MA/STAT 519: Introduction to Probability Fall 2018, Final Examination

Instructor: Yip

- This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have 120 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is **closed book**, with no electronic device. One two-sided-8 × 11 formula sheet is allowed.
- In order to get full credits, you need to give **correct** and **simplified** answers and explain in a **comprehensible way** how you arrive at them.

Answer Key Name:_ (Department:)

Question	Score
1.(20 pts)	
2.(20 pts)	
3.(20 pts)	
4.(20 pts)	
5.(20 pts)	
Total (100 pts)	

1. The pdf of a Cauchy random variable with (scale-)parameter $\alpha > 0$ is given by

$$p_{\alpha}(x) = \frac{\alpha}{\pi(x^2 + \alpha^2)}, \quad -\infty < x < \infty.$$

You are given the fact that if X and Y are independent Cauchy random variables with parameters α and β , then X + Y is a Cauchy random variable with parameter $\alpha + \beta$.

- (a) Explain why Cauchy random variable is *infinitely divisible*, i.e. given a Cauchy random variable X with parameter α , for each positive integer n, there are *iid* random variables Y_1, Y_2, \ldots, Y_n such that $Y_1 + Y_2 + \cdots + Y_n$ has the same distribution as X.
- (b) Let X_1, X_2, \ldots, X_n be iid Cauchy random variables with paramter 1. Find the pdf of

 $Cauchy(x) + Cauchy(\beta) \approx Cauchy(\alpha + \beta)$ $(\hat{\boldsymbol{R}})$ Hence $Cauchy(\frac{\alpha}{n}) + Cauchy(\frac{\alpha}{n}) + \dots + Cauchy(\frac{\alpha}{n})$ n ind. Summands = $Counchy(\frac{\alpha}{n} + \frac{\alpha}{n} + \dots + \frac{\alpha}{n})$ = Cauchy (x) $X_1 + X_2 + \dots + X_n = Y \stackrel{\text{def}}{\sim} Cauchy(1 + 1 + \dots + 1)$ *(b)* = Canchy(n) Hence pot of Y is $P_{\gamma}(y) = \frac{n}{T(y^2 + n^2)}$

You can use this blank page.

 $L \neq Z = Y$ By change of variable formula, the polf of Zo is given by $P_{Z}(z) = P_{Y}(y) \left| \frac{dy}{dz} \right|$ $= P_{\gamma}(y) n$ $= P_{\gamma}(nz)n$ $= \frac{\eta}{\pi/n^2 z^2 + n^2} \cdot n$ $= \left(\frac{1}{T(z^2+1)}\right)$ Hence X1+ X2+ --+ Xn n De Canchy ())

- 2. Suppose n balls are distributed in n boxes in such a way that each ball chooses a box independently of each other.
 - (a) What is the probability that Box #1 is empty?
 - (b) What is the probability that only Box #1 is empty?
 - (c) What is the probability that only one box is empty?
 - (d) Given that Box #1 is empty, what is the probability that only one box is empty?
 - (e) Given that only one box is empty, what is the probability that Box #1 is empty?

nballs hones of choices (in an-1 boxes) Ans= totalno, of choices balls (b)n bells in (n-1) - boxes O ball Hunce all of the n-1 boxes each has one ball except one having two balls. $\binom{n}{2}$: choose a group of 2 balls (n-D!) Ans = (n-D! : put into (n-1) balls n n": total no. of ways 5

[Alternatively, make ruse of multi-nomial distribution: The distribution of balls is given by: $X_{r+}X_{r+} \cdots + X_{n} = n$ with $X_1 = 0$, $X_2, X_3, --, X_n \ge 1$. Hence all of N2, X3, --, Xn = 1, except one, which equals two. Hence probability $= \overline{\sum} \frac{n!}{\chi_1! \chi_2! \cdots \chi_n!} (\frac{1}{n})^{\chi_1} (\frac{1}{h})^{\chi_2} \cdots (\frac{1}{h})^{\chi_n}$ $= (n-1) \times \frac{n!}{0!!!!!\cdots 2!} \frac{1}{n!} = \frac{n(n-1)}{2} \frac{(n-1)!}{n!}$ $= \left(\begin{pmatrix} n \\ 2 \end{pmatrix} \frac{(n-1)!}{n^n} \right)$ choose one box with 2 balls $Ans(c) = n \times Ans(b) = n \binom{n}{2} \frac{(n-1)!}{n!}$ () : any of the n balls can be empty.

You can use this blank page.

(d) P (only one box Box #1 is is empty empty

= P(anly one box is empty () Box # one is empty) P(Box #1 is empty)

= P(only Box #1 is empty) P(Bex #1 is empty) $= \frac{\binom{n}{2}}{\binom{n}{2}} = \frac{\binom{n}{2} \frac{(n-1)!}{n^n}}{\frac{(n-1)^n}{n^n}} = \frac{\binom{n}{2} (n-1)!}{(n-1)^n}$

(e) $\begin{pmatrix} -1 \\ n \end{pmatrix}$ (By symmetry, any of the n boxes) have be empty [Alternatively, Ans = P(Bax # is empty | anly one Boxis empty)= $\frac{P(Only Bax #1 is empty)}{P(only one baxis empty)} = \frac{(b)}{(c)}$ = $\frac{f(0)}{P(only one baxis empty)} = \frac{f(1)}{f(1)}$

(Ross. p. 358 #70, 71, 72

- 3. An urn contains a large number of coins. Each coin gives a head with probability p. The value of p varies from coin to coin but is uniformly distributed in [0, 1]. Now a coin is selected at random. This *same* coin is used in the following question.
 - (a) The coin is tossed once. What is the probability that the outcome is a head?
 - (b) The coin is tossed twice. What is the probability that both outcomes are heads?
 - (c) The coin is tossed n times. Let X be the number of heads obtained. Find the distribution of X, i.e. find P(X = i).
 - (d) The coin is kept being tossed until a head is obtained. Let N be the number of tossing needed. Find the distribution of N, i.e. find P(N = n).
 - (e) Find E(N), the expectation of N.

Note: The following integration identity might be useful: for any positive integers a, b,

 $\int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = \frac{(a-1)!(b-1)!}{(a+b-1)!}.$ $\mathcal{P}(H) = \int_{0}^{1} \mathcal{P}(H/p) \mathcal{P}(p) dp = \int_{0}^{1} \mathcal{P}(p) dp = \left(\int_{0}^{1} \mathcal{P}(p) - \frac{1}{2} \right) dp = 1$ ra) (b) $P(HH) = \int P(HH/p) P(p) dp = \int p^2 dp =$

 $(C) \mathcal{P}(\chi=i) = \int_{a}^{a} (\mathcal{P}) p^{i} (p-p)^{m}$ $= \binom{n}{i!} \frac{i! (n-i)!}{(n+i)!}$ <u>_</u>

 $(d) \mathcal{P}(N=n) = \int^{\mathcal{L}} g^{n-1} p$

 $= \int_{0}^{1} p(I-p)^{n-1} dp$ You can use this blank page.

$$= \frac{1!(m-1)!}{(m+1)!} =$$

- 4. (a) Let X and Y be two identical, independent exponentially distributed random variables with parameter 1. Find the pdf of $Z = \frac{X}{Y}$.
 - (b) Let X and Y be two identical, independent standard normal random variables with parameter 1. Find the pdf of $Z = \frac{X}{Y}$.

(a) $P(Z,Sz) = P(\frac{X}{Y},Sz)$ = P(XSZY, Y>0)+P(XZZY, YSO) $\chi = z \eta$, $(\eta = z \chi)$ ψ $tam \varphi = z$ $= \iint \frac{\overline{e}}{2\pi} \frac{\sqrt{2}}{2\pi} dx dy + \iint \frac{\overline{e}}{2\pi} \frac{\sqrt{2}}{2\pi} dx dy$ $= 2 \iint_{\Xi} \frac{2}{2T_{1}} \frac{2}{2} \frac{1}{2} \frac{1}{$ (Use Polan coord: dxdy= r drob) $= 2 \int_{\varphi^{\circ}}^{\pi} \frac{\overline{e}}{e^{1/2}} r dr d\theta = \frac{1}{\pi} \int_{\varphi}^{\pi} d\theta = \frac{\pi - \varphi}{\pi}$ 12

You can use this blank page.

 $P_{Z}(z) = \frac{1}{1/2} \left(\frac{T - t - t - t}{T} \right)$

 $=\frac{1}{T_{1}}\left(-\frac{1}{1+\frac{1}{2}}\right)\left(-\frac{1}{2}\right)$ Deauchy Distribution

TI- tan 2 TI- TI- 1 5. (a) Let X and Y be bi-variate normal random variables with joint probability density given as follows:

$$p(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right\}$$

Find the conditional probability density of X and Y, i.e. find,

$$p_{X|Y}(x|y).$$

Relate your answer to some common distribution – be as quantitative as possible.

(b) Let $X \sim \mathcal{N}(\Theta, 1)$, i.e. normal random variable with mean Θ and variance 1. Now the actual value of Θ is not known but is distributed as $\mathcal{N}(0, 1)$, i.e. normal random variable with mean 0 and variance 1. The above information is expressed as:

$$p_{X|\Theta}(x|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2}\right), \text{ and } p_{\Theta}(\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta^2}{2}\right).$$

An experiment is performed and an actual value X is obtained. Find the conditional probability distribution of Θ given X = x, i.e. find

 $p_{\Theta|X}(\theta|x).$

Relate your answer to some common distribution – be as quantitative as possible.

