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General definition

Let
P a probability on a sample space S
X : S → E a random variable, with E ⊂ R

We say that X is a continuous random variable if
↪→ There exists f ≥ 0 such that for "all" B ⊂ R we have

P(X ∈ B) =
∫

B
f (x) dx

The function f is called
↪→ the probability density function of the random variable X

Definition 1.
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Law of X according to f
Type of information obtained with f : We have

P(a ≤ X ≤ b) =
∫ b

a
f (x) dx

P(X = a) = 0

F (a) = P(X ≤ a) =
∫ a

−∞
f (x) dx

Figure: P(a ≤ X ≤ b) =
∫ b

a f (x) dx
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Example: radio tube (1)

Situation:
X = lifetime of a radio tube
Density of X :

f (x) = 100
x2 1(100,∞)(x)

We have 5 tubes in a set

Question: Probability that 2 of the 5 tubes have to be replaced
within the first 150h of operation
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Example: radio tube (2)
Family of events: We define

Xi = lifetime of tube i
Ei = "tube i has to be replaced within the first 150h of operation

Probability of Ei :

P(Ei) = P(Xi ≤ 150)

=
∫ 150

−∞
f (x) dx

= 100
∫ 150

100

dx
x2

Thus
P(Ei) = 1

3
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Example: radio tube (3)
Model for the set of tubes: Define

Zi = 1Ei , Z =
5∑

i=1
Zi

Then
Z ∼ Bin

(
5, 13

)
and we look for

P(Z = 2)

Conclusion:

P(Z = 2) =
(
5
2

)(1
3

)2 (2
3

)3
' 33%
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General definition

Let
P a probability on a sample space S
X : S → R a continuous random variable
f = density of X

Then the expected value of X is defined by

E[X ] =
∫
R
x f (x) dx

Definition 2.
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Heuristics for the definition
Recall the discrete case:

E [X ] =
∑
i≥1

xi P (X = xi)

Continuous case analog: We have

f (x) dx ' P (x ≤ X ≤ x + dx)

Thus

E[X ] '
∑

xi P (xi ≤ X ≤ xi + dx)

'
∫
R
x f (x) dx
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Simple example (1)

Density of X : Consider X with density

f (x) = 2x 1[0,1](x)
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Simple example (2)

Recall: We consider X with density

f (x) = 2x 1[0,1](x)

Expected value:

E[X ] =
∫
R
x f (x) dx

=
∫ 1

0
2x2 dx

= 2
3
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Expression for E[X ] when X ≥ 0

Let
X continuous random variable
f density of X

Hypothesis:
X ≥ 0

Then
E [X ] =

∫ ∞
0

P(X > y) dy (1)

Proposition 3.
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Proof

Expression for the rhs:∫ ∞
0

P(X > y) dy =
∫ ∞
0

(∫ ∞
y

f (x) dx
)
dy

Apply Fubini: Invert the order of integration∫ ∞
0

P(X > y) dy =
∫ ∞
0

(∫ x

0
dy
)
f (x) dx

=
∫ ∞
0

x f (x) dx

= E[X ]
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Definition of E[g(X )]

Let
X continuous random variable
f density of X
g real valued function

Then
E [g(X )] =

∫
R
g(x) f (x) dx (2)

Proposition 4.
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Simple example – Ctd (1)

Density of X : Consider X with density

f (x) = 2x 1[0,1](x)

Question: Compute
E[X 3]
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Simple example – Ctd (2)

Recall: We consider X with density

f (x) = 2x 1[0,1](x)

Expected value for g(x) = x3:

E[X 3] =
∫
R
x3 f (x) dx

=
∫ 1

0
2x4 dx

= 2
5
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Proof of Proposition 4
Hypothesis:
We assume X ≥ 0 and g(X ) ≥ 0 for the proof

Expression with (1):

E [g(X )] =
∫ ∞
0

P(g(X ) > y) dy

=
∫ ∞
0

(∫
{x ; g(x)>y}

f (x) dx
)

dy

Apply Fubini: Invert the order of integration

E [g(X )] =
∫ ∞
0

(∫ g(x)

0
dy
)

f (x) dx

=
∫ ∞
0

g(x) f (x) dx
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Expectation and linear transformations

Let
X discrete random variable
f density of X
a, b ∈ R constants

Then
E [aX + b] = a E [X ] + b

Proposition 5.
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Proof

Application of relation (2):

E [aX + b] =
∫
R

(a x + b) f (x) dx

= a
∫
R
x f (x) dx + b

∫
R
f (x) dx

= a E [X ] + b
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Definition of variance

Let
X continuous random variable
f density of X
µ = E[X ]

Then we define Var(X ) by

Var(X ) = E
[
(X − µ)2

]

Definition 6.
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Alternative expression for the variance

Let
X continuous random variable
f density of X
µ = E[X ]

Then Var(X ) can be written as

Var(X ) = E[X 2]− µ2 = E[X 2]− (E[X ])2

Proposition 7.
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Simple example – Ctd

Density of X : Consider X with density

f (x) = 2x 1[0,1](x)

Expected value for g(x) = x2:

E[X 2] =
∫
R
x2 f (x) dx =

∫ 1

0
2x3 dx = 1

2

Variance of X :

Var(X ) = E[X 2]− (E[X ])2 = 1
2 −

(2
3

)2
= 1

18
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Variance and linear transformations

Let
X continuous random variable
f density of X
a, b ∈ R constants

Then
Var (aX + b) = a2Var(X )

Proposition 8.
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Uniform random variable (1)
Notation:

X ∼ U([α, β]), with α < β

State space:

[α, β]

Density:
f (x) = 1

β − α
1[α,β](x)

Expected value and variance:

E[X ] = α + β

2 , Var(X ) = (β − α)2
12
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Uniform random variable (2)
Use:
U([0, 1]) only r.v directly accessible on a computer
↪→ rand function

Example of computation: if X ∼ U([8, 10]), then

P(7.5 < X < 9.5) = 1
2

∫ 9.5

8
dx = 9.5− 8

2 = 3
4
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Bertrand’s paradox (1)

Experiment:
Draw a random chord of a circle with center O and radius r

Question: Compute

p = probability that the chord is larger
than the side of the inscribed equilateral triangle
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Bertrand’s paradox (2)

Model 1:
Chord determined by its distance D to the center
D ∼ U([0, r ])

Computation of p under Model 1:

p = P
(
D ≤ r

2

)
= 1

2
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Bertrand’s paradox (3)
Model 2:

Chord parametrized by θ
θ = angle between chord and tangent
θ ∼ U([0, 90])

Computation of p under Model 2:
According to tangent-chord theorem

p = P (60 < θ < 90) = 90− 60
90 = 1

3
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Normal random variable (1)
Notation:

N (µ, σ2), with µ ∈ R and σ2 > 0

State space:

R

Density:

f (x) = 1√
2π σ2

exp
(
−(x − µ)2

2σ2

)

Expected value and variance:

E[X ] = µ, Var(X ) = σ2
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Normal random variable (2)

Use:
Quantities which depend on a large number of small parameters

Numerous examples in:
Biology
Physics and industry
Economics
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Normal random variable (3)

!5 !4 !3 !2 !1 0 1 2 3 4 5
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Figure: densities for N (0, 1), N (1, 1), N (0, 9), N (0, 1/4).
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Normal random variable (4)

Figure: Densities for (a) N (0, 1) (b) N (µ, σ2)
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Normal r.v and linear transformations

Let
X ∼ N (0, 1)
µ ∈ R and σ > 0
Set Y = σX + µ

Then
Y ∼ N (µ, σ2)

Proposition 9.
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Cdf for a normal r.v
Function Φ: For X ∼ N (0, 1) and x ≥ 0, set

Φ(x) = P(X ≤ x) = 1√
2π

∫ x

−∞
e−

y2
2 dy

Problem with Φ:
No algebraic expression
Numerical approximation needed
Use of tables

Property of Φ: For x ≥ 0,

Φ(−x) = 1− Φ(x)
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Table for Φ
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Simple normal computation (1)

Definition of a random variable: We let

X ∼ N
(
µ = 3, σ2 = 9

)

Questions: Compute
1 P(2 < X < 5)
2 P(X > 0)
3 P(|X − 3| > 6)
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Simple normal computation (2)

Change of variable: We define Z ∼ N (0, 1) by

Z = X − µ
σ

= X − 3
3

First question: We have

P(2 < X < 5) = P
(
−1
3 < Z <

2
3

)
= Φ

(2
3

)
−
(
1− Φ

(1
3

))
' .3779
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Simple normal computation (2)
Second question: We have

P(X > 0) = P (Z > −1)
= 1− Φ (−1)
= Φ(1)
' .8413

Third question: We have

P(|X − 3| > 6) = P (|Z | > 2)
= 1− Φ (2) + Φ (−2)
= 2 [1− Φ(2)]
' .0456
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Abraham de Moivre

Some facts about de Moivre:
Lifespan: 1667-1754, in ' Paris, London
Ousted from France as a protestant
↪→ in ' 1687
In London lived from

I Private lessons
I Assisting gamblers in a coffee house

Contributions in math
I Stirling’s formula
I First central limit theorem
I First results on Poisson distribution
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DeMoivre-Laplace theorem

Let
n ≥ 1, p ∈ (0, 1)
Xn ∼ Bin(n, p)
a < b

Then

lim
n→∞

P
(
a < Xn − np

(np(1− p))1/2
< b

)
= Φ(b)− Φ(a)

Theorem 10.

Empirical rule:
Accept approximation as long as np(1− p) ≥ 10
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Binomial converging to normal: illustration

Figure: Binomial histograms for different values of (n, p)
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Example: enrollment overbooking (1)

Situation:
Ideal size of a first-year class at a particular college
is 150 students.
Data: on average, only 30% of those accepted for admission
will actually attend
College policy: approve the applications of 450 students.

Question:
Compute the probability that
more than 150 first-year students attend this college.
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Example: enrollment overbooking (2)
Notation: We define

n = 450, p = .3
Xi = 1(i-th accepted student attends), for i = 1, . . . , n

Hypothesis:
Xi i.i.d with common law B(p)

Random variable of interest: Set

X = # students that will attend

Then
X =

n∑
i=1

Xi ∼ Bin(n, p)
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Example: enrollment overbooking (3)

Normal approximation: We look for

P (X ≥ 150.5)

= P
(

X − 450× 0.3
(450× 0.3× 0.7)1/2 ≥

150.5− 450× 0.3
(450× 0.3× 0.7)1/2

)

Therefore by DeMoivre-Laplace,

P (X ≥ 150.5) ' 1− Φ(1.59) ' 5.59%
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Exponential random variable (1)
Notation:

E(λ), with λ > 0

State space:

R+ = [0,∞)

Density:
f (x) = λe−λx1R+(x)

Expected value and variance:

E[X ] = 1
λ
, Var(X ) = 1

λ2
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Exponential random variable (2)
Use: Waiting time between

2 customer arrivals in a shop on a typical afternoon
Bus arrivals at a bus stop
Two jobs on a server from 12am to 6am

Empirical rule:
Number of arrivals given by a Poisson random variable

=⇒
Inter arrivals given by exponential random variables

Tail probability: If X ∼ E(λ), then for x ≥ 0 we have

P(X > x) =
∫ ∞

x
λ e−λz dz = e−λx
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Graphing an exponential law
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Figure: E(1), E(2), E(1/2). x-axis: x . y -axis: f (x)
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Memoryless property

Let
X be continuous random variable

Then X satisfies the memoryless property

P (X > s + t|X > t) = P (X > s)

if and only if there exists λ > 0 such that

X ∼ E(λ)

Proposition 11.
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Proof of =⇒ (1)

Functional equation: Set

F̄ (x) = P (X > x)

Then if X is memoryless, F̄ satisfies

g(s + t) = g(s) g(t) (3)

Value of g on rationals: If g satisfies (3), then

g
(1
n

)
= (g(1))1/n , g

(m
n

)
= (g(1))m/n
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Proof of =⇒ (2)

Expression for g(1):
We have g(1) = [g(1/2)]2 ≥ 0. Thus there exists λ ∈ R such that

g(1) = e−λ

Value of g on rationals (2): We have found that for x ∈ Q+,

g(x) = e−λx

Conclusion: By continuity of g , for all x ∈ R+ we have

g(x) = e−λx
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Example: car battery (1)

Situation:
Number of miles that a car can run before its battery wears out
is exponentially distributed
Average value of 10k miles
We have already run 3k miles with the battery
We wish to take a 5k trip

Question: Probability to complete the trip
without having to replace the car battery?
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Example: car battery (1)

Model:
X = # miles before battery wears out
X ∼ E(λ)
λ = 1

E[X ] = 1
10

We wish to compute P(X > 3 + 5|X > 3)

Computation:

P (X > 3 + 5|X > 3) = P (X > 5) = e− 1
2 ' 0.604
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Hazard rate function (1)

Let
X positive continuous random variable
Density f , cdf F
F̄ = 1− F

Then the hazard rate function is given by

λ(t) = f (t)
F̄ (t)

Definition 12.
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Hazard rate function (2)

Interpretation: λ is a failure rate, i.e

P (X ∈ [t, t + dt)|X > t) ' λ(t) dt

Exponential case: If x ∼ E(λ), we have

λ(t) = λ
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Hazard rate function (3)

Cdf from λ: from the relation

λ(t) = F ′(t)
1− F (t) ,

we get
F (t) = 1− exp

(
−
∫ t

0
λ(s) ds

)

Survival probability from λ: For a, b ≥ 0,

P (X > a + b|X > a) = exp
(
−
∫ a+b

a
λ(s) ds

)

Samy T. Continuous r.v Probability Theory 60 / 83



Example: smokers survival (1)

Data:
Death rate of smokers = twice death rate of non smokers
Consider 2 40-years old persons, 1 S and 1 N
We wish to compare their probability to survive until 50

Model: Let

λn = hazard rate for N, λs = hazard rate for S

Then
λs = 2λn
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Example: smokers survival (2)

Compute:

P (S > 50| S > 40) = exp
(
−
∫ 50

40
λs(r) dr

)
= exp

(
−2

∫ 50

40
λn(r) dr

)
= [P (N > 50|N > 40)]2
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Gamma random variable (1)
Notation:

Γ(α, λ), with α, λ > 0

State space:

R+ = [0,∞)

Density:

f (x) = λ e−λx (λx)α−1

Γ(α) 1R+(x), where Γ(α) =
∫ ∞
0

e−yyα−1 dy

Expected value and variance:

E[X ] = α

λ
, Var(X ) = α

λ2
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Gamma random variable (2)

Use 1: Assume
{Ti ; i ≥ 1} i.i.d with common law E(λ)
T = ∑n

i=1 Ti

Then T ∼ Γ(n, λ)

Use 2: Assume
{Xi ; i ≥ 1} i.i.d with common law N (0, 1)
Z = ∑n

i=1 X 2
i

Then
Z ∼ Γ(n

2 ,
1
2)

Z is called a chi-squared r.v with n degrees of freedom
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Weibull random variable (1)
Notation:

W(α, β, ν), with α, β > 0 and ν ∈ R

State space:

(ν,∞)

Cdf:
F (x) =

[
1− exp

(
−
(x − ν

α

)β)]
1(ν,∞)(x),

Expected value and variance:

E[X ] = ν+α Γ
(
1 + 1

β

)
, Var(X ) = α2

Γ
(
1 + 2

β

)
−
(

Γ
(
1 + 1

β

))2

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Weibull random variable (2)

Use:
Widely used for lifetimes in engineering systems
Versatile in order to model ageing

Hazard rate function:

λ(x) = β

α

(x − ν
α

)β−1
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Cauchy random variable (1)
Notation:

Cauchy(α), with α ∈ R

State space:

R

Density:
f (x) = 1

π

1
1 + (x − α)2

Expected value and variance:

Not defined (divergent integrals)!
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Cauchy random variable (2)

Use 1: Trigonometric function of a uniform r.v
Namely if

X ∼ U([−π
2 ,

π
2 ])

Y = tan(X )
Then Y ∼ Cauchy ≡ Cauchy(0)

Use 2:
Typical example of r.v with no mean
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Example: beam (1)
Experiment:

Narrow-beam flashlight spun around its center
Center located a unit distance from the x -axis
X = point at which the beam intersects the x -axis

when the flashlight has stopped spinning
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Example: beam (2)

Model:
We assume θ ∼ U([−π

2 ,
π
2 ])

We have X ∼ tan(θ)

Conclusion:
X ∼ Cauchy
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Beta random variable (1)
Notation:

Beta(a, b), with a, b > 0

State space:

[0, 1]

Density:
f (x) = 1

B(a, b) x
a−1(1− x)b−1 1[0,1](x)

Expected value and variance:

E[X ] = a
a + b , Var(X ) = a b

(a + b)2(a + b + 1)
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Beta random variable (2)

Beta function: In the definition of f we have set

B(a, b) =
∫ 1

0
sa−1(1− s)b−1 ds = Γ(a)Γ(b)

Γ(a + b)

Use:
Models for which we know that X ∈ [c , d ]

Behavior of f :
If a = b, then f symmetric with respect to 1

2
↪→ as a ↗∞, more weight given to 1

2
If b > a, f is skewed to the left
If a > b, f is skewed to the right
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Beta random variable (3)

Examples of f with a = b:
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Beta random variable (4)
Examples of f with b = 19a: This also means E[X ] = 1

20
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Characterizing r.v by expected values

Notation:
Cb(R) ≡ set of continuous and bounded functions on R.

Let X be a r.v. We assume that

E[ϕ(X )] =
∫
R
ϕ(x) f (x) dx , for all functions ϕ ∈ Cb(R).

Then X is continuous, with density f .

Theorem 13.
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Application: change of variable

Problem: Let
X random variable with density f .
Set Y = h(X ) with h : R→ R.

We wish to find the density of Y .
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Application: change of variable (2)

Recipe: One proceeds as follows
1 For ϕ ∈ Cb(R), write

E[ϕ(Y )] = E[ϕ(h(X ))] =
∫
R
ϕ(h(x)) f (x) dx .

2 Change variables y = h(x) in the integral.
After some elementary computations we get

E[ϕ(Y )] =
∫
R
ϕ(y) g(y) dy .

3 This characterizes Y , which admits a density g
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Example: normal r.v and linear transformations

Let
X ∼ N (0, 1)
µ ∈ R and σ > 0
Set Y = σX + µ

Then
Y ∼ N (µ, σ2)

Proposition 14.
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Proof

Recipe, item 1: for ϕ ∈ Cb(R), write

E[ϕ(Y )] = E[ϕ(σX + µ)] =
∫
R
ϕ(σx + µ) e

−x2/2
√
2π

dx .

Recipe, item 2: Change of variable: y = σx + µ:

E[ϕ(Y )] =
∫
R
ϕ(y) g(y) dx , with g(y) = e−(y−µ)2/(2σ2)

√
2πσ2

.

Recipe, item 3:
Y is continuous with density g , therefore Y ∼ N (µ, σ2).
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Example: waiting time

Question 1: At Dr Gesund’s office, the waiting time (in mn) is
modeled by a r.v Y = 5 + X , where X ∼ E(λ) with λ = 1/2. Find
the density of Y .
We find fY (y) = λe−λ(y−5)1[5,∞)(y).

Question 2: The typical patient dissatisfaction is measured by the r.v
Z = ln(X ). Find the density of Z .
We find fZ (z) = λ exp(−λez + z).
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Change of variable: general result

Let
X continuous random variable
Density: fX
g strictly monotonic differentiable function
Y = g(X )

Then Y has a density fY given by

fY (y) = fX
(
g−1(y)

) ∣∣∣∣( g−1(y)
)′∣∣∣∣ 1{y=g(x) for some x}

Theorem 15.
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