\frac{2 / 3}{1 / 3} \frac{1 / 4}{3 / 4}=\frac{2}{3}
$$

Therefore

$$
\mathbf{P}(A \mid H)=\frac{2}{5}
$$

Generalization of Proposition 3

Proposition 7.

Let

- P a probability on a sample space S
- F_{1}, \ldots, F_{n} partition of S, i.e
- F_{i} mutually exclusive
- $\cup_{i=1}^{n} F_{i}=S$
- E another event

Then we have

$$
\mathbf{P}(E)=\sum_{i=1}^{n} \mathbf{P}\left(E \mid F_{i}\right) \mathbf{P}\left(F_{i}\right)
$$

Generalization of Proposition 4

Proposition 8.

Let

- \mathbf{P} a probability on a sample space S
- F_{1}, \ldots, F_{n} partition of S, i.e
- F_{i} mutually exclusive
- $\cup_{i=1}^{n} F_{i}=S$
- E another event

Then we have

$$
\mathbf{P}\left(F_{j} \mid E\right)=\frac{\mathbf{P}\left(E \mid F_{j}\right) \mathbf{P}\left(F_{j}\right)}{\sum_{i=1}^{n} \mathbf{P}\left(E \mid F_{i}\right) \mathbf{P}\left(F_{i}\right)}
$$

Example: card game (1)

Situation:

- 3 cards identical in form (say Jack)
- Coloring of the cards on both faces:
- 1 card RR
- 1 card BB
- 1 card RB
- 1 card is randomly selected, with upper side R

Question:
What is the probability that the other side is B ?

Example: card game (2)

Model: We define the events

- RR: chosen car is all red
- BB : chosen card is all black
- RB: chosen card is red and black
- R: upturned side of chosen card is red

Aim:
Compute $\mathbf{P}(R B \mid R)$

Example: card game (3)

Application of Proposition 8:
$\mathbf{P}(R B \mid R)$

$$
=\frac{\mathbf{P}(R \mid R B) \mathbf{P}(R B)}{\mathbf{P}(R \mid R R) \mathbf{P}(R R)+\mathbf{P}(R \mid R B) \mathbf{P}(R B)+\mathbf{P}(R \mid B B) \mathbf{P}(B B)}
$$

Numerical values:

$$
\mathbf{P}(R B \mid R)=\frac{\frac{1}{2} \times \frac{1}{3}}{1 \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{3}+0 \times \frac{1}{3}}=\frac{1}{3}
$$

Example: disposable flashlights

Situation:

- Bin containing 3 different types of disposable flashlights
- Proba that a type 1 flashlight will give over 100 hours of use is .7
- Corresponding probabilities for types 2 \& 3: . 4 and .3
- 20% of the flashlights are type $1,30 \%$ are type 2 , and 50% are type 3

Questions:
(1) What is the probability that a randomly chosen flashlight will give more than 100 hours of use?
(2) Given that a flashlight lasted over 100 hours, what is the conditional probability that it was a type j flashlight, for $j=1,2,3$?

Example: disposable flashlights (2)

Model: We define the events

- A: flashlight chosen gives more than 100 h of use
- F_{j} : type j is chosen

Aim 1:
Compute $\mathbf{P}(A)$

Example: disposable flashlights (3)

Application of Proposition 7:

$$
\mathbf{P}(A)=\sum_{j=1}^{3} \mathbf{P}\left(A \mid F_{j}\right) \mathbf{P}\left(F_{j}\right)
$$

Numerical values:

$$
\mathbf{P}(A)=0.7 \times 0.2+0.4 \times 0.3+0.3 \times 0.5=.41
$$

Example: disposable flashlights (4)

Aim 2:
Compute $\mathbf{P}\left(F_{1} \mid A\right)$
Application of Proposition 8:

$$
\mathbf{P}\left(F_{1} \mid A\right)=\frac{\mathbf{P}\left(A \mid F_{1}\right) \mathbf{P}\left(F_{1}\right)}{\mathbf{P}(A)}
$$

Numerical value:

$$
\mathbf{P}\left(F_{1} \mid A\right)=\frac{0.7 \times 0.2}{0.41}=\frac{14}{41} \simeq 41 \%
$$

Outline

(1) Introduction

(2) Conditional probabilities

(3) Bayes's formula

(4) Independent events

5 Conditional probability as a probability

Definition of independence

Definition 9.

Let

- P a probability on a sample space S
- E, F two events

Then E and F are independent if

$$
\mathbf{P}(E F)=\mathbf{P}(E) \mathbf{P}(F)
$$

Notation:

$$
E \text { and } F \text { independent denoted by } E \Perp F
$$

Some remarks

Interpretation: If $E \Perp F$, then

$$
\mathbf{P}(E \mid F)=\mathbf{P}(E)
$$

that is the knowledge of F does not affect $\mathbf{P}(E)$
Warning: Independent \neq mutually exclusive!
Specifically
A, B mutually exclusive $\Rightarrow \mathbf{P}(A B)=0$
A, B independent $\Rightarrow \mathbf{P}(A B)=\mathbf{P}(A) \mathbf{P}(B)$
Therefore A et B both independent and mutually exclusive \hookrightarrow we have either $\mathbf{P}(A)=0$ or $\mathbf{P}(B)=0$

Example: dice tossing (1)

Experiment: We throw two dice
Sample space:

- $S=\{1, \ldots, 6\}^{2}$
- $\mathbf{P}\left(\left\{\left(s_{1}, s_{2}\right)\right\}\right)=\frac{1}{36}$ for all $\left(s_{1}, s_{2}\right) \in S$

Events: We consider

$$
A=" 1^{\text {st }} \text { outcome is } 1 ", \quad B=\text { " } 2 \text { nd } \text { outcome is } 4 "
$$

Question:
Do we have $A \Perp B$?

Example: dice tossing (2)

Description of A and B :

$$
B=\{1\} \times\{1, \ldots, 6\}, \quad \text { and } \quad B=\{1, \ldots, 6\} \times\{4\} .
$$

Probabilities for A and B : We have

$$
\mathbf{P}(A)=\frac{|A|}{36}=\frac{1}{6}, \quad \mathbf{P}(B)=\frac{|B|}{36}=\frac{1}{6}
$$

Description of $A B$: We have $A B=\{(1,4)\}$. Thus

$$
\mathbf{P}(A B)=\frac{1}{36}=\mathbf{P}(A) \mathbf{P}(B)
$$

Conclusion: A and B are independent

Example: tossing n coins (1)

Experiment:
Tossing a coin n times
Events: We consider
$A=$ "At most one Head"
$B=$ "At least one Head and one Tail"

Question:
Are there values of n such that $A \Perp B$?

Example: tossing n coins (2)

Model: We take

- $S=\{h, t\}^{n}$
- $\mathbf{P}(\{s\})=\frac{1}{2^{n}}$ for all $s \in S$

Description of A and B :

$$
\begin{aligned}
A & =\{(t, \ldots, t),(h, t, \ldots, t),(t, h, t, \ldots, t),(t, \ldots, t, h)\} \\
B & =\{(h, \ldots, h),(t, \ldots, t)\}^{c}
\end{aligned}
$$

Example: tossing n coins (3)

Computing probabilities for A and B : We have

$$
\begin{aligned}
\mathbf{P}(A) & =\frac{|A|}{2^{n}}=\frac{n+1}{2^{n}} \\
\mathbf{P}(B) & =1-\mathbf{P}\left(B^{c}\right)=1-\frac{1}{2^{n-1}}
\end{aligned}
$$

Description of $A B$ and

$$
A B=A \backslash\{(f, \ldots, f)\} \quad \Rightarrow \quad \mathbf{P}(A B)=\frac{n}{2^{n}}
$$

Example: tossing n coins (4)

Checking independence: We have $A \Perp B$ iff

$$
\frac{n+1}{2^{n}}\left(1-\frac{1}{2^{n-1}}\right)=\frac{n}{2^{n}} \quad \Longleftrightarrow \quad n-2^{n-1}+1=0
$$

Conclusion: One can check that

$$
x \mapsto x-2^{x-1}+1
$$

vanishes for $x=3$ only on \mathbb{R}_{+}. Thus
We have $A \Perp B$ iff $n=3$

Independence and complements

Proposition 10.

Let

- P a probability on a sample space S
- E, F two events
- We assume that $E \Perp F$

Then

$$
E \Perp F^{c}, \quad E^{c} \Perp F, \quad E^{c} \Perp F^{c}
$$

Proof

Decomposition of $\mathbf{P}(E)$: Write

$$
\begin{aligned}
\mathbf{P}(E) & =\mathbf{P}(E F)+\mathbf{P}\left(E F^{c}\right) \\
& =\mathbf{P}(E) \mathbf{P}(F)+\mathbf{P}\left(E F^{c}\right)
\end{aligned}
$$

Expression for $\mathbf{P}\left(E F^{c}\right)$: From the previous expression we have

$$
\begin{aligned}
\mathbf{P}\left(E F^{c}\right) & =\mathbf{P}(E)-\mathbf{P}(E) \mathbf{P}(F) \\
& =\mathbf{P}(E)(1-\mathbf{P}(F)) \\
& =\mathbf{P}(E) \mathbf{P}\left(F^{c}\right)
\end{aligned}
$$

Conclusion:
$E \Perp F^{c}$

Counterexample: independence of 3 events (1)

Warning:

In certain situations we have A, B, C pairwise independent, however

$$
\mathbf{P}(A \cap B \cap C) \neq \mathbf{P}(A) \mathbf{P}(B) \mathbf{P}(C)
$$

Example: tossing two dice

- $S=\{1, \ldots, 6\}^{2}$
- $\mathbf{P}\left(\left\{\left(s_{1}, s_{2}\right)\right\}\right)=\frac{1}{36}$ for all $\left(s_{1}, s_{2}\right) \in S$

Events: Define
$A=$ "even number for the $1^{\text {st }}$ outcome"
$B=$ "odd number for the $2^{\text {nd }}$ outcome"
$C=$ "same parity for the two outcomes"

Counterexample: independence of 3 events (2)

Description of A, B, C :

$$
\begin{aligned}
& A=\{2,4,6\} \times\{1, \ldots, 6\} \\
& B=\{1, \ldots, 6\} \times\{1,3,5\} \\
& C=(\{2,4,6\} \times\{2,4,6\}) \cup(\{1,3,5\} \times\{1,3,5\})
\end{aligned}
$$

Pairwise independence: we find

$$
A \Perp B, A \Perp C \text { and } B \Perp C
$$

Independence of the 3 events: We have $A \cap B \cap C=\varnothing$. Thus

$$
0=\mathbf{P}(A \cap B \cap C) \neq \mathbf{P}(A) \mathbf{P}(B) \mathbf{P}(C)=\frac{1}{8}
$$

Independence of 3 events

Definition 11.

Let

- P a probability on a sample space S
- 3 events A_{1}, A_{2}, A_{3}

We say that A_{1}, A_{2}, A_{3} are independent if

$$
\begin{aligned}
& \mathbf{P}\left(A_{1} A_{2}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right), \quad \mathbf{P}\left(A_{1} A_{3}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{3}\right) \\
& \mathbf{P}\left(A_{2} A_{3}\right)=\mathbf{P}\left(A_{2}\right) \mathbf{P}\left(A_{3}\right)
\end{aligned}
$$

and

$$
\mathbf{P}\left(A_{1} A_{2} A_{3}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right) \mathbf{P}\left(A_{3}\right)
$$

Independence of n events

Definition 12.

Let

- P a probability on a sample space S
- n events $A_{1}, A_{2}, \ldots, A_{n}$

We say that $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for all $2 \leq r \leq n$ and $j_{1}<\cdots<j_{r}$ we have

$$
\mathbf{P}\left(A_{j_{1}} A_{j_{2}} \cdots A_{j_{r}}\right)=\mathbf{P}\left(A_{j_{1}}\right) \mathbf{P}\left(A_{j_{2}}\right) \cdots \mathbf{P}\left(A_{j_{r}}\right)
$$

Independence of an ∞ number of events

Definition 13.

Let

- P a probability on a sample space S
- A sequence of events $\left\{A_{i} ; i \geq 1\right\}$

We say that the A_{i} 's are independent if for all $2 \leq r<\infty$ and $j_{1}<\cdots<j_{r}$ we have

$$
\mathbf{P}\left(A_{j_{1}} A_{j_{2}} \cdots A_{j_{r}}\right)=\mathbf{P}\left(A_{j_{1}}\right) \mathbf{P}\left(A_{j_{2}}\right) \cdots \mathbf{P}\left(A_{j_{r}}\right)
$$

Example: parallel system (1)

Situation:

- Parallel system with n components
- All components are independent
- Probability that i-th component works: p_{i}

Question:
Probability that the system functions

Example: parallel system (2)

Model: We take

- $S=\{0,1\}^{n}$
- Probability \mathbf{P} on S defined by

$$
\mathbf{P}\left(\left\{\left(s_{1}, \ldots, s_{n}\right)\right\}\right)=\prod_{i=1}^{n} p_{i}^{s_{i}}\left(1-p_{i}\right)^{1-s_{i}}
$$

Events:
$A=$ "System functions",$\quad A_{i}=$ " i-th component functions"

Facts about A_{i} 's:
The events A_{i} are independent and $\mathbf{P}\left(A_{i}\right)=p_{i}$

Example: parallel system (3)

Computations for $\mathbf{P}\left(A^{c}\right)$:

$$
\begin{aligned}
\mathbf{P}\left(A^{c}\right) & =\mathbf{P}\left(\cap_{i=1}^{n} A_{i}^{c}\right) \\
& =\prod_{i=1}^{n} \mathbf{P}\left(A_{i}^{c}\right) \\
& =\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

Conclusion:

$$
\mathbf{P}(A)=1-\prod_{i=1}^{n}\left(1-p_{i}\right)
$$

Example: rolling dice (1)

Experiment:

- Roll a pair of dice
- Outcome: sum of faces

Events:

- $E_{n}=$ "no 5 or 7 on first $n-1$ trials, then 5 on n-th trial"
- $E=\cup_{n \geq 1} E_{n}=" 5$ appears before 7"

Question:
Compute $\mathbf{P}(E)$

Example: rolling dice (2)

Computation for $\mathbf{P}\left(E_{n}\right)$: by independence

$$
\mathbf{P}\left(E_{n}\right)=\left(1-\frac{10}{36}\right)^{n-1} \frac{4}{36}=\left(\frac{13}{36}\right)^{n-1} \frac{1}{9}
$$

Computation for $\mathbf{P}(E)$:

$$
\mathbf{P}(E)=\sum_{n=1}^{\infty} \mathbf{P}\left(E_{n}\right)=\frac{1}{9} \frac{1}{1-\frac{13}{36}}
$$

Thus

$$
\mathbf{P}(E)=\frac{2}{5}
$$

Same example with conditioning (1)

New events: We set

- $E=$ " 5 appears before 7"
- $F_{5}=$ "1st trial gives 5"
- $F_{7}=$ "1st trial gives 7"
- $H=$ "1st trial gives an outcome $\neq 5,7$ "

Same example with conditioning (2)

Conditional probabilities:

$$
\mathbf{P}\left(E \mid F_{5}\right)=1, \quad \mathbf{P}\left(E \mid F_{7}\right)=0, \quad \mathbf{P}(E \mid H)=\mathbf{P}(E)
$$

Justification: $E \Perp H$ since
$E H=H \cap\{$ Event which depends on i-th trials with $i \geq 2\}$

Same example with conditioning (3)

Applying Proposition 7:

$$
\begin{equation*}
\mathbf{P}(E)=\mathbf{P}\left(E \mid F_{5}\right) \mathbf{P}\left(F_{5}\right)+\mathbf{P}\left(E \mid F_{7}\right) \mathbf{P}\left(F_{7}\right)+\mathbf{P}(E \mid H) \mathbf{P}(H) \tag{3}
\end{equation*}
$$

Computation: We get

$$
\mathbf{P}(E)=\frac{1}{9}+\frac{13}{18} \mathbf{P}(E)
$$

and thus

$$
\mathbf{P}(E)=\frac{2}{5}
$$

Problem of the points

Experiment:

- Independent trials
- For each trial, success with probability p

Question:
What is the probability that n successes occur before m failures?

Pascal's solution

Notation: set

$$
A_{n, m}=" n \text { successes occur before } m \text { failures" }, \quad P_{n, m}=\mathbf{P}\left(A_{n, m}\right)
$$

Conditioning on 1st trial: Like in (3) we get

$$
\begin{equation*}
P_{n, m}=p P_{n-1, m}+(1-p) P_{n, m-1} \tag{4}
\end{equation*}
$$

Initial conditions:

$$
\begin{equation*}
P_{n, 0}=p^{n}, \quad P_{0, m}=(1-p)^{m} \tag{5}
\end{equation*}
$$

Strategy:
Solve difference equation (4) with initial condition (5)

Fermat's solution

Expression for $A_{n, m}$: Write

$$
A_{n, m}=\text { "at least } n \text { successes in } m+n-1 \text { trials" }
$$

Thus $A_{n, m}=\cup_{k=n}^{m+n-1} E_{k, m, n}$ with

$$
E_{k, m, n}=\text { "exactly } k \text { successes in } m+n-1 \text { trials" }
$$

Expression for $P_{n, m}$: We get

$$
P_{n, m}=\sum_{k=n}^{m+n-1}\binom{m+n-1}{k} p^{k}(1-p)^{m+n-1-k}
$$

Outline

(1) Introduction

(2) Conditional probabilities

(3) Bayes's formula

4 Independent events

(5) Conditional probability as a probability

$\mathbf{P}(\cdot \mid F)$ is a probability

Proposition 14.

Let

- \mathbf{P} a probability on a sample space S
- F an event such that $\mathbf{P}(F)>0$

Then

$$
\mathbf{Q}: E \mapsto \mathbf{P}(E \mid F)
$$

is a probability

Proof (1)

$0 \leq \mathbf{Q}(E) \leq 1$:

$$
0 \leq \mathbf{Q}(E)=\frac{\mathbf{P}(E F)}{\mathbf{P}(F)} \leq \frac{\mathbf{P}(F)}{\mathbf{P}(F)}=1
$$

$\mathbf{Q}(S)=1:$

$$
\mathbf{Q}(S)=\frac{\mathbf{P}(S F)}{\mathbf{P}(F)}=\frac{\mathbf{P}(F)}{\mathbf{P}(F)}=1
$$

Proof (2)

Additivity: Let $\left\{E_{n} ; n \geq 1\right\}$ be a family of mutually exclusive events.
We claim that

$$
\mathbf{Q}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mathbf{Q}\left(E_{n}\right)
$$

Justification:

$$
\begin{aligned}
\mathbf{Q}\left(\bigcup_{n=1}^{\infty} E_{n}\right)= & \frac{\mathbf{P}\left(\left(\bigcup_{n=1}^{\infty} E_{n}\right) F\right)}{\mathbf{P}(F)} \\
& =\frac{\mathbf{P}\left(\bigcup_{n=1}^{\infty}\left(E_{n} F\right)\right)}{\mathbf{P}(F)}=\frac{\sum_{n=1}^{\infty} \mathbf{P}\left(E_{n} F\right)}{\mathbf{P}(F)}=\sum_{n=1}^{\infty} \mathbf{Q}\left(E_{n}\right)
\end{aligned}
$$

Intersection and conditioning - Part 2

Proposition 15.

Let

- P a probability on a sample space S
- E_{1}, E_{2} two events
- F an event such that $\mathbf{P}(F)>0$

Then

$$
\mathbf{P}\left(E_{1} \mid F\right)=\mathbf{P}\left(E_{1} \mid E_{2} F\right) \mathbf{P}\left(E_{2} \mid F\right)+\mathbf{P}\left(E_{1} \mid E_{2}^{c} F\right) \mathbf{P}\left(E_{2}^{c} \mid F\right)
$$

Proof

Strategy:

Apply Proposition 3 to the probability Q of Proposition 14

$$
\mathbf{Q}\left(E_{1}\right)=\mathbf{Q}\left(E_{1} \mid E_{2}\right) \mathbf{Q}\left(E_{2}\right)+\mathbf{Q}\left(E_{1} \mid E_{2}^{c}\right) \mathbf{Q}\left(E_{2}^{c}\right)
$$

Computing the conditional probabilities:

$$
\mathbf{Q}\left(E_{1} \mid E_{2}\right)=\mathbf{P}\left(E_{1} \mid E_{2} F\right), \quad \mathbf{Q}\left(E_{1} \mid E_{2}^{c}\right)=\mathbf{P}\left(E_{1} \mid E_{2}^{c} F\right)
$$

Conclusion:

$$
\mathbf{P}\left(E_{1} \mid F\right)=\mathbf{P}\left(E_{1} \mid E_{2} F\right) \mathbf{P}\left(E_{2} \mid F\right)+\mathbf{P}\left(E_{1} \mid E_{2}^{c} F\right) \mathbf{P}\left(E_{2}^{c} \mid F\right)
$$

Example: insurance company - Part 2 (1)

Situation:

- Two classes of people: those who are accident prone and those who are not.
- Accident prone: probability 4 of accident in a one-year period
- Not accident prone: probab .2 of accident in a one-year period
- 30% of population is accident prone

Question:

Probability that a new policyholder will have an accident within her/his second year of purchasing a policy if we know she/he had an accident in his first year?

Example: insurance company (2)

Model: Define

- $A_{1}=$ Policy holder has an accident in his first year
- $A_{2}=$ Policy holder has an accident in his second year
- $A=$ Accident prone

Given data:

$$
\mathbf{P}\left(A_{1} \mid A\right)=.4, \quad \mathbf{P}\left(A_{1} \mid A^{c}\right)=.2, \quad \mathbf{P}(A)=.3
$$

Aim:
Compute $\mathbf{P}\left(A_{2} \mid A_{1}\right)$

Example: insurance company (3)

Application of Proposition 15:

$$
\mathbf{P}\left(A_{2} \mid A_{1}\right)=\mathbf{P}\left(A_{2} \mid A A_{1}\right) \mathbf{P}\left(A \mid A_{1}\right)+\mathbf{P}\left(A_{2} \mid A^{c} A_{1}\right) \mathbf{P}\left(A^{c} \mid A_{1}\right)
$$

Computation of conditional probabilities:

$$
\mathbf{P}\left(A_{2} \mid A A_{1}\right)=.4, \quad \mathbf{P}\left(A_{2} \mid A^{c} A_{1}\right)=.2
$$

Example: insurance company (4)

Computation of conditional probabilities (2):

$$
\mathbf{P}\left(A \mid A_{1}\right)=\frac{\mathbf{P}\left(A_{1} \mid A\right) \mathbf{P}(A)}{\mathbf{P}\left(A_{1}\right)}=\frac{0.4 \times 0.3}{0.26}=\frac{6}{13}
$$

and

$$
\mathbf{P}\left(A^{c} \mid A_{1}\right)=1-\mathbf{P}\left(A \mid A_{1}\right)=\frac{7}{13}
$$

Conclusion:

$$
\mathbf{P}\left(A_{2} \mid A_{1}\right)=0.4 \times \frac{6}{13}+0.2 \times \frac{7}{13} \simeq 29 \%
$$

Matching problem (1)

Situation:

- n men take off their hats
- Hats are mixed up
- Then each man selects his hat at random
- Match: if a man selects his own hat

Questions:
(1) Probability of no match
(2) Probability of exactly k matches

Matching problem (2)

Model: We set

- $E=$ no match
- $M=$ first man selects his hat
- $P_{n}=\mathbf{P}(E)$

Conditioning on M :

$$
\begin{aligned}
P_{n} & =\mathbf{P}(E \mid M) \mathbf{P}(M)+\mathbf{P}\left(E \mid M^{c}\right) \mathbf{P}\left(M^{c}\right) \\
& =\mathbf{P}\left(E \mid M^{c}\right) \frac{n-1}{n}
\end{aligned}
$$

Matching problem (3)

New situation on M^{c} :

- $n-1$ hats with $n-1$ men
- 1 extra man with no hat
- 1 extra hat with no man
- Set $N=$ "extra man selects extra hat"

Conditioning on N :

$$
\begin{equation*}
\mathbf{P}\left(E \mid M^{c}\right)=\mathbf{P}\left(E N \mid M^{c}\right)+\mathbf{P}\left(E \mid N^{c} M^{c}\right) \mathbf{P}\left(N^{c} \mid M^{c}\right) \tag{6}
\end{equation*}
$$

Matching problem (4)

Recall:

$$
\begin{equation*}
\mathbf{P}\left(E \mid M^{c}\right)=\mathbf{P}\left(E N \mid M^{c}\right)+\mathbf{P}\left(E \mid N^{c} M^{c}\right) \mathbf{P}\left(N^{c} \mid M^{c}\right) \tag{7}
\end{equation*}
$$

New situation if N^{c} occurs: since extra man does not select extra hat

- Declare extra hat as extra man's
- Whole situation equivalent to $(n-1)$ mixed hats

New situation if N occurs:

- 1 extra man selects extra hat
- We are left with $(n-2)$ mixed hats

Consequence on (7):

$$
\begin{equation*}
\mathbf{P}\left(E \mid M^{c}\right)=P_{n-1}+\frac{1}{n-1} P_{n-2} \tag{8}
\end{equation*}
$$

Matching problem (5)

Putting together (6) and (8): We get
$P_{n}=\frac{n-1}{n} P_{n-1}+\frac{1}{n} P_{n-2} \quad \Longleftrightarrow \quad P_{n}-P_{n-1}=-\frac{1}{n}\left(P_{n-1}-P_{n-2}\right)$
Initial data:

$$
P_{1}=0, \quad P_{2}=\frac{1}{2}
$$

Solution of difference equation:

$$
P_{n}=\sum_{j=2}^{n} \frac{(-1)^{j}}{j!}
$$

Matching problem (6)

Events for the k-match problem: We set

- $E_{k}=$ exactly k matches
- $F_{j}=$ match for man j

Successive conditioning: For $1 \leq j_{1}<\cdots<j_{k} \leq n$ we get

$$
\begin{aligned}
\mathbf{P}\left(F_{j_{1}} \cdots F_{j_{k}} E_{k}\right) & =\frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-(k-1)} P_{n-k} \\
& =\frac{(n-k)!}{n!} P_{n-k}
\end{aligned}
$$

Matching problem (7)

Recall:

$$
\mathbf{P}\left(F_{j_{1}} \cdots F_{j_{k}} E_{k}\right)=\frac{(n-k)!}{n!} P_{n-k}
$$

Computing $\mathbf{P}\left(E_{k}\right)$: We have

$$
\begin{aligned}
\mathbf{P}\left(E_{k}\right) & =\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} \mathbf{P}\left(F_{j_{1}} \cdots F_{j_{k}} E_{k}\right) \\
& =\binom{n}{k} \frac{(n-k)!}{n!} P_{n-k}
\end{aligned}
$$

Therefore

$$
\mathbf{P}\left(E_{k}\right)=\frac{1}{k!} P_{n-k}
$$

Conditional independence

Definition 16.

Let

- P a probability on a sample space S
- E_{1}, E_{2} two events
- F an event such that $\mathbf{P}(F)>0$

We say that E_{1}, E_{2} are independent conditionally on F if

$$
\mathbf{P}\left(E_{1} E_{2} \mid F\right)=\mathbf{P}\left(E_{1} \mid F\right) \mathbf{P}\left(E_{2} \mid F\right)
$$

Laplace's rule of succession (1)

Experiment:

- $k+1$ coins in a box
- Probability of Heads for i-th coin: $\frac{i}{k}, i=0, \ldots, k$
- Coin randomly selected
- Observation: n successive Heads

Question:
Probability that the $(n+1)$-th flip is also Head

Laplace's rule of succession (2)

Model: We set

- $C_{i}=i$-th coin initially selected
- $F_{n}=$ first n flips result in heads
- $H=(\mathrm{n}+1)$-th flip is a head

Aim:
Find $\mathbf{P}\left(H \mid F_{n}\right)$

Laplace's rule of succession (3)

Application of Proposition 15:

$$
\mathbf{P}\left(H \mid F_{n}\right)=\sum_{i=0}^{k} \mathbf{P}\left(H \mid C_{i} F_{n}\right) \mathbf{P}\left(C_{i} \mid F_{n}\right)
$$

Hypothesis:
The flips are independent conditionally on C_{i}
Consequence:

$$
\mathbf{P}\left(H \mid C_{i} F_{n}\right)=\mathbf{P}\left(H \mid C_{i}\right)=\frac{i}{k}
$$

Laplace's rule of succession (4)

Application of Proposition 8:

$$
\mathbf{P}\left(C_{i} \mid F_{n}\right)=\frac{\mathbf{P}\left(F_{n} \mid C_{i}\right) \mathbf{P}\left(C_{i}\right)}{\sum_{j=0}^{k} \mathbf{P}\left(F_{n} \mid C_{j}\right) \mathbf{P}\left(C_{j}\right)}
$$

Consequence of conditional independence:

$$
\mathbf{P}\left(C_{i} \mid F_{n}\right)=\frac{\left(\frac{i}{k}\right)^{n} \frac{1}{k+1}}{\sum_{j=0}^{k}\left(\frac{j}{k}\right)^{n} \frac{1}{k+1}}
$$

Thus

$$
\mathbf{P}\left(C_{i} \mid F_{n}\right)=\frac{\left(\frac{i}{k}\right)^{n}}{\sum_{j=0}^{k}\left(\frac{j}{k}\right)^{n}}
$$

Laplace's rule of succession (5)

Conclusion:

$$
\mathbf{P}\left(H \mid F_{n}\right)=\frac{\sum_{i=0}^{k}\left(\frac{i}{k}\right)^{n+1}}{\sum_{j=0}^{k}\left(\frac{j}{k}\right)^{n}}
$$

Approximation: For n large,

$$
\mathbf{P}\left(H \mid F_{n}\right) \simeq \frac{\int_{0}^{1} x^{n+1} d x}{\int_{0}^{1} x^{n} d x}=\frac{n+1}{n+2}
$$

