MA/STAT 519: Introduction to Probability
 Fall 2018, Final Examination
 Instructor: Yip

- This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have 120 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, with no electronic device. One two-sided- 8×11 formula sheet is allowed.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

Question	Score
$\frac{1 .(20 \mathrm{pts})}{2 \cdot(20 \mathrm{pts})}$	
$\frac{3 \cdot(20 \mathrm{pts})}{4 .(20 \mathrm{pts})}$	
$\frac{5 \cdot(20 \mathrm{pts})}{\text { Total }(100 \mathrm{pts})}$	

1. The pdf of a Cauchy random variable with (scale-) parameter $\alpha>0$ is given by

$$
p_{\alpha}(x)=\frac{\alpha}{\pi\left(x^{2}+\alpha^{2}\right)}, \quad-\infty<x<\infty .
$$

You are given the fact that if X and Y are independent Cauchy random variables with parameters α and β, then $X+Y$ is a Cauchy random variable with parameter $\alpha+\beta$.
(a) Explain why Cauchy random variable is infinitely divisible, i.e. given a Cauchy random variable X with parameter α, for each positive integer n, there are id random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ such that $Y_{1}+Y_{2}+\cdots+Y_{n}$ has the same distribution as X.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be aid Cauchy random variables with parameter 1. Find the pdf of
(a) Cauchy (α) +

Cauchy (β) $\stackrel{\otimes}{\sim}$ Cauchy $(\alpha+\beta)$
Hence

$$
=\text { Cauchy }\left(\frac{\alpha}{n}+\frac{\alpha}{n}+\cdots+\frac{\alpha}{n}\right)
$$

$=\operatorname{Cauchy}(\alpha)$
(b)

$$
\begin{aligned}
X_{1}+X_{2}+\cdots+X_{n}=Y \stackrel{\otimes}{\sim} & \text { Candy }(1+1+\cdots+1) \\
& =\text { Cauchy }(n) \\
\text { Hence pol of } Y \text { is } P_{Y}(y) & =\frac{n}{\pi\left(y^{2}+n^{2}\right)}
\end{aligned}
$$

Let $Z_{1}=\frac{Y}{n}$
By change of variable formula, the pol of 2 is given by

$$
\begin{aligned}
P_{Z}(z) & =p_{Y}(y) / \frac{d y}{d z} / \\
& =p_{Y}(y) n \\
& =p_{Y}(n z) n \\
& =\frac{n}{\pi\left(n^{2} z^{2}+n^{2}\right)} \times n \\
& =\frac{1}{\pi\left(z^{2}+1\right)}
\end{aligned}
$$

Hence $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=Z_{1}$ $\stackrel{\infty}{\sim}$ Cauchy (i)
2. Suppose n balls are distributed in n boxes in such a way that each ball chooses a box idependently of each other.
(a) What is the probability that Box \#1 is empty?
(b) What is the probability that only Box \#1 is empty?
(c) What is the probability that only one box is empty?
(d) Given that Box \#1 is empty, what is the probability that only one box is empty?
(e) Given that only one box is empty, what is the probability that Box \#1 is empty?

$$
n \text { balls } \rightarrow n \text { bases }
$$

(b) n balls
o balls n bells in ($n-7$)-boxes

Hence all of the $n-1$ boxes each has one

$$
\begin{aligned}
& \text { ball except one having two balls. } \\
& \binom{n}{2} \text { : choice a groupof } 2 \text { bells } \\
& \text { (} n \rightarrow \text {)! : put int (n } n \text {) balls } \\
& 2^{n} \text { : total no. of ways }
\end{aligned}
$$

[Alternatively, make rise of multi-nomial distribution:
The distribution of balls is given by:

$$
\begin{gathered}
x_{1}+x_{2}+\cdots+x_{n}=n \\
\text { with } x_{1}=0, \quad x_{2}, x_{3}, \cdots, x_{n} \geqslant 1
\end{gathered}
$$

Hence all of $x_{2}, x_{3}, \cdots, x_{n}=1$, except one, which equals two.
Hence probability

$$
\begin{aligned}
&=\sum \frac{n!}{x_{1}!x_{2}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{x_{1}}\left(\frac{1}{n}\right)^{x_{2}} \cdots\left(\frac{n}{n}\right)^{x_{n}} \\
&=(n-1) \times \frac{n!}{0!!!!\cdots \cdots 2!} \frac{1}{n^{n}}=\frac{n(n-1)}{2} \frac{(n-1)!}{n^{n}} \\
&\left.=\binom{n}{2} \frac{(n-1)!}{n^{n}} \cdot\right] \\
& \text { one }
\end{aligned}
$$

choose one
box with 2
balls

$$
\text { (c): Ans }(c)=\frac{n \times \operatorname{Ans}(b)}{t}=n\binom{n}{2} \frac{(n-1) \cdot}{n^{n}}
$$

any of the n balls can be empty.

You can use this blank page.
(d) P (only one bax $\left./ \begin{array}{c}\text { Box \#1 is } \\ \text { is empery } \\ \text { empty }\end{array}\right)$

$$
\begin{aligned}
& =\frac{P(\text { only one box is empty } \cap \text { Bax } \# \text { one is empty })}{P(\text { Box } \# \mathcal{1} \text { is empty })} \\
& =\frac{P(\text { only Box \#1 is empty })}{P(\text { Bax } \# \mathcal{L} \text { is empty })} \\
& =\frac{(b)}{(a)}=\frac{\binom{n}{2} \frac{(n-1)!}{n^{n}}}{\frac{(n-1)^{n}}{n^{n}}}=\frac{\binom{n}{2}(n-1)!}{(n-1)^{n}}
\end{aligned}
$$

(e) (1 (By symmetry, any of the n bores can be empty)
[Alternatively, Ans $=P$ (Box\# is empty/ only one Boxis empty $)$

$$
\begin{aligned}
=\frac{P(\text { only Sex \#f \& empty })}{P(\text { on ty one bexis empty })} & =\frac{(b)}{(c)} \\
& =\frac{1}{n .}
\end{aligned}
$$

$($ Ross. p. $358 \neq 70,71,72)$
3. An urn contains a large number of coins. Each coin gives a head with probability p. The value of p varies from coin to coin but is uniformly distributed in $[0,1]$. Now a coin is selected at random. This same coin is used in the following question.
(a) The coin is tossed once. What is the probability that the outcome is a head?
(b) The coin is tossed twice. What is the probability that both outcomes are heads?
(c) The coin is tossed n times. Let X be the number of heads obtained. Find the distribution of X, i.e. find $P(X=i)$.
(d) The coin is kept being tossed until a head is obtained. Let N be the number of tossing needed. Find the distribution of N, i.e. find $P(N=n)$.
(e) Find $E(N)$, the expectation of N.

Note: The following integration identity might be useful: for any positive integers a, b,

$$
\begin{aligned}
& \int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{(a-1)!(b-1)!}{(a+b-1)!} . \\
& \begin{aligned}
\text { (a) } P(H)=\int_{0}^{1} P(H / p) P(p) d p=\int_{0}^{1} p d p=\frac{1}{2} \\
\text { (b) } P(H H)=\int_{0}^{1} P(H H / p) P(p) d p=\int_{0}^{1} p^{2} d p=\frac{1}{3}
\end{aligned} \\
& \text { (c) } p(X=i)=\int_{0}^{1}(\eta) p^{i}(1-p)^{n-i} d p \\
& =\binom{n}{n} \frac{i!(n-i)!}{(n+1)!}=\left(\frac{1}{(n+1)}\right. \\
& \cos P(N=n)=\int_{0}^{1} q_{8}^{n-1} p d p
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\text {You can use this blank page. }}^{1} p(1-p)^{n-1} d p \\
& =\frac{1!(n-1)!}{(n+1)!}=\frac{1}{(n+1) n}
\end{aligned}
$$

(e)

$$
\begin{aligned}
E(N) & =\sum_{n=1}^{\infty} n P(N=n) \\
& =\sum_{n=1}^{\infty} n \times \frac{1}{(n+1) n} \\
& =\sum_{n=1}^{\infty} \frac{1}{n+1}
\end{aligned}
$$

$=\infty$ (Harmonic series, divergent)
4. (a) Let X and Y be two identical, independent exponentially distributed random variables with parameter 1. Find the pdf of $Z=\frac{X}{Y}$.
(b) Let X and Y be two identical, independent standard normal random variables with parameter 1. Find the pdf of $Z=\frac{X}{Y}$.
(a) $P(Z, z)=P\left(\frac{X}{Y} \leqslant z\right)=P(X \leqslant z Y)$

$$
\begin{aligned}
& =\int_{0}^{\infty} \int_{0}^{\frac{x}{z}} e^{x} e^{-y} d y d x=\int_{0}^{\infty} e^{-x}\left(e^{-\frac{x}{z}}\right) d x \\
& =\int_{0}^{\infty} \tilde{e}^{\left(1+\frac{1}{z}\right) x} d x=\frac{1}{1+\frac{1}{z}}=\frac{z}{1+z} \\
& p_{a}(z)=\frac{d}{d z}\left(\frac{z}{1+z}\right)=\frac{1+z-z}{(1+z)^{2}}=\frac{1}{(1+z)^{2}}, z \geqslant 0
\end{aligned}
$$

(a)

$$
\begin{aligned}
&) P(Z, Z, K)=P\left(\frac{X}{Y} \leqslant z\right) \\
& =P(X \leqslant Z Y, Y \geqslant 0)+P(X \geqslant Z Y, Y \leqslant 0)
\end{aligned}
$$

$$
=\iint_{(\pm)} \frac{e^{-\frac{x^{2}+y^{2}}{2}}}{2 \pi} d x d y+\iint_{(\mathbb{I})} \frac{e^{-\frac{x^{2}+y^{2}}{2}}}{2 \pi} d x d y
$$

$=2 \iint_{\left(-\frac{e^{\frac{x^{2}+y^{2}}{2}}}{2 \pi}\right.}^{2 \pi} d x d y \quad$ (Use Polau coord:

$$
=2 \int_{\varphi}^{\pi} \underbrace{\frac{\int_{0}^{\infty}}{\frac{-r^{2} / 2}{2 \pi}} r d r d \theta}_{\frac{1}{2 \pi}}=\frac{1}{\pi} \int_{\varphi}^{\pi} d \theta=\frac{\pi-\varphi}{\pi}
$$

5. (a) Let X and Y be bi-variate normal random variables with joint probability density given as follows:

$$
p(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\}
$$

Find the conditional probability density of X and Y, i.e. find,

$$
p_{X \mid Y}(x \mid y)
$$

Relate your answer to some common distribution - be as quantitative as possible.
(b) Let $X \sim \mathcal{N}(\Theta, 1)$, i.e. normal random variable with mean Θ and variance 1. Now the actual value of Θ is not known but is distributed as $\mathcal{N}(0,1)$, i.e. normal random variable with mean 0 and variance 1 . The above information is expressed as:

$$
p_{X \mid \Theta}(x \mid \theta)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\theta)^{2}}{2}\right), \text { and } p_{\Theta}(\theta)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\theta^{2}}{2}\right) .
$$

An experiment is performed and an actual value X is obtained. Find the conditional probability distribution of Θ given $X=x$, i.e. find

$$
p_{\Theta \mid X}(\theta \mid x)
$$

Relate your answer to some common distribution - be as quantitative as possible.

(b)

$$
\begin{aligned}
& p\left(\theta(x)=\frac{p(\theta, x)}{p(x)}=\frac{p(x \mid \theta) p(\theta)}{p(x)}\right. \\
&= C(x) e^{-\frac{(x-\theta)^{2}}{2}} e^{-\frac{\theta^{2}}{2}} \\
&=C(x) e^{-\frac{x^{2}-2 x \theta+2 \theta^{2}}{2}} \\
&=C(x) e^{-\left(\theta^{2}-x \theta\right)} \\
&=C(x) e^{-\left(\theta^{2}-x \theta+\frac{x^{2}}{4}-\frac{x^{2}}{4}\right)} \\
&=C(x) e^{-\left(\theta-\frac{x}{2}\right)^{2}} \\
&=C(x) e^{-\frac{\left(\theta-\frac{x}{2}\right)^{2}}{2\left(\frac{1}{2}\right)}} \sim N\left(\frac{x}{2}, \frac{1}{2}\right)
\end{aligned}
$$

