Random variables

Samy Tindel

Purdue University

Introduction to Probability Theory - MA 519

Mostly taken from A first course in probability by S. Ross

Samy T.

- 4 ⊒ →

< (T) >

Outline

- Random variables
- Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 7 The Poisson random variable
- Other discrete random variables
- 9 Expected value of sums of random variables
- Properties of the cumulative distribution function

Outline

Random variables

- Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕖 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Introduction

Experiment: tossing 3 coins Model: $S = \{h, t\}^3$, $P(\{s\}) = \frac{1}{8}$ for all $s \in S$ Result of the experiment: we are interested in the quantity X(s) = "# Heads obtained when s is realized" We get

S	X(s)	5	X(s)
(t, t, t)	0	(h, t, t)	1
(t, t, h)	1	(h, t, h)	2
(t, h, t)	1	(h, h, t)	2
(t, h, h)	2	(h, h, h)	3

Introduction (2)

Information about X:

X is considered as an application, i.e.

$$X:S\rightarrow \{0,1,2,3\}.$$

Then we wish to understand sets like

$$X^{-1}(\{2\}) = \{(t, h, h), (h, t, h), (h, h, t)\}$$

or quantities like

$$\mathbf{P}\left(X^{-1}(\{2\})\right) = \frac{3}{8}.$$

This will be formalized in this chapter

Example: time of first success (1)

Experiment:

- Coin having probability p of coming up heads
- Independent trials: flipping the coin
- Stopping rule: either H occurs or n flips made

Random variable:

X = # of times the coin is flipped

State space:

$$X \in \{1,\ldots,n\}$$

Example: time of first success (2)

Probabilities for j < n:

$$\mathbf{P}(X = j) = \mathbf{P}(\{(t, \dots, t, h)\}) = (1 - p)^{j-1}p$$

Probability for i = n:

$$\mathbf{P}(X = n) = \mathbf{P}(\{(t, \dots, t, h); (t, \dots, t, t)\}) = (1 - p)^{n-1}$$

Image: A matrix

э

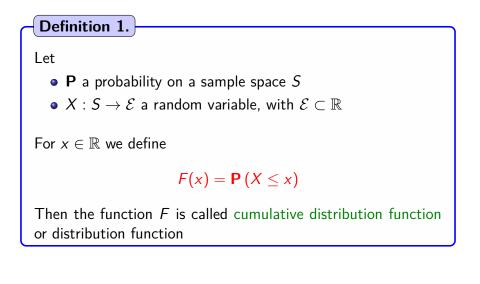
Example: time of first success (3)

Checking the sum of probabilities:

$$\mathbf{P}\left(\bigcup_{j=1}^{n} \{X=j\}\right) = \sum_{j=1}^{n} \mathbf{P}\left(\{X=j\}\right)$$
$$= p \sum_{j=1}^{n-1} (1-p)^{j-1} + (1-p)^{n}$$
$$= 1$$

Image: Image:

Cumulative distribution function

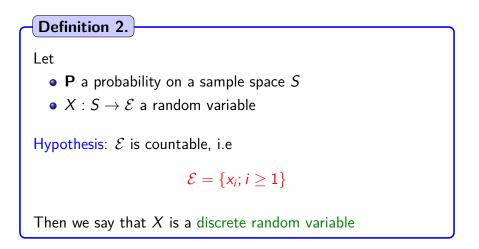


Outline

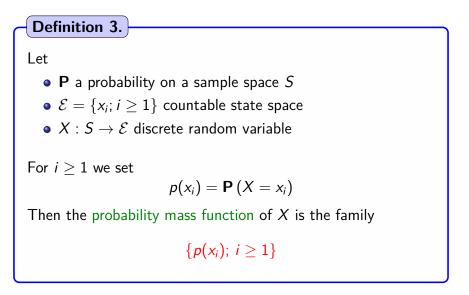
Random variables

- Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕜 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

General definition



Probability mass function

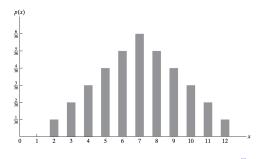


Remarks

Sum of the pmf: If p is the pmf of X, then

 $\sum_{i\geq 1}p(x_i)=1$

Graph of a pmf: Bar graphs are often used. Below an example for X = sum of two dice



Example of pmf computation (1)

Definition of the pmf: Let X be a r.v with pmf given by

$$p(i) = c \frac{\lambda^i}{i!}, \qquad i \ge 0,$$

where c > 0 is a normalizing constant

Question: Compute

•
$$P(X = 0)$$

• $P(X > 2)$

э

Image: Image:

Example of pmf computation (2)

Computing c: We must have

$$c \sum_{i=0}^{\infty} rac{\lambda^i}{i!} = 1$$

Thus

$$c = e^{-\lambda}$$

Computing P(X = 0): We have

$$\mathbf{P}(X=0)=e^{-\lambda}\frac{\lambda^0}{0!}=e^{-\lambda}$$

э

< □ > < 同 >

Example of pmf computation (3)

Computing P(X > 2): We have

$$P(X > 2) = 1 - P(X \le 2)$$

Thus

$$\mathbf{P}\left(X>2
ight)=1-e^{-\lambda}\left(1+\lambda+rac{\lambda^{2}}{2}
ight)$$

3

(日)

Cdf for discrete random variables

Proposition 4.

Let

- **P** a probability on a sample space S
- $\mathcal{E} = \{x_i; i \geq 1\}$ countable state space, with $\mathcal{E} \subset \mathbb{R}$
- $X: S \to \mathcal{E}$ discrete random variable
- F cdf of X and p pmf of X

Then

• F can be expressed as

$$F(a) = \sum_{i \ge 1; \, x_i \le a} p(x_i)$$

17 / 109

Example of discrete cdf (1)

Definition of the random variable: Consider $X : S \rightarrow \{1, 2, 3, 4\}$ given by

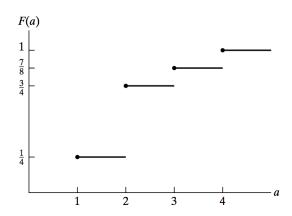
$$p(1) = \frac{1}{4}, \quad p(2) = \frac{1}{2}, \quad p(3) = \frac{1}{8}, \quad p(4) = \frac{1}{8}$$

Image: A matrix

э

Example of discrete cdf (2)

Graph of F:



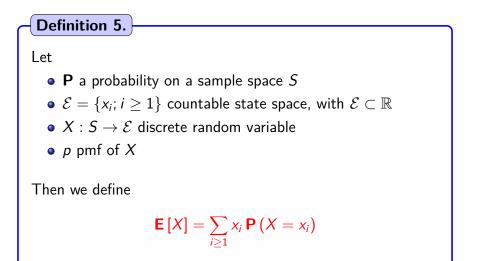
< ∃⇒

э

Outline

- Random variables
- Discrete random variables
- 3 Expected value
 - Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕜 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Expected value for discrete random variables



Justification of the definition

Experiment:

- Run independent copies of the random variable X
- For *i*-th copy, the measurement is z_i

Result (to be proved much later):

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n z_i = \mathbf{E}[X]$$

Example: dice rolling

Definition of the random variable: we consider

X = outcome when we roll a fair dice

Pmf: We have $\mathcal{E} = \{1, \dots, 6\}$ and

$$p(1)=\cdots=p(6)=\frac{1}{6}$$

Expected value: We get

$$\mathbf{E}[X] = \sum_{i=1}^{6} i \, p(i) = \frac{1}{6} \sum_{i=1}^{6} i = \frac{7}{2}$$

Image: A matrix

Example: indicator of an event

Definition of the random variable: Let A event with P(A) = p and set

$$\mathbf{1}_{A} = egin{cases} 1 & ext{if } A ext{ occurs} \ 0 & ext{if } A^{c} ext{ occurs} \end{cases}$$

Pmf:

$$p(0) = 1 - p, \qquad p(1) = p$$

Expected value:

 $\mathbf{E}[\mathbf{1}_A] = p$

Samy	

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕖 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

First attempt of a definition

Problem: Let

- X discrete random variable
- Y = g(X) for a function g

How can we compute $\mathbf{E}[g(X)]$?

First strategy:

- Y = g(X) is a discrete random variable
- Determine the pmf p_Y of Y
- Compute **E**[Y] according to Definition 5

First attempt: example (1)

Definition of a random variable X: Let $X : S \rightarrow \{-1, 0, 1\}$ with

P(X = -1) = .2, P(X = 0) = .5, P(X = 1) = .3

We wish to compute $\mathbf{E}[X^2]$

= nar

First attempt: example (2)

Definition of a random variable Y: Set $Y = X^2$. Then $Y \in \{0, 1\}$ and

$$P(Y = 0) = P(X = 0) = .5$$

 $P(Y = 1) = P(X = -1) + P(X = 1) = .5$

э

First attempt: example (3)

Recall: For $Y = X^2$ we have

$$P(Y = 0) = .5, P(Y = 1) = .5$$

Expected value:

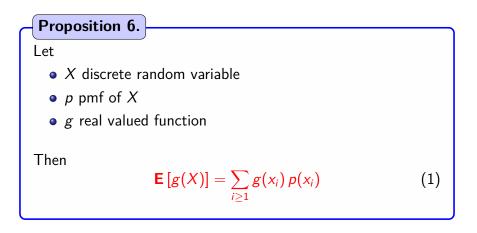
 $\mathbf{E}\left[X^2\right] = \mathbf{E}\left[Y\right] = .5$

Samy	

Image: A matrix

э

Definition of $\mathbf{E}[g(X)]$



Samy	

Proof

Values of Y: We set Y = g(X) and

$$\{y_j; j \ge 1\} = \text{ values of } g(x_i) \text{ for } i \ge 1$$

Expression for the rhs of (1): gather according to y_i

$$\sum_{i \ge 1} g(x_i) p(x_i) = \sum_{j \ge 1} \sum_{\substack{i; g(x_i) = y_j \\ i; g(x_i) = y_j}} y_j p(x_i)$$
$$= \sum_{j \ge 1} y_j \sum_{\substack{i; g(x_i) = y_j \\ i; g(x) = y_j}} p(x_i)$$
$$= \sum_{j \ge 1} y_j \mathbf{P} (g(X) = y_j)$$
$$= \sum_{j \ge 1} y_j \mathbf{P} (Y = y_j)$$
$$= \mathbf{E} [g(X)]$$

Image: A matrix

э

Previous example reloaded

Definition of a random variable X: Let $X : S \to \{-1, 0, 1\}$ with

$$P(X = -1) = .2, P(X = 0) = .5, P(X = 1) = .3$$

We wish to compute $\mathbf{E}[X^2]$

Application of (1):

$$\mathbf{E}\left[X^2\right] = \sum_{i=-1,0,1} i^2 p(x_i) = .5$$

Image: A matrix

3

Example: seasonal product (1)

Situation:

- Product sold seasonally
- Profit *b* for each unit sold
- Loss ℓ for each unit left unsold
- Product has to be stocked in advance
 → s units stocked

Random variable:

- X = # units of product ordered
- Pmf p for X

Question:

Find optimal s in order to maximize profits

Example: seasonal product (2)

Some random variables: We set

- X = # units ordered, with pmf p
- Y_s = profit when s units stocked

Expression for Y_s :

$$Y_{s} = (b X - (s - X) \ell) \mathbf{1}_{(X \le s)} + s b \mathbf{1}_{(X > s)}$$

Expression for $\mathbf{E}[Y_s]$:

$$\mathbf{E}[Y_{s}] = \sum_{i=0}^{s} (b i - (s - i) \ell) p(i) + \sum_{i=s+1}^{\infty} s b p(i)$$

3

Example: seasonal product (3)

Simplification for $\mathbf{E}[Y_s]$: We get

$$\mathbf{E}[Y_{s}] = s b + (b + \ell) \sum_{i=0}^{s} (i - s) p(i)$$

Growth of $s \mapsto \mathbf{E}[Y_s]$: We have

$$\mathbf{E}[Y_{s+1}] - \mathbf{E}[Y_s] = b - (b+\ell) \sum_{i=0}^{s} p(i)$$

Image: A matrix

3

Example: seasonal product (4)

Growth of $s \mapsto \mathbf{E}[Y_s]$ (Ctd): We obtain

$$\mathbf{E}[Y_{s+1}] - \mathbf{E}[Y_s] > 0 \quad \Longleftrightarrow \quad \sum_{i=0}^{s} p(i) < \frac{b}{b+\ell}$$
(2)

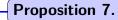
Optimization:

- The lhs of (2) is \nearrow
- The rhs of (2) is constant
- Thus there exists a s* such that

$$\mathbf{E}[Y_0] < \cdots < \mathbf{E}[Y_{s^*-1}] < \mathbf{E}[Y_{s^*}] > \mathbf{E}[Y_{s^*+1}] > \cdots$$

Conclusion: s* leads to maximal expected profit

Expectation and linear transformations



Let

- X discrete random variable
- p pmf of X
- $a, b \in \mathbb{R}$ constants

Then

$\mathbf{E}\left[aX+b\right]=a\,\mathbf{E}\left[X\right]+b$

Proof

Application of relation (1):

$$E[aX + b] = \sum_{i \ge 1} (ax_i + b) p(x_i)$$

= $a \sum_{i \ge 1} x_i p(x_i) + b \sum_{i \ge 1} p(x_i)$
= $a E[X] + b$

Samy	

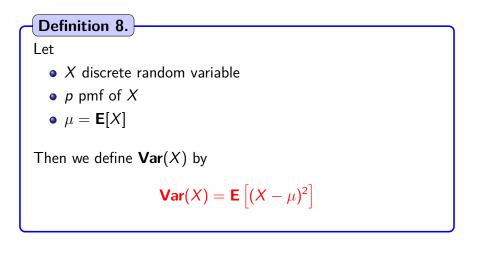
3

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- 4 Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕖 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Definition of variance



Samy	

Probability Theory 40 / 109

Interpretation

Expected value: For a r.v X, $\mathbf{E}[X]$ represents the mean value of X.

Variance: For a r.v X, **Var**(X) represents the dispersion of X wrt its mean value.

- A greater Var(X) means
 - The system represented by X has a lot of randomness
 - This system is unpredictable

Standard deviation: For physical reasons, it is better to introduce

 $\sigma_X := \sqrt{\operatorname{Var}(X)}.$

Interpretation (2)

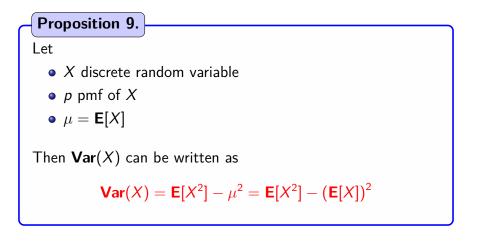
Illustration (from descriptive stats): We wish to compare the performances of 2 soccer players on their last 5 games

Griezmann	5	0	0	0	0
Messi	1	1	1	1	1

Recall: for a set of data $\{x_i; i \leq n\}$, we have Empirical mean: $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ Empirical variance: $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2$ Standard deviation: $s_n = \sqrt{s_n^2}$

On our data set: $\bar{x}_G = \bar{x}_M = 1$ goal/game \hookrightarrow Same goal average However, $s_G = 2$ goals/game while $s_M = 0$ goals/game \hookrightarrow M more reliable (less random) than G

Alternative expression for the variance



Example: rolling a dice

Random variable:

Variance computation: We find

$$\mathbf{E}[X] = \frac{7}{2}, \qquad \mathbf{E}[X^2] = \frac{91}{6}$$
 $\mathbf{Var}(X) = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$

Standard deviation:

Therefore

$$\sigma_X = \sqrt{\frac{35}{12}} \simeq 1.71$$

→

Variance and linear transformations

Proposition 10.

Let

- X discrete random variable
- p pmf of X
- $a, b \in \mathbb{R}$ constants

Then

$\operatorname{Var}\left(aX+b\right)=a^{2}\operatorname{Var}(X)$

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
 - 7 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Bernoulli random variable (1)

Notation:

$$X \sim \mathcal{B}(p)$$
 with $p \in (0,1)$

State space:

 $\{0,1\}$

Pmf:

$$P(X = 0) = 1 - p, P(X = 1) = p$$

Expected value and variance:

$$\mathsf{E}[X] =
ho, \qquad \mathsf{Var}(X) =
ho(1-
ho)$$

< ∃⇒

Bernoulli random variable (2)

Use 1, success in a binary game:

- Example 1: coin tossing
 - ➤ X = 1 if H, X = 0 if T
 - We get $X \sim \mathcal{B}(1/2)$
- Example 2: dice rolling
 - X = 1 if outcome = 3, X = 0 otherwise
 - We get $X \sim \mathcal{B}(1/6)$

Use 2, answer yes/no in a poll

- X = 1 if a person feels optimistic about the future
- X = 0 otherwise
- We get $X \sim \mathcal{B}(p)$, with unknown p

Jacob Bernoulli

Some facts about Bernoulli:

- Lifespan: 1654-1705, in Switzerland
- Discovers constant e
- Establishes divergence of $\sum \frac{1}{n}$
- Contributions in diff. eq
- First law of large numbers
- Bernoulli: family of 8 prominent mathematicians
- Fierce math fights between brothers

Binomial random variable (1)

Notation:

$$X \sim \mathsf{Bin}(n, p)$$
, for $n \geq 1$, $p \in (0, 1)$

State space:

$$\{0,1,\ldots,n\}$$

Pmf:

$$\mathbf{P}(X=k)=inom{n}{k}p^k(1-p)^{n-k},\quad 0\leq k\leq n$$

Expected value and variance:

$$\mathbf{E}[X] = np, \qquad \mathbf{Var}(X) = np(1-p)$$

- (二)

- ∢ ⊒ →

Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:

- Example: Roll a dice 9 times.
- X = # of 3 obtained
- We get $X \sim Bin(9, 1/6)$
- P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:

- Example: stock of 1000 pants with 10% defects
- Draw 15 times a pant at random
- X = # of pants with a defect
- We get $X \sim Bin(15, 1/10)$

Binomial random variable (3)

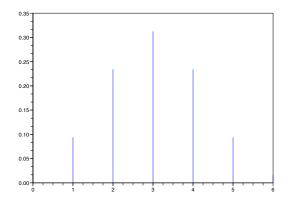


Figure: Pmf for Bin(6; 0.5). x-axis: k. y-axis: P(X = k)

⇒ ▶

Binomial random variable (4)

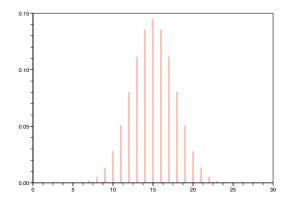


Figure: Pmf for Bin(30; 0.5). x-axis: k. y-axis: P(X = k)

Probability Theory

Example: wheel of fortune (1)

Game:

- Player bets on 1, ..., 6 (say 1)
- 3 dice rolled
- If 1 does not appear, loose \$1
- If 1 appear *i* times, win \$i

Question: Find average win Example: wheel of fortune (2)

Binomial random variable:

- Let X = # times 1 appears
- Then $X \sim Bin(3, \frac{1}{6})$

Expression for the win: Set W = win. Then

•
$$W = \varphi(X)$$
 with
 $\hookrightarrow \varphi(0) = -1$ and $\varphi(i) = i$ for $i = 1, 2, 3$

• Other expression:

$$W = X - \mathbf{1}_{(X=0)}$$

Example: wheel of fortune (3)

Average win:

$$E[W] = E[X] - P(X = 0)$$

= $\frac{1}{2} - \left(\frac{5}{6}\right)^3$
= $-\frac{17}{216}$

Conclusion: The average win is

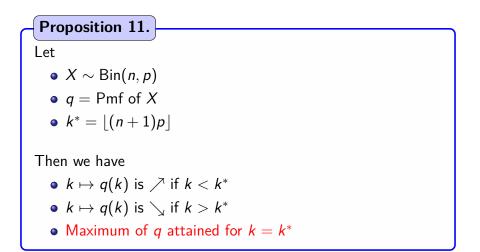
 $E[W] \simeq -$ \$0.079

Samy T.

Image: A matrix

3

Pmf variations for a binomial r.v



Proof

Pmf computation: We have

$$\frac{q(k)}{q(k-1)} = \frac{\mathbf{P}(X=k)}{\mathbf{P}(X=k-1)} = \frac{(n-k+1)p}{k(1-p)}$$

Pmf growth: We get

$$\mathbf{P}(X=k) \geq \mathbf{P}(X=k-1) \quad \Longleftrightarrow \quad k \leq (n+1)p$$

< □ > < 同 >

э

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕜 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Poisson random variable (1)

Notation:

 $\mathcal{P}(\lambda)$ for $\lambda \in \mathbb{R}_+$

State space:

 $E = \mathbb{N} \cup \{0\}$

Pmf:

$$\mathbf{P}(X=k)=e^{-\lambda}rac{\lambda^k}{k!},\quad k\geq 0$$

Expected value and variance:

$$\mathsf{E}[X] = \lambda, \qquad \mathsf{Var}(X) = \lambda$$

Poisson random variable (2)

Use (examples):

- $\bullet~\#$ customers getting into a shop from 2pm to 5pm
- # buses stopping at a bus stop in a period of 35mn
- # jobs reaching a server from 12am to 6am

Empirical rule:

If $n \to \infty$, $p \to 0$ and $np \to \lambda$, we approximate Bin(n, p) by $\mathcal{P}(\lambda)$. This is usually applied for

 $p \leq 0.1$ and $np \leq 5$

Poisson random variable (3)

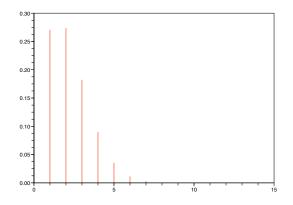


Figure: Pmf of $\mathcal{P}(2)$. *x*-axis: *k*. *y*-axis: $\mathbf{P}(X = k)$

Probability Theory

⇒ ▶

Poisson random variable (4)



Figure: Pmf of $\mathcal{P}(5)$. *x*-axis: *k*. *y*-axis: $\mathbf{P}(X = k)$

< 行

3 N 3

Siméon Poisson

Some facts about Poisson:

- Lifespan: 1781-1840, in \simeq Paris
- Engineer, Physicist and Mathematician
- Breakthroughs in electromagnetism
- Contributions in partial diff. eq celestial mechanics, Fourier series
- Marginal contributions in probability

A quote by Poisson:

Life is good for only two things: doing mathematics and teaching it !!

Example: drawing defective items (1)

Experiment:

- Item produced by a certain machine will be defective \hookrightarrow with probability .1
- Sample of 10 items drawn

Question:

Probability that the sample contains at most 1 defective item

Example: drawing defective items (2)

Random variable: Let

$$X = \#$$
 of defective items

Then

 $X \sim \text{Bin}(n, p)$, with n = 10, p = .1

Exact probability: We have to compute

$$\begin{aligned} \mathsf{P}(X \leq 1) &= & \mathsf{P}(X = 0) + \mathsf{P}(X = 1) \\ &= & (0.9)^{10} + 10 \times 0.1 \times (0.9)^9 \\ &= & .7361 \end{aligned}$$

Samy T.

Probability Theory 66 / 109

Image: A matrix

3

Example: drawing defective items (3)

Approximation: We use

 $\mathsf{Bin}(10,.1)\simeq \mathcal{P}(1)$

Approximate probability: We have to compute

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$\simeq e^{-1} (1 + 1)$$

= .7358

Image: A matrix

Poisson paradigm

Situation: Consider

• *n* events E_1, \ldots, E_n

•
$$p_i = \mathbf{P}(E_i)$$

• Weak dependence of the E_i : $\mathbf{P}(E_i E_j) \lesssim \frac{1}{n}$

•
$$\lim_{n\to\infty}\sum_{i=1}^n p_i = \lambda$$

Heuristic limit: Under the conditions above we expect that

$$X_n = \sum_{i=1}^n \mathbf{1}_{E_i} \to \mathcal{P}(\lambda) \tag{3}$$

Image: A matrix

Example: matching problem (1)

Situation:

- *n* men take off their hats
- Hats are mixed up
- Then each man selects his hat at random
- Match: if a man selects his own hat

Question: Compute

•
$$\mathbf{P}(E_k)$$
 with $E_k =$ "exactly k matches"

Example: matching problem (2)

Recall: We have found

$$\mathbf{P}(E_k) = \frac{1}{k!} \sum_{j=2}^{n-k} \frac{(-1)^j}{j!}$$

Thus

$$\lim_{n\to\infty}\mathbf{P}(E_k)=\frac{e^{-1}}{k!}$$

New events: We set

 G_i = "Person *i* selects his own hat"

Image: A matrix

Example: matching problem (3)

Probabilities for G_i : We have

$$\mathbf{P}(G_i) = \frac{1}{n}, \qquad \mathbf{P}(G_i \mid G_j) = \frac{1}{n-1}$$

Random variable of interest:

$$X = \sum_{i=1}^{n} \mathbf{1}_{G_i} \implies \mathbf{P}(E_k) = \mathbf{P}(X = k)$$

Poisson paradigm: From (3) we have $X \simeq \mathcal{P}(1)$. Therefore

$$\mathbf{P}(E_k) = \mathbf{P}(X = k) \simeq \mathbf{P}(\mathcal{P}(1) = k) = \frac{e^{-1}}{k!}$$

Image: A matrix

3

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕖 The Poisson random variable
- Other discrete random variables
- 9 Expected value of sums of random variables
- Properties of the cumulative distribution function

Geometric random variable

Notation:

$$X \sim \mathcal{G}(p),$$
 for $p \in (0,1)$

State space:

$$E = \mathbb{N} = \{1, 2, 3, \ldots\}$$

Pmf:

$$\mathbf{P}(X = k) = p (1 - p)^{k-1}, \quad k \ge 1$$

Expected value and variance:

$$\mathsf{E}[X] = \frac{1}{p}, \qquad \mathsf{Var}(X) = \frac{1-p}{p^2}$$

Geometric random variable (2)

Use:

• Instant of first success in a binary game

Example: dice rolling

- Set X = 1st roll for which outcome = 6
- We have $X \sim \mathcal{G}(1/6)$

Computing some probabilities for the example:

$$P(X = 5) = \left(\frac{5}{6}\right)^4 \frac{1}{6} \simeq 0.08$$
$$P(X \ge 7) = \left(\frac{5}{6}\right)^6 \simeq 0.33$$

Geometric random variable (3)

Computation of $\mathbf{E}[X]$: Set q = 1 - p. Then

$$E[X] = \sum_{i=1}^{\infty} iq^{i-1}p$$

= $\sum_{i=1}^{\infty} (i-1)q^{i-1}p + \sum_{i=1}^{\infty} q^{i-1}p$
= $q E[X] + 1$

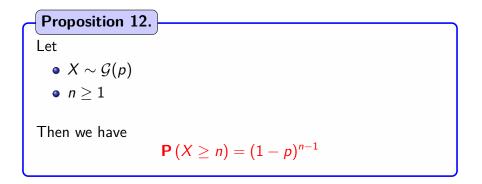
Conclusion:

 $\mathbf{E}[X] = \frac{1}{p}$

Samy	

Image: A matrix

Tail of a geometric random variable



< A IN

Negative binomial random variable (1) Notation:

$$X \sim \mathsf{Nbin}(r, p)$$
, for $r \in \mathbb{N}^*$, $p \in (0, 1)$

State space:

$$\{r,r+1,r+2\ldots\}$$

Pmf:

$$\mathbf{P}(X=k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \quad k \ge r$$

Expected value and variance:

$$\mathbf{E}[X] = \frac{r}{p}, \qquad \mathbf{Var}(X) = \frac{r(1-p)}{p^2}$$

Negative binomial random variable (2)

Use:

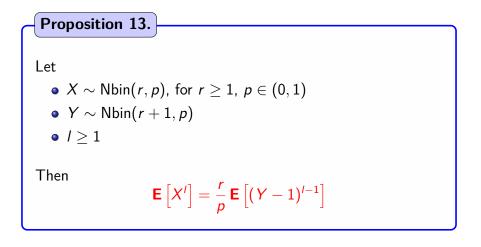
- Independent trials, with P(success) = p
- X = # trials until r successes

Justification:

Thus

$$\mathbf{P}(X=k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

Moments of negative binomial random variable



Proof (1)

Definition of the /-th moment: We have

$$\mathbf{E}\left[X^{l}\right] = \sum_{k=r}^{\infty} k^{l} \binom{k-1}{r-1} p^{r} \left(1-p\right)^{k-r}$$

Relation for combination numbers:

$$k\binom{k-1}{r-1} = r\binom{k}{r}$$

Consequence:

$$\mathbf{E}\left[X^{\prime}\right] = r \sum_{k=r}^{\infty} k^{\prime-1} \binom{k}{r} p^{r} \left(1-p\right)^{k-r}$$

- (日)

Proof (2) Recall:

$$\mathsf{E}\left[X^{l}\right] = r \sum_{k=r}^{\infty} k^{l-1} \binom{k}{r} p^{r} \left(1-p\right)^{k-r}$$

From r to r + 1:

$$\mathbf{E}\left[X'\right] = \frac{r}{p} \sum_{k=r}^{\infty} k^{l-1} \binom{k}{(r+1)-1} p^{r+1} (1-p)^{(k+1)-(r+1)}$$

Change of variable j = k + 1:

$$\mathbf{E} \begin{bmatrix} X^{l} \end{bmatrix} = \frac{r}{p} \sum_{j=r+1}^{\infty} (j-1)^{l-1} {j-1 \choose (r+1)-1} p^{r+1} (1-p)^{j-(r+1)} \\ = \frac{r}{p} \mathbf{E} \begin{bmatrix} (Y-1)^{l-1} \end{bmatrix}$$

3

イロト イボト イヨト イヨト

Computation of expectation and variance

Consequence of Proposition 13:

$$\mathbf{E}[X] = \frac{r}{p}, \qquad \mathbf{Var}(X) = \frac{r(1-p)}{p^2}$$

Samy	

∃ →

The Banach match problem (1)

Situation:

- Pipe smoking mathematician with 2 matchboxes
- 1 box in left hand pocket, 1 box in right hand pocket
- Each time a match is needed, selected at random
- Both boxes contain initially N matches

Question:

 When one box is empty, what is the probability that k matches are left in the other box?

The Banach match problem (2)

Event: Define E_k by

(Math. discovers that rh box is empty & k matches in lh box)

Expression in terms of a negative binomial:

$$E_k = (X = N + 1 + N - k) = (X = 2N - k + 1),$$

where

$$X \sim \operatorname{Nbin}\left(r = N + 1, \ p = \frac{1}{2}\right)$$

The Banach match problem (3)

Probability of E_k : We get

$$\mathbf{P}(E_k) = \mathbf{P}\left(X = 2N - k + 1\right) = \binom{2N - k}{N} \left(\frac{1}{2}\right)^{2N - k + 1}$$

Solution to the problem:

By symmetry between left and right, we get

$$2 \mathbf{P}(E_k) = \binom{2N-k}{N} \left(\frac{1}{2}\right)^{2N-k}$$

Image: Image:

4 E b

Hypergeometric random variable (1) Notation:

$$X \sim \mathsf{HypG}(n, N, m)$$
, for $N \in \mathbb{N}^*$, $m, n \leq N$, $p \in (0, 1)$
State space:

$$\{0,\ldots,n\}$$

Pmf:

$$\mathbf{P}(X=k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, \quad 0 \le k \le n$$

Expected value and variance: Set $p = \frac{m}{n}$. Then

$$E[X] = np,$$
 $Var(X) = np(1-p)\left(1 - \frac{n-1}{N-1}\right)$

Image: A matrix

э

Hypergeometric random variable (2)

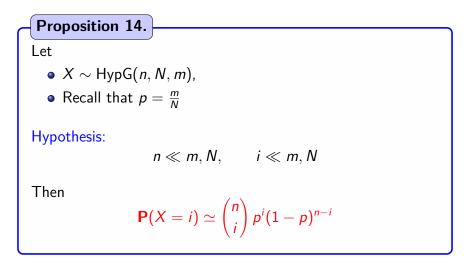
Use: Consider the experiment

- Urn containing N balls
- m white balls, N m black balls
- Sample of size *n* is drawn without replacement
- Set X = # white balls drawn

Then

 $X \sim \mathsf{HypG}(n, N, m)$

Hypergeometric and binomial



Samy	

Probability Theory 88 / 109

Proof

Expression for $\mathbf{P}(X = i)$:

$$\mathbf{P}(X = i) = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}} \\ = \frac{m!}{(m-i)!i!} \frac{(N-m)!}{(N-m-n+i)!(n-i)!} \frac{(N-n)!n!}{N!} \\ = \binom{n}{i} \prod_{j=0}^{i-1} \frac{m-j}{N-j} \prod_{k=0}^{n-i-1} \frac{N-m-k}{N-i-k}$$

Approximation: If $i, j, k \ll m, N$ above, we get

$$\mathbf{P}(X=i)\simeq \binom{n}{i}p^i(1-p)^{n-i}$$

3

イロト 不得 トイヨト イヨト

Example: electric components (1)

Situation: We have

- Lots of electric components of size 10
- We inspect 3 components per lot

 → Acceptance if all 3 components are non defective
- 30% of lots have 4 defective components
- 70% of lots have 1 defective component

Question:

What is the proportion of rejected lots?

Example: electric components (2)

Events: We define

- A = Acceptance of a lot
- $L_1 = \text{Lot with 1 defective component drawn}$
- $L_4 = Lot$ with 4 defective components drawn

Conditioning: We have

 $\mathbf{P}(A) = \mathbf{P}(A|L_1) \, \mathbf{P}(L_1) + \mathbf{P}(A|L_4) \, \mathbf{P}(L_4)$

and

$$P(L_1) = .7, P(L_4) = .3,$$

Example: electric components (3)

Hypergeometric random variable: We check that

 $\mathbf{P}(A|L_1) = \mathbf{P}(X_1 = 0)$, where $X_1 \sim \text{HypG}(3, 10, 1)$

Thus

$$\mathsf{P}(A|L_1) = \frac{\binom{1}{0}\binom{9}{3}}{\binom{10}{3}}$$

Conclusion:

$$\mathbf{P}(A) = \frac{\binom{1}{0}\binom{9}{3}}{\binom{10}{3}} \times 0.7 + \frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}} \times 0.3 = 54\%$$

Probability Theory 92 / 109

Image: A matrix

3

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕜 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Another expression for $\mathbf{E}[X]$

Proposition 15.

Let

- **P** a probability on a sample space S
- $X : S \rightarrow \mathcal{E}$ a random variable

Hypothesis: S is countable, i.e

 $S = \{s_i; i \ge 1\}$

Then setting $p(s_i) = \mathbf{P}(\{s_i\})$ we have

$$\mathsf{E}[X] = \sum_{i \ge 1} X(s_i) p(s_i)$$

4 E b

< □ > < /□ >

Recall: We have

$$\mathsf{E}[X] = \sum_{i \ge 1} x_i \, \mathsf{P}(X = x_i)$$

Level set: We define

$$S_i = \{s \in S; X(s) = x_i\}$$

Expression for $\mathbf{E}[X]$:

$$\mathsf{E}[X] = \sum_{i \ge 1} x_i \sum_{s_j \in S_i} p(s_j)$$

$$= \sum_{i \ge 1} \sum_{s_j \in S_i} X(s_j) p(s_j)$$

Samy T.

→ < ∃ →</p>

< □ > < 同 >

э

Conclusion: Since $\{S_i; i \ge 1\}$ is a partition of S,

 $\mathsf{E}[X] = \sum_{i \geq 1} X(s_i) p(s_i)$

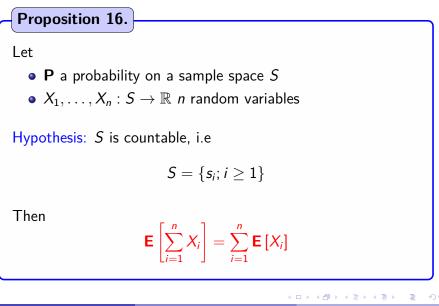
Samy	

Probability Theory 96 / 109

3

(日)

Expectation of sums



Proof Notation: Set

$$Z=\sum_{i=1}^n X_i$$

Expression for $\mathbf{E}[Z]$: According to Proposition 15,

$$\mathbf{E}[Z] = \sum_{s \in S} Z(s)p(s)$$

$$= \sum_{s \in S} \left(\sum_{i=1}^{n} X_i(s)\right) p(s)$$

$$= \sum_{i=1}^{n} \left(\sum_{s \in S} X_i(s)p(s)\right)$$

$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

3

98 / 109

(日)

Example: number of successes (1)

Experiment:

- n trials
- Success for *i*-th trial with probability p_i
- X = # of successes

Question: Expression for $\mathbf{E}[X]$ and $\mathbf{Var}(X)$

э

(B)

Example: number of successes (2)

Expression for X: Let

$$X_i = \mathbf{1}_{(ext{success for } i- ext{th trial})}$$

Then

$$X = \sum_{i=1}^{n} X_i$$

Expression for $\mathbf{E}[X]$: Thanks to Proposition 16, we have

$$\mathbf{E}[X] = \sum_{i=1}^{n} p_i$$

A B < A B </p>

Image: A matrix

Example: number of successes (3)

Expression for $\mathbf{E}[X^2]$: We invoke the two facts **1** $X_i^2 = X_i$ **2** If $i \neq j$, $X_i X_j = \mathbf{1}_{(X_i=1,X_j=1)}$

Therefore

$$\mathbf{E}[X^2] = \sum_{i=1}^n \mathbf{E}[X_i^2] + \sum_{i \neq j} \mathbf{E}[X_i X_j]$$

yields

$$\mathbf{E}[X^2] = \sum_{i=1}^{n} p_i + \sum_{i \neq j} \mathbf{P} (X_i = 1, X_j = 1)$$

э

イロト イヨト イヨト ・

Example: number of successes (4)

Particular case, binomial: In this case we have

- The X_i 's are independent
- $p_i = p$
- New expression for $\mathbf{E}[X^2]$:

$$\mathbf{E}[X^2] = np + n(n-1)p^2$$

Expression for Var(X):

Var(X) = np(1-p)

Samy	

Example: number of successes (5) Particular case, hypergeometric: We have

$$p_{i} = \frac{m}{N}$$

$$P(X_{i} = 1, X_{j} = 1) = P(X_{i} = 1)P(X_{j} = 1|X_{i} = 1)$$

$$= \frac{m}{N} \frac{m-1}{N-1}$$

New expression for $\mathbf{E}[X^2]$:

$$\mathbf{E}[X^2] = np + n(n-1)p \, \frac{m-1}{N-1}$$

Expression for Var(X):

$$\operatorname{Var}(X) = np(1-p)\left(1-rac{n-1}{N-1}
ight)$$

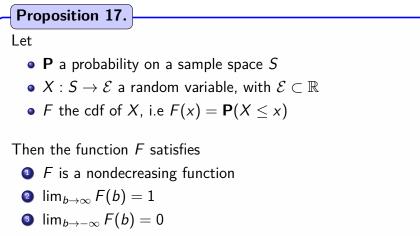
(B)

Image: A matrix

Outline

- 1 Random variables
- 2 Discrete random variables
- 3 Expected value
- Expectation of a function of a random variable
- 5 Variance
- 6 The Bernoulli and binomial random variables
- 🕖 The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

Continuity of the cdf



F is right continuous

Proof of item 1

Inclusion property: Let a < b. Then

$$(X \leq a) \subset (X \leq b)$$

Consequence on probabilities:

$$\mathbf{P}(X \le a) \le \mathbf{P}(X \le b)$$

э

Proof of item 2

Definition of an increasing sequence: Let $b_n \nearrow \infty$ and

$$E_n = (X \leq b_n)$$

Then

$$\lim_{n\to\infty}E_n=(X<\infty)$$

Consequence on probabilities:

$$1 = \mathbf{P}(X < \infty)$$

= $\mathbf{P}\left(\lim_{n \to \infty} E_n\right)$
= $\lim_{n \to \infty} \mathbf{P}(E_n)$ (Since $n \mapsto E_n$ is increasing)
= $\lim_{n \to \infty} F(b_n)$

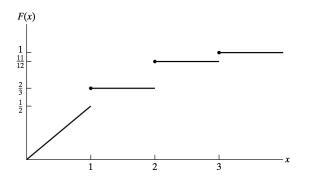
э

イロト 不得 トイヨト イヨト

Example of cdf (1)

Definition of the function: We set

$$F(x) = \frac{x}{2} \mathbf{1}_{[0,1)}(x) + \frac{2}{3} \mathbf{1}_{[1,2)}(x) + \frac{11}{12} \mathbf{1}_{[2,3)}(x) + \mathbf{1}_{[3,\infty)}(x)$$



< ∃⇒

< □ > < /□ >

э

Example of cdf (2)

Information read on the cdf: One can check that

•
$$P(X < 3) = \frac{11}{12}$$

• $P(X = 1) = \frac{1}{6}$
• $P(X > \frac{1}{2}) = \frac{3}{4}$
• $P(2 < X \le 4) = \frac{1}{12}$

э

イロト イボト イヨト イヨト