MA /STAT 519: Introduction to Probability
Fall 2018, Final Examination

Instructor: Yip

e This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have

120 minutes to do this test. Plan your time well. Read the questions carefully.

e This test is closed book, with no electronic device. One two-sided-8 x 11 formula sheet

is allowed.

e In order to get full credits, you need to give correct and simplified answers and explain in

a comprehensible way how you arrive at them.
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1. The pdf of a Cauchy random variable with (scale-)parameter o > 0 is given by

. (e
pa(l')—m, —00 < T < 00.

You are given the fact that if X and Y are independent Cauchy random variables with

parameters « and 3, then X 4+ Y is a Cauchy random variable with parameter o + j3.

(a) Explain why Cauchy random variable is infinitely divisible, i.e. given a Cauchy random
variable X with parameter «, for each positive integer n, there are 7id random variables
Y1, Yo, ...,Y, such that Y; + Y5 + - .- 4+ Y,, has the same distribution as X.

(b) Let X1, Xa,...,X, be iid Cauchy random variables with paramter 1. Find the pdf of

X1+ Xp+ -+ X
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2. Suppose n balls are distributed in n boxes in such a way that each ball chooses a box inde-

pendently of each other.

(a) What is the probability that Box #1 is empty?
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3. An urn contains a large number of coins. Each coin gives a head with probability p. The
value of p varies from coin to coin but is uniformly distributed in [0, 1]. Now a coin is selected

at random. This same coin is used in the following question.

(a) The coin is tossed once. What is the probability that the outcome is a head?
(b) The coin is tossed twice. What is the probability that both outcomes are heads?

(¢) The coin is tossed n times. Let X be the number of heads obtained. Find the distribution
of X, ie. find P(X =1).

(d) The coin is kept being tossed until a head is obtained. Let N be the number of tossing
needed. Find the distribution of N, i.e. find P(N = n).

(e) Find E(N), the expectation of N.

Note: The following integration identity might be useful: for any positive integers a, b,

b 1, (a=Db—1)!
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4. (a) Let X and Y be two identical, independent exponentially distributed random variables
with parameter 1. Find the pdf of Z = %

(b) Let X and Y

be two identical, independent standard normal random variables with

: X
parameter 1. Find the pdf of Z = .

(A Pl7 <z) = P(—%f— <2) = P/X(fﬂ
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5. (a)

Let X and Y be bi-variate normal random variables with joint probability density given

(z.5) 1 { x2—2p:cy—i—y2}
Pz, Y) = —F—=eXPy{———F5 7 5
27/1 — p? 2(1—=p?)

Find the conditional probability density of X and Y, i.e. find,

as follows:

px|y (z]y).

Relate your answer to some common distribution — be as quantitative as possible.

Let X ~ N(©,1), i.e. normal random variable with mean © and variance 1. Now the
actual value of © is not known but is distributed as N'(0, 1), i.e. normal random variable

with mean 0 and variance 1. The above information is expressed as:
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An experiment is performed and an actual value X is obtained. Find the conditional

z— 0)2
priaalt) = <= e (<570 and pes) =

probability distribution of © given X = «, i.e. find

pe|x (0z).

Relate your answer to some common distribution — be as quantitative as possible.
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