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General definition

—~ Definition 1.)

Let
@ P a probability on a sample space S
@ X :S5 — &£ arandom variable, with £ C R

We say that X is a continuous random variable if
< There exists f > 0 such that for "all" B C R we have

P(X € B) :/Bf(x) dx

The function f is called
— the probability density function of the random variable X

\.
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Law of X according to f
Type of information obtained with f: We have

Pla< X <b) = /f(x)dx
P(X=a) = 0
Fa)=P(X <a) = /_aoof(x)dx

x
a b

Figure: P(a < X < b) = [ f(x) dx
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Example: radio tube (1)

Situation:

o X = lifetime of a radio tube

@ Density of X:

100
F(x) = 2 Laooe)(x)
@ We have b5 tubes in a set

Question: Probability that 2 of the 5 tubes have to be replaced
within the first 150h of operation
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Example: radio tube (2)

Family of events: We define
@ X; = lifetime of tube /

@ E; = "tube i has to be replaced within the first 150h of operation
Probability of E;:
P(E;) = P(X; <150)
150
= / f(x)dx
150 (fx

= 100 —

100 X2

Thus
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Example: radio tube (3)

Model for the set of tubes: Define

Then
and we look for
Conclusion:
oz=a- 5) (1) (3 =
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General definition

~ Definition 2. .

Let
@ P a probability on a sample space S

@ X :S — R a continuous random variable
o f = density of X

Then the expected value of X is defined by

E[X] = '/Rx F(x) dx

Probabiity Theory 10 / 83



Heuristics for the definition

Recall the discrete case:

E [X] :ZX;P(X:X,')

i>1
Continuous case analog: We have

f(x)dx ~P(x <X < x+ dx)
Thus

E[X]

12

ZX;P(X,-SXSX;—{—dX)
f(x)d
/Rx (x) dx

12

Probabiity Theory 11/ 3



Simple example (1)

Density of X: Consider X with density

f(x) = 2x 1o ()

o = = £ DA
SEIAN Continuous r.v



Simple example (2)

Recall: We consider X with density
f(x) = 2x 1 q3(x)
Expected value:

E[X] =

Probabiity Theory 13 / 83



Expression for E[X] when X > 0

,—[Proposition 3.] \
Let
@ X continuous random variable
o f density of X

Hypothesis:
X>0

Then -
E(X]= [ P(X>y)dy 1

Probabiity Theory 14 / 83



Proof

Expression for the rhs:
/OOP(X>y)dy = /OO</OOf(X)dX> dy
0 0 y

Apply Fubini: Invert the order of integration

/OOOP(X>y)dy - /OOO (/0 dy> F(x) dx

= /Oooxf(x) dx
- ElX

Probability Theory 15 / 83



Definition of E[g(X)]

,—{Proposition 4.}

Let

@ X continuous random variable
o f density of X

@ g real valued function

Then .
Elg(X)] = [ g(x) f(x) dx e

Probabiity Theory 16 / 83



Simple example — Ctd (1)

Density of X: Consider X with density

f(x) = 2x 1 q3(x)

Question: Compute
E[X?]

Probability Theory 17/ 83



Simple example — Ctd (2)
Recall: We consider X with density

f(x) = 2x 1 q3(x)

Expected value for g(x) = x>:
E[X]] = / X3 F(x) dx
R
1
= / 2x* dx
0
2

5

Probability Theory 18 / 83



Proof of Proposition 4
Hypothesis:
We assume X > 0 and g(X) > 0 for the proof

Expression with (1):
ElgX)] = [ Px)>y)dy

- /000 (/{X:g(X)>y} fx) dX) v

Apply Fubini: Invert the order of integration

ele0) = [ ([ o) e
= /OOO g(x) f(x)dx

Probabiity Theory 10 / 83



Expectation and linear transformations

,—[Proposition 5.]
Let

@ X discrete random variable
o f density of X

@ a,b € R constants

Then
E[aX + b] =aE[X]+ b

Probabiity Theory 20 / 83



Proof

Application of relation (2):
E[aX +b] = / (ax + b) f(x)dx
R

= a/Rxf(x)dx—i—b/Rf(x)dx
= aE[X]+b

Probabiity Theory 21/ 83



Definition of variance

—~ Definition 6.

Let

@ X continuous random variable
o f density of X
o 1= E[X]

Then we define Var(X) by

Var(X) = E [(X — p)?]

Probability Theory 22/ 83



Alternative expression for the variance

,—[Proposition 7.]
Let

@ X continuous random variable
o f density of X
o 1= E[X]

Then Var(X) can be written as

Var(X) = E[X?] — 12 = E[X?] — (E[X])?

Probability Theory 23 / 83



Simple example — Ctd

Density of X: Consider X with density
f(x) = 2x 1 q3(x)

Expected value for g(x) = x*:

1 1
EX2:/ 2f d:/23d:—
[X7] X (x) dx 2 dx = 5
Variance of X:

Var(X) = EX7] - (EX)? =~ (5) =45

Probabiity Theory 24/ 83



Variance and linear transformations

,—[Proposition 8.] \
Let
@ X continuous random variable
o f density of X
@ a,b € R constants

Then
Var (aX + b) = a* Var(X)

Probabiity Theory 25 / 83
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Uniform random variable (1)

Notation:

X ~U([e, B]), with o < B

State space:

[a, A

Density:
1

f(x) = 7 a Lo, 6(x)

Expected value and variance:

E[X] = O‘;B, Var(X) = @

Probabiity Theory 27 / 83



Uniform random variable (2)
Use:

e U([0,1]) only r.v directly accessible on a computer
— rand function

Example of computation: if X ~ #/([8,10]), then

1 95  95-8 3
P(7.5<X<9.5):—/ dx =

2 Js 2 4
fla) F(a)
1
_1
B-a
1 1 a 1 a
a B a
SEIAN Continuous r.v Probability Theory
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Bertrand's paradox (1)

Experiment:

@ Draw a random chord of a circle with center O and radius r

Question: Compute

p = probability that the chord is larger
than the side of the inscribed equilateral triangle

Probabiity Theory 29 / 83



Bertrand's paradox (2)

Model 1:
@ Chord determined by its distance D to the center
o D~ U(D. 1))

Computation of p under Model 1:

r 1
—P(D<l)=2
P < —2> 2

Probabiity Theory 30 / 83



Bertrand's paradox (3)
Model 2:
@ Chord parametrized by 6
@ O = angle between chord and tangent

o 0 ~U([0,90])

Computation of p under Model 2:
According to tangent-chord theorem

p=P (60 <6<90)=
A
A

SEIAN Continuous r.v

9 60 1

90

3

Probability Theory
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Normal random variable (1)

Notation:

N (i, %), with 4 € R and 6% > 0

State space:

R

Density:

O

202

V21 o2

Expected value and variance:

E[X]=p,  Var(X)=o°

SEIAN Continuous r.v

)

Probability Theory
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Normal random variable (2)

Use:
Quantities which depend on a large number of small parameters

Numerous examples in:
o Biology
@ Physics and industry

@ Economics

Probability Theory 34 / 83



Normal random variable (3)

Mt T
2 4

Figure: densities for N'(0,1), A/(1,1), N(0,9), N(0,1/4).

o = = E = 9acn
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Normal random variable (4)

399

w—20 " wt 20

(b)

Figure: Densities for  (a) M(0,1)  (b) N (u,0?)
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Normal r.v and linear transformations

,—[Proposition 9.]
Let
o X ~N(0,1)
e pceRando >0
@ Set Y=0X+p

Then

Y ~ N(u,0?)

SEIAN Continuous r.v

Probability Theory
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Cdf for a normal r.v

Function ®: For X ~ A/(0,1) and x > 0, set
o) =P(X<x) = [ e d
x) = X) = ——
B V21 J—co 4

Problem with &:
@ No algebraic expression
@ Numerical approximation needed

@ Use of tables

Property of ®: For x > 0,

d(—x) =1-—d(x)

Probabiity Theory 38 / 83



Table for ¢

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0 .5000 .5040 5080 5120 .5160 5199 5239 5279 5319 .5359
1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
2 5793 5832 5871 5910 5948 5987  .6026  .6064 6103  .6141
3 6179 6217 6255 6293 6331  .6368 .6406 6443 6480  .6517
4 6554 6591 6628 6664 .6700 .6736  .6772 6808  .6844  .6879
S5 6915 6950 6985 7019 7054 7088 7123 77157 7190 7224
6 7257 7291 7324 7357 7389 7422 7454 77486 7517 7549
g7 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
8 7881 7910 7939 7967 7995  .8023 .8051 .8078 .8106  .8133
9 8159 8186 .8212 .8238 .8264 .8289 .8315 8340 .8365 .8389

1.0 .8413 8438 8461 .8485 .8508 .8531 .8554 8577 .8599  .8621

11 8643 8665 .8686 .8708  .8729 .8749 .8770 .8790  .8810  .8830

12 8849 8869 .8888 .8907 .8925 .8944  .8962 .8980  .8997  .9015

1.3 9032 9049 9066 9082 .9099 9115 9131 9147 9162 9177

14 9192 9207 9222 9236 9251 .9265 .9279  .9292 9306  .9319

1.5 9332 9345 9357 9370 9382 .9394 9406 9418 9429 9441

1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 .9545

17 9554 9564 9573 9582 9591 9599 9608 9616  .9625  .9633

1.8 9641 9649 9656 9664 9671 9678 9686  .9693 9699  .9706

1.9 9713 9719 9726 9732 9738 .9744 9750 9756 9761  .9767

20 9772 9778 9783 9788 9793 .9798 .9803  .9808 9812  .9817

21 9821 9826 9830 9834 9838 9842  .9846 9850  .9854  .9857

22 9861 9864 9868 9871 9875 .9878  .9881  .9884  .9887  .9890

23 9893 9896 .9898 9901  .9904  .9906  .9909 9911 9913  .9916

24 9918 9920 9922 9925 9927 .9929 .9931 9932 9934 9936

SEIAN Continuous r.v

Probability Theory
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Simple normal computation (1)

Definition of a random variable: We let

X~N(n=30"=9)

Questions: Compute
QO P2<X<5)
Q@ P(X >0)

Q@ P(|X—-3]>06)

Probabiity Theory 40 / 83



Simple normal computation (2)

Change of variable: We define Z ~ A/(0,1) by

X —p  X-3

V4
o 3

First question: We have

1 2

<o) (1-(2)

~ 3779

Probabiity Theory 41/ 83



Simple normal computation (2)

Second question: We have

P(X>0) = P(Z>-1)
= 1-0(-1)
= (1)
~ 8413

Third question: We have

P(|IX-3]>6) = P(|Z]>2)
1-9(2)+d(-2)
2[1 - ®(2)]

~ .0456

Probabiity Theory 42 / 83



Abraham de Moivre

Some facts about de Moivre:
@ Lifespan: 1667-1754, in ~ Paris, London
@ Ousted from France as a protestant
— in ~ 1687

@ In London lived from

» Private lessons

» Assisting gamblers in a coffee house
e Contributions in math

» Stirling's formula

» First central limit theorem

» First results on Poisson distribution

Probabiity Theory 43 / 83



DeMoivre-Laplace theorem

r—[Theorem 10.}
Let

en>1 pe(0,1)
e X, ~ Bin(n, p)
@a<hb

Then

. X, — np
imPla< ——— 5 <b| =®(b) —d(a
n— 00 < > (np(l _p))1/2 < ) ( ) ( )

\.

Empirical rule:
Accept approximation as long as np(1 — p) > 10

SEIAN Continuous r.v
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Binomial converging to normal: illustration
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Figure: Binomial histograms for different values of (n, p)

Probabiity Theory 45 / 83



Example: enrollment overbooking (1)

Situation:

@ ldeal size of a first-year class at a particular college
is 150 students.

e Data: on average, only 30% of those accepted for admission
will actually attend

@ College policy: approve the applications of 450 students.
Question:

Compute the probability that
more than 150 first-year students attend this college.

Probabiity Theory 46 / 83



Example: enrollment overbooking (2)

Notation: We define
e n=450,p=.3

° X, = l(i—th accepted student attends)s for i = 1L...,n

Hypothesis:
@ X; i.i.d with common law B(p)
Random variable of interest: Set
X = # students that will attend

Then .
X =>_X; ~ Bin(n,p)

i=1

Probabilty Theory 47 / 83



Example: enrollment overbooking (3)

Normal approximation: We look for

P (X > 150.5)
B X —450x03 1505450 x 0.3
~ \ (450 x 0.3 x 0.7)1/2 ~ (450 x 0.3 x 0.7)1/2

Therefore by DeMoivre-Laplace,

P (X > 150.5) ~ 1 — ®(1.59) ~ 5.59%

Probabiity Theory 48 / €3
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Exponential random variable (1)

Notation:
E(N), with A >0
State space:
Ry =[0,00)

Density:
f(x) = e Mg, (x)

Expected value and variance:

1 1
E[X] = X, Var(X) = ﬁ

Probabiity Theory 50 / €3



Exponential random variable (2)
Use: Waiting time between

@ 2 customer arrivals in a shop on a typical afternoon
@ Bus arrivals at a bus stop

@ Two jobs on a server from 12am to 6am

Empirical rule:

Number of arrivals given by a Poisson random variable
—
Inter arrivals given by exponential random variables

Tail probability: If X ~ £()), then for x > 0 we have
P(X > x) = /OOAe—AZ dz = e

Probabiity Theory 51/ 83



Graphing an exponential law

Figure: £(1), £(2), £(1/2). x-axis: x. y-axis: f(x)

SEIAN Continuous r.v



Memoryless property

,—[Proposition 11.] \
Let

@ X be continuous random variable

Then X satisfies the memoryless property
P(X>s+t|X>t)=P(X >5s)
if and only if there exists A > 0 such that

X~ EON)

Probabiity Theory 53 / €3



Proof of = (1)

Functional equation: Set
F(x) =P (X > x)
Then if X is memoryless, F satisfies

g(s+t) = g(s) g(t) (3)

Value of g on rationals: If g satisfies (3), then

& (1> = (). & (T) — (g(1)""

n

Probabiity Theory 54 / 83



Proof of = (2)

Expression for g(1):
We have g(1) = [g(1/2)]?> > 0. Thus there exists A € R such that

g(l)=e?

Value of g on rationals (2): We have found that for x € Q.

Probabiity Theory 55 / €3



Example: car battery (1)

Situation:

@ Number of miles that a car can run before its battery wears out
is exponentially distributed

@ Average value of 10k miles
@ We have already run 3k miles with the battery
@ We wish to take a 5k trip

Question: Probability to complete the trip
without having to replace the car battery?

Probabiity Theory 56 / 83



Example: car battery (1)

Model:
@ X = # miles before battery wears out
e X ~&(N\)
0 \= - =4

EX] — 10
e We wish to compute P(X > 3 + 5| X > 3)

Computation:

P(X>3+5X>3)=P(X>5)=e z~0.604

Probabiity Theory 57 / 83



Hazard rate function (1)

r—[Definition 12.}

Let

@ X positive continuous random variable
@ Density f, cdf F
e F=1—F

Then the hazard rate function is given by

Samy T. Continuous r.v

Probability Theory
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Hazard rate function (2)

Interpretation: \ is a failure rate, i.e

P(X e[t t+dt)| X > t) >~ A(t) dt

Exponential case: If x ~ E()), we have

A(t) = A

Probabiity Theory 59 / 83



SEIAN Continuous r.v

Hazard rate function (3)

Cdf from \: from the relation

we get

F(t)=1—exp (— /Ot)\(s) ds)

Survival probability from A: For a, b > 0,

a+b

P(X>a+b/X>a)=exp (-/ A(s)ds)

Probability Theory
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Example: smokers survival (1)

Data:
@ Death rate of smokers = twice death rate of non smokers
@ Consider 2 40-years old persons, 1 S and 1 N

@ We wish to compare their probability to survive until 50
Model: Let
A, = hazard rate for N, As = hazard rate for S

Then
As =2\,

Probabiity Theory 61/ 83



Example: smokers survival (2)

Compute:
50
P(5>50S5>40) = exp( / As(r )dr)

- on(2 i)

= [P(N >50|N > 40)]

Probabiity Theory 62 / 83
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Gamma random variable (1)
Notation:

M, A), with a, A >0
State space:
Ry =[0,00)
Density:

e M (Ax)* !

="+

1, (x), where r(a):/oo e—yya_]_ dy
0

Expected value and variance:

(0% (6%
E[X] = X, Var(X) = ﬁ

Probabiity Theory 64 / 83



Gamma random variable (2)

Use 1: Assume
e {T;; i>1}iid with common law E(\)
o T =3X",T,

Then T ~ (n, \)

Use 2: Assume
e {X;; i > 1} i.i.d with common law A(0,1)

Then
o/~ r(g, %)

@ Z is called a chi-squared r.v with n degrees of freedom

Probabiity Theory 65 / 83



Weibull random variable (1)

Notation:
W(a, 8,v), with o, 8 >0 and v € R
State space:

(v, 00)

F(x) = l1 —exp (- (X - ”)Bﬂ 100y ().

Expected value and variance:
2
2 1
MNi+-=)—-(r{1+-
(1) (+5)]

Probabiity Theory 66 / 83
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Weibull random variable (2)

Use:
@ Widely used for lifetimes in engineering systems

@ Versatile in order to model ageing

Hazard rate function:

Probabiity Theory 67 / 83



Cauchy random variable (1)

Notation:
Cauchy(«), with o € R

State space:
Density:

Expected value and variance:

Not defined (divergent integrals)!

Probabiity Theory 68 / 83



Cauchy random variable (2)

Use 1: Trigonometric function of a uniform r.v

Namely if
o X ~U([-3,3])
e Y =tan(X)

Then Y ~ Cauchy = Cauchy(0)

Use 2:
Typical example of r.v with no mean

Probabiity Theory 69 / 83



Example: beam (1)

Experiment:
@ Narrow-beam flashlight spun around its center
@ Center located a unit distance from the x-axis

@ X = point at which the beam intersects the x-axis
when the flashlight has stopped spinning

X-axis

Probabiity Theory 70 / 83



Example: beam (2)

Model:
o We assume 6 ~ U([-3.3])
@ We have X ~ tan(f)
Conclusion:
X ~ Cauchy

Probabiity Theory 71/ 83



Beta random variable (1)
Notation:
Beta(a, b), with a,b > 0

State space:

[0,1]
Density:
1
f(x) = B(s.b) x*71(1 — x)P1 1j01(x)
Expected value and variance:
b
E[X] = — Var(X) 2

at+b’ “(a+b2(atb+1)

Probabiity Theory 72/ 83



Beta random variable (2)

Beta function: In the definition of f we have set

Bs.b) = [ (1- 9" o5 = ()

Use:
Models for which we know that X € [c, d]

Behavior of f:

o If a= b, then f symmetric with respect to %
< as a ' oo, more weight given to %

@ If b > a, f is skewed to the left
e If a > b, f is skewed to the right

Probabiity Theory 73 / 83



Beta random variable (3)

Examples of f with a = b:

fx)

U AP P ———— L

[SIE =

SEIAN Continuous r.v Probability Theory 74 / 83



Beta random variable (4)
Examples of f with b = 19a: This also means E[X] = 5

fx)

Probabiity Theory 75 / 83
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Characterizing r.v by expected values

Notation:
Cp(R) = set of continuous and bounded functions on R.

r—[Theorem 13.]
Let X be a r.v. We assume that

E[o(X)] = /]R o(x) f(x) dx, for all functions ¢ € Cy(R).

Then X is continuous, with density f.

\.
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Application: change of variable

Problem: Let

@ X random variable with density f.
@ Set Y = h(X) with h: R — R.
We wish to find the density of Y.

Probabiity Theory 78 / €3



Application: change of variable (2)

Recipe: One proceeds as follows
Q For p € Cp(R), write

Elp(Y)] = E[p(h(X))] Z/Rtp(h(X))f(X) dx.

@ Change variables y = h(x) in the integral.
After some elementary computations we get

E[p(Y)] = /]R ©(y) g(y)dy.

© This characterizes Y, which admits a density g

Probabiity Theory 79 / €3



Example: normal r.v and linear transformations

,—[Proposition 14.] \
Let
o X ~N(0,1)
e pceRando >0
@ Set Y=0X+p

Then
Y ~ N(u, 02)

Probabiity Theory 80 / 83



Proof

Recipe, item 1: for ¢ € Cp(R), write

e—x2/2

E[(Y)] = Ele(0X + )] = [ o(ox+ ) N

Recipe, item 2: Change of variable: y = ox + pu:

o~ (r—1)?2/(20)

E[o(Y)] Z/Rw(y)g(y) dx, with g(y) = B =

Recipe, item 3:
Y is continuous with density g, therefore Y ~ A/ (y, 0?).

Probabiity Theory 81/ €3



Example: waiting time

Question 1: At Dr Gesund's office, the waiting time (in mn) is
modeled by a r.v Y =5+ X, where X ~ E(\) with A = 1/2. Find
the density of Y.

We find fy(y) = Ae "1 ) (y).

Question 2: The typical patient dissatisfaction is measured by the r.v
Z = In(X). Find the density of Z.

We find 77(z) = Aexp(—X\e” + z).

Probabiity Theory 82 / 83



Change of variable: general result

r—[Theorem 15.]
Let

@ X continuous random variable
@ Density: fx

@ g strictly monotonic differentiable function
° Y =g(X)

Then Y has a density fy given by

l{y:g(x) for some x}

() = (570) (7))

Probabiity Theory 83 / 83
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