# MA/STAT 519: Introduction to Probability Spring 2018, Final Examination 

Instructor: Yip

- This test booklet has SEVEN QUESTIONS, totaling 100 points for the whole test. Questions $\# 5,6,7$ are worth 20 points each. You have 120 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, with no electronic device. One two-sided $8 \times 11$ formula sheet is allowed.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- When hints are provided in the question, it is at your discretion if you want to utilize them.


| Question | Score |
| :--- | :--- |
| 1. $(10 \mathrm{pts})$ |  |
| $2 \cdot(10 \mathrm{pts})$ |  |
| $3 \cdot(10 \mathrm{pts})$ |  |
| $4 \cdot(10 \mathrm{pts})$ |  |
| $\frac{5 \cdot(20 \mathrm{pts})}{6 \cdot(20 \mathrm{pts})}$ |  |
| $7 \cdot(20 \mathrm{pts})$ |  |
| Total $(100 \mathrm{pts})$ |  |

1. Consider infinitely many id experiments of throwing a pair of dice. The outcome of each experiment is the sum of the two numbers. Let $N \geq 1$ be the number of experiments such that the number 5 or 7 first appears as the outcome. Let further $X$ be that number at the $N$-th experiment, i.e. $X$ is either a 5 or 7 .
(a) Find $P(N=n)$ for $n \geq 1$.
(Hint: Find first $P(N \geq n)$.) $\quad($ Ross, p. $50 \not 225$, p104 \#76)
(b) Find $P(X=5)$, equivalently, find the probability that 5 appears before 7 .
(Hint: Condition on the first outcome.)

$$
\begin{aligned}
& P(5)=P((1,4),(2,3),(3,2),(4,1))=\frac{4}{36} \\
& P(7)=P((1,6),(2,5), \cdots,(6,1))=\frac{6}{36} \\
& P(5 \cap 7)=\frac{10}{36}, \quad P(\operatorname{not} 5, \text { not } 7)=\frac{26}{36}
\end{aligned}
$$

(a) $P(N=n)=P\left(15 t n-1\right.$ antares $\neq 5,7 n^{\text {th }}$ outcome

$$
\begin{equation*}
\text { (Gemetrie r.v.) }=\left(\frac{26}{36}\right)^{n-1}\left(\frac{10}{36}\right)=\left(\frac{13}{18}\right)^{n-1}\left(\frac{5}{18}\right) \tag{=50.7}
\end{equation*}
$$

(6) Intuitively, the answer should be $\frac{P(5)}{P(5+P(t)}$.

$$
\begin{aligned}
P(X=5) & =P\left(X=5 \mid 1^{s t}=5\right) P\left(1^{k t}=5\right) \\
& +P\left(X=5 \mid 1^{s t}=7\right) P\left(1^{8 t}=7\right) \\
& +P\left(X=5 / 1^{s t} \neq 5,7\right) P\left(1^{5 t} \neq 5,7\right)
\end{aligned}
$$

You can use this scrap paper.

$$
P(X=5)=1 \times P(5)+0 \times P / 7)+P(X=5) P(\operatorname{not} 5, \operatorname{not} 7)
$$

combined.

$$
P(X=5)[\underbrace{1-P(\operatorname{sot} 5, \operatorname{not} 7)}_{P(5 \cos 7)}]=P(5)
$$

Hence

$$
\begin{aligned}
P(X=5) & =\frac{P(5)}{P(5 a 7)} \\
& =\frac{P(5)}{P(5)+P(7)} \\
& =\frac{4}{4+6}=\frac{2}{5}
\end{aligned}
$$

2. Let $X$ and $Y$ be two independent discrete random variables. For each of the following cases, compute the conditional distribution of $X$ given $X+Y$, i.e. find

$$
P(X=i \mid X+Y=j)
$$

Ross par ${ }^{\text {Iso, relate the conditional distribution to some common, ie. well known, distribution. }}$ (a) $X$ i $\qquad$
(b) $X$ is Binomial with parameter $n$ and $p$ and $Y$ is Binomial with parameter $m$ and

Ross $p 275$ 者"

$$
P(X=i \mid X+Y=i)=\frac{P(X=i, X+Y=j)}{P(X+Y=j)}=\frac{P(X=i) P(=-j=i)}{P(X+Y=j)}
$$

(a) $X \sim \operatorname{Paisan}(\lambda), Y=\operatorname{Paissom}(\mu), X+Y \sim P_{\text {Bis sen }}(\lambda+\mu)$

$$
\begin{aligned}
& P(X=i / X+==j)=\frac{\frac{e^{-\lambda} \lambda^{i}}{i!} \frac{e^{-\mu} \mu^{j-i}}{(j i)!}}{\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{j}}{j!}} \\
& =\frac{j!}{i!(j-i)!} \frac{\lambda^{i} \mu^{j-i}}{(\lambda+\mu) j} \operatorname{Din}^{\left(\operatorname{Bin}\left(j-\frac{\lambda}{\lambda+\mu}\right)\right)} \\
& =\binom{j}{i}\left(\frac{\lambda}{\lambda+\mu_{4}}\right)^{i}\left(\frac{\mu}{\lambda+\mu}\right)^{\lambda i-i}
\end{aligned}
$$

(b) $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Bin}(m, \beta), X+Y \sim \operatorname{Bin}(n+m, p)$

$$
\begin{aligned}
P(X=i) X+Y=j) & =\frac{\binom{n}{i} p^{i} q^{n-i}\binom{m}{j-i} p^{j-i} q^{m-j+i}}{\binom{m+n}{j} p^{j} q^{n+n-j}} \\
& =\frac{\binom{n}{i}\binom{m}{j-i}}{\binom{m+n}{j}} D \text { Hypergeametic }
\end{aligned}
$$

(c) $X \sim \operatorname{Glem}(p), Y \sim G \operatorname{em}(p), X+Y \sim \operatorname{Meg} B \operatorname{in}(2, p)$

$$
P(X=i \mid X+Y=j)=\frac{p q^{i-1} p q^{j-i-1}}{\binom{j-1}{2-1} p^{2} q^{j-2}}=\frac{1}{j-1}
$$

Note: The amber does not depend on i!

$$
{ }_{5}^{2} \sum_{i=1}^{i=1} P(x=i)(x+i=j)=1
$$

3. Ten balls are to be distributed among 5 urns, with each ball independently going into urn $i$ with probability $p_{i}$. Let $X_{i}$ be the number of balls that go into urn $i$. Note that we have $\sum_{i=1}^{5} p_{i}=1$ and $\sum_{i=1}^{5} X_{i}=10$.
(a) Find the joint distribution of $X_{i}, X_{2}, \ldots X_{5}$, i.e. find

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}, X_{5}=x_{5}\right)
$$

(b) Find the (marginal) distribution of $X_{1}$.
(c) Find the distribution of $X_{1}+X_{2}$.
( Doss $^{2}, p 174 * 24$ )
(d) Find the distribution $X_{1}+X_{2}+X_{3}$.
(e) Find $P\left(X_{1}+X_{2}=4 \mid X_{1}+X_{2}+X_{3}=7\right)$.
(Hint: You can do Parts (b)-(e) without knowing Part (a)


$$
=\frac{10!}{x_{1}!x_{2}!x_{3}!x_{4}!x_{5}!} p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} p_{4}^{x_{4}} p_{5}^{x_{5}}
$$

(b)


$$
P\left(X_{1}=i\right)=\binom{10}{i} p_{1}^{i}\left(1-p_{1}\right)^{10-i} \sim \operatorname{Bin}\left(10, p_{1}\right)
$$

(c)


$$
p\left(x_{1}+x_{2}=i\right)=\left(\begin{array}{l}
10 \\
\text { You cen we this } \\
i_{1}+1
\end{array}\right)\left(p_{10}+p_{2}\right)^{i}\left(1-p_{1}-p_{2}\right)^{10-i}
$$

(d)

$$
\begin{aligned}
& P\left(X_{1}+X_{1}+x_{3}=i\right)=\binom{10}{i}\left(p_{1}+p_{2}+p_{3}\right)^{i}\left(p_{4}+p_{5}\right)^{10-i}
\end{aligned}
$$

(e) $\left.P\left(X_{1}+X_{2}=4\right) X_{1}+X_{2}+X_{3}=7\right)$

[Abtematively,

$$
\begin{aligned}
& \left.P\left(x_{1}+x_{2}=4\right) x_{1}+x_{2}+x_{3}=7\right]=\frac{P\left(x_{1}+x_{2}=4, x_{1}+x_{2}+x_{3}=7\right)}{P\left(x_{1}+x_{2}+x_{3}=7\right)} \\
& =\frac{P\left(x_{1}+x_{2}=4, x_{3}=3, x_{4}+x_{5}=3\right)}{P\left(x_{1}+x_{2}+x_{3}=7\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{10!}{4!3!3!}\left(p_{1}+p_{2}\right)^{4} p_{3}^{3}\left(p_{4}+p_{5}\right)^{3}}{\frac{10!}{7!3!}\left(p_{1}+p_{2}+p_{3}\right)^{7}\left(p_{4}+p_{3}\right)^{3}} \\
& \left.=\frac{7!}{4!3!}\left(\frac{p_{1}+p_{2}}{p_{1}+p_{2}+p_{3}}\right)^{4}\left(\frac{p_{3}}{p_{1}+p_{2}+p_{3}}\right)^{3}\right]
\end{aligned}
$$

4. Let $X_{1}, X_{2}, X_{3}$ be three id continuous random variables. Find the following probabilivies.
(a) $P\left(X_{1}<X_{2}\right)$
(b) $P\left(X_{1}<X_{2}<X_{3}\right)$;
(c) $P\left(X_{1}>X_{2} \mid X_{1}>X_{3}\right)$;
(d) $P\left(X_{1}>X_{2} \mid X_{1}<X_{3}\right)$;
(e) $P\left(X_{1}>X_{2} \mid X_{2}<X_{3}\right)$.
(Hint: Use symmetry argument. The continuity of the random variables are only used to exclude the events $\left\{X_{1}=X_{2}\right\},\left\{X_{2}=X_{3}\right\}$, or $\left\{X_{1}=X_{3}\right\}$ which have probability zero. Hence there is no distinction between the events $\left\{X_{1}<X_{2}\right\}$ and $\left\{X_{1} \leq X_{2}\right\}$ and so forth.)

$$
\text { Note: By symmetry, } P\left(x_{i}<x_{j}\right)_{(i \neq j)}=P\left(x_{j}<x_{i}\right)
$$



are equally likely. Since
$6 \leqslant 3!)$ of then, hence,

(a) $P\left(X_{1}<X_{2}\right)=\frac{1}{2}$
(b) $P\left(x_{1}<x_{2}<x_{3}\right)=\frac{1}{6}$
(c)

$$
\begin{aligned}
& P\left(x_{1}>x_{2} \mid x_{1}>x_{3}\right)=\frac{P\left(x_{1}>x_{2}, x_{1}>x_{3}\right)}{P\left(x_{1}>x_{3}\right)} \\
&=\frac{P\left(\text { max }=x_{1}\right)}{P\left(X_{1}>x_{3}\right)}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \\
& \begin{array}{l}
\text { (Any of } x_{1}, x_{2}, x_{3} \text { is } \\
\text { equaly likely si be the } \\
\text { max.) }
\end{array}
\end{aligned}
$$

(d)

$$
P\left(x_{1}>x_{2} \mid x_{1}<x_{3}\right)
$$

$$
=\frac{\left.P\left(X_{1}\right\rangle X_{2}, X_{1}>X_{3}\right)}{P\left(X_{1}<X_{3}\right)}=\frac{P\left(X_{3}\left\langle X_{1}<X_{2}\right)\right.}{P\left(X_{1}<X_{3}\right)}
$$

$$
=\frac{1 / 6}{1 / 2}=1 / 3
$$

$$
\text { (e) } \begin{aligned}
& P\left(X_{1}>X_{2} / X_{2}<X_{3}\right) \\
&= \frac{P\left(X_{1}>X_{2}, X_{2}<X_{3}\right)}{P\left(X_{2}<X_{3}\right)} \\
&= \frac{P\left(\min =X_{2}\right)}{P\left(X_{2}<X_{3}\right)} \quad \text { (Any of } x_{1}, x_{2}, x_{3} \\
& \text { is equally likely to }
\end{aligned} \quad \begin{array}{ll}
1 / 3 \\
= & \frac{1}{1 / 2} \quad \text { be the mini.) }
\end{array}
$$

5. Consider a circle of radius $R$, and suppose that a point $(X, Y)$ inside the circle is chosen randomly with uniform distribution.
(a) Find the joint pdf of $X$ and $Y$.

Poss, p. 225 Example ( 10 )
(b) Find the (marginal) pdfs of $X$ and $Y$.
(c) Find the pdf of $D=\sqrt{X^{2}+Y^{2}}$, i.e. $D$ is the distance of the point $(X, Y)$ to the origin.
(d) Find $E(D)$, the expectation of $D$.
(a)



Similarly


$$
=\frac{2 \sqrt{R^{2}-y^{2}}}{\pi R^{2}}, \quad|y| \leqslant R
$$

(C)

$$
\begin{aligned}
& P(D \leqslant r)=P\left(x^{2}+y^{2} \leqslant r^{2}\right)=\frac{\pi r^{2}}{\pi R^{2}}=\frac{r^{2}}{R^{2}} \\
& P_{D}(r)=\frac{d}{d r} P(D \leqslant r)=\frac{2 r}{R^{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
E(D)=\int_{0}^{R} \frac{2 r}{R^{2}} d r & =\left.\frac{1}{R^{2}} \frac{2}{3} r^{3}\right|_{0} ^{R} \\
& =\frac{2}{3} R
\end{aligned}
$$

6. A Gamma random variable with parameters $\alpha$ and $\lambda$ has density given by:

$$
p(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{\Gamma(\alpha)}, \quad \text { for } x \geq 0
$$

The mean and variance of the above random variable are given by $\frac{\alpha}{\lambda}$ and $\frac{\alpha}{\lambda^{2}}$. For the remaining parts, let $X_{i}$ 's be a sequence of iid standard normal random variables.
(a) Find the pdf of $X_{1}^{2}$ and relate it to Gamma distribution. Derive your answer, even though you know/remember the answer.
(b) Find the exact pdf of $X_{1}^{2}+X_{2}^{2}+\cdots X_{n}^{2}$.
(c) Give an approximation of $P\left(80 \leq X_{1}^{2}+\cdots X_{100}^{2} \leq 120\right)$. Express your answer in terms of the cdf of a standard normal.


$$
\begin{aligned}
& {\left[P_{1}(y)\right.}=\frac{1}{\sqrt{2 / 7}}\left(2 \frac{1}{2} y\right)^{-\frac{1}{2}} e^{-\frac{1}{2} y} \\
&=\frac{1}{\sqrt{2 \pi}} 2 \times \frac{1}{2} \times 2^{-\frac{1}{2}}\left(\frac{1}{2} y\right)^{-\frac{1}{2}} e^{-\frac{1}{2} y} \\
&=\frac{1}{\sqrt{\pi}} \frac{1}{2}\left(\frac{1}{2} y\right)^{\frac{1}{2}-1} e^{-\frac{1}{2} y}, \quad \begin{array}{l}
\alpha=\frac{1}{2} \\
\\
\end{array} \\
& \\
&\left.\quad \text { also }\left[\left(\frac{1}{2}\right)=\sqrt{2}\right)\right]
\end{aligned}
$$

(b) $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$

$$
\sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)+\cdots+\operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

$\pm \operatorname{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$, (X with $n$-deg of $\left.\begin{array}{c}\text { freedom. }\end{array}\right)$
(c) Use central Limit Theorem.

$$
\begin{aligned}
& S_{n}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2} \quad \alpha=\frac{1}{2}, \lambda=\frac{1}{2} \\
& E\left(S_{n}\right)=n E X_{1}^{2}=n\left(\frac{\alpha}{\lambda}\right)=n
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { Von }}{ } \operatorname{Van}\left(S_{n}\right)=n \operatorname{Van}\left(X_{2}\right)=n \frac{\alpha}{\lambda^{2}}=2 n \\
& \text { (Alternatively } \left.=V_{a}\left(\text { Famma } / \frac{n}{2}, \frac{1}{2}\right)\right) \\
& \left.=\frac{n / 2}{(2 / 2)^{2}}=2 n\right) \\
& P\left(80 \leqslant S_{n} \leqslant 120\right) \\
& =P\left(\frac{\delta_{0}-E\left(S_{n}\right)}{\sqrt{\operatorname{Van}\left(S_{n}\right)}} \leqslant \frac{S_{n}-E S_{n}}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \leqslant \frac{100-E\left(S_{n}\right)}{\sqrt{\operatorname{Van}\left(S_{n}\right)}}\right) \\
& =P\left(\frac{\text { \&o } n}{\sqrt{2 n}} \leqslant Z \leqslant \frac{120-n}{\sqrt{2 n}}\right)_{(n=100)} \\
& =P\left(-\frac{20}{\sqrt{200}} \leqslant Z \leqslant \frac{20}{\sqrt{200}}\right) \\
& =P(-\sqrt{2} \leqslant Z \leqslant \sqrt{2})=\Phi(\sqrt{2}) \Phi(-\sqrt{2}) \\
& { }^{15}=2 \Phi(\sqrt{2})-1 .
\end{aligned}
$$

(Note. There is an" exact "answer for (d). Sine $X_{1}^{2}+X_{2}^{2}+\cdots X_{n}^{2} \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$

$$
\begin{aligned}
& P\left(f_{0} \leqslant x_{1}^{2}+\cdots+x_{n}^{2} \leqslant 120\right) \\
& =\int_{8_{0}}^{120} \frac{\frac{1}{2}\left(\frac{1}{2} x\right)^{\frac{n}{2}-1} e^{-\frac{1}{2} x}}{\Gamma\left(\frac{n}{2}\right)} d x .
\end{aligned}
$$

But the above is hard to integrate!)
7. Consider the following $\operatorname{signal}(X)+\operatorname{noise}(Y)=o b s e r v a t i o n(Z)$ model:

$$
X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \quad Y \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right), \quad Z=X+Y
$$

Assume that $X$ and $Y$ are independent. The goal is to say something about $X$ upon observing $Z$.
(a) Find the joint pdf of $X$ and $Z$. (Hint: Consider the map $(X, Y)$ to $(X, X+Y)$.
(b) Find the (marginal) pdf of $Z=X+Y$.
(c) Find the conditional pdf of $X$ given $Z$, i.e. $p(x \mid z)$. Relate this conditional pdf to some common distribution.
(d) Find the conditional expectation and variance of $X$, given $Z=z$, i.e. find

$$
E(X \mid Z=z)=\int x p(x \mid z) d x, \text { and } \operatorname{Var}(X \mid Z=z)=E\left(X^{2} \mid Z=z\right)-(E(X \mid Z=z))^{2}
$$

(Hint: For Part (c), concentrate on the "symbolic form" of the distribution. The explicit constant(s) will come out "naturally". Part (d) should be very transparent once you have the correct answer to Part (c).)
(a)


$$
\begin{aligned}
p(x, z) & =q(x, y) \frac{1}{\left|\frac{d x d z}{2 x d y l}\right|}=q(x, y) \cdot\left(\frac{1}{1}\right) \\
& \left.=\frac{e^{-\frac{(x-\mu)^{2}}{2 \sigma_{1}^{2}}} e^{-\frac{y^{2}}{2 \sigma_{2}^{2}}}}{2 \pi \sigma_{1} \sigma_{2}}\right)(y=z-x) \\
& =\frac{e^{-\frac{(x-\mu)^{2}}{\partial \sigma_{1}^{2}}} e^{-\left(\frac{(z-x)^{2}}{2 \sigma \sigma_{2}^{2}}\right.}}{2 \pi \sigma_{1} \sigma_{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
Z_{2}=X_{+} Y & =N\left(\mu, \sigma_{1}^{2}\right)+N\left(0, \sigma_{2}^{2}\right) \\
& =X\left(\mu, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \\
P_{z}(z) & =\frac{e^{(z-\mu)^{2} / \alpha\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}{\sqrt{2 \lambda\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
p(x / z)= & p(x, z) / p_{2}(z) \\
= & \frac{\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{-\frac{(x-\mu)^{2}}{2 \sigma_{1}^{2}} e^{-\frac{(z-x)^{2}}{\partial \sigma_{2}^{2}}}}}{\frac{e^{-(z-\mu)^{2} / 2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}{\sqrt{2 \pi\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}} \begin{array}{r}
\text { R(Note: it } \\
\\
\text { What not matta } \\
\text { what }(z) \text { is. }
\end{array}
\end{aligned}
$$

$$
=v_{0}\left(z=\frac{(x-\mu)^{2}}{2 \sigma^{2}}-\frac{(z-x)^{2}}{2 \sigma_{2}^{2}}\right.
$$

A some constant, which does not invoke $x!$

$$
=C(z) \exp \left\{-\frac{x^{2}-2 \mu x+\mu^{2}}{2 \sigma_{1}^{2}}-\frac{z^{2}-2 z x+x^{2}}{2 \sigma_{2}^{2}}\right\}
$$

$=C(z) \exp \left\{-\frac{1}{2}\left(\frac{1}{\sigma_{1}^{2}}+\frac{2}{\sigma_{2}^{2}}\right) x^{2}-2\left(\frac{\mu}{\sigma_{1}^{2}}+\frac{z}{\sigma_{2}^{2}}\right) x\right.$

$$
\left.+\left(\frac{\mu^{2}}{\sigma_{1}^{2}}+\frac{z^{2}}{\sigma_{2}^{2}}\right)\right\}
$$

Tit does not motor.)

$$
\begin{aligned}
& =C(z) \\
& \times \exp \left\{-\frac{1}{2}\left(\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}\right)\left(x^{2}-2 \frac{\mu \sigma_{2}^{2}+z \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} x\right)\right\}
\end{aligned}
$$

Complete the square!

$$
\begin{aligned}
& =C(z) \times \\
& \exp \left\{-\frac{1}{2}\left(\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}\right)\left(x-\frac{\mu \sigma_{2}^{2}+z \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}\right\} \\
& =C(z) e-\frac{\left(x-\frac{\mu \sigma_{2}^{2}+z \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} z\right)^{2}}{2\left(\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)} \\
& N N\left(\frac{\mu \sigma^{2}+z \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2},} \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) \\
& C(z) \operatorname{mus} \text { be } \frac{1}{\left.\sqrt{2 \pi \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } E[X \mid Z]=\frac{\mu \sigma_{2}^{2}+Z \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\
& \operatorname{Var}(X \mid Z)=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

