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© Discrete random variables

© Expected value
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@ Other discrete random variables

© Expected value of sums of random variables

@ Properties of the cumulative distribution function
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Introduction

Experiment: tossing 3 coins
Model: S ={h,t}? P({s}) =% forallse§

Result of the experiment: we are interested in the quantity
X(s) = "# Heads obtained when s is realized"

We get
s X(s) s X(s)
(t,t,t) | 0 | (ht,t)] 1
(t,t,h) | 1 | (ht,h)| 2
(t,hyt) | 1 | (hht)| 2
(t,h,h)| 2 |(h,h,h)| 3
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Introduction (2)
Information about X:
X is considered as an application, i.e.
X:5—{0,1,2,3}.
Then we wish to understand sets like
X7H({2}) = {(t. h,h), (h,t, h), (h. h, t)}
or quantities like

P(X'({2})) = g

This will be formalized in this chapter
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Example: time of first success (1)

Experiment:
@ Coin having probability p of coming up heads
@ Independent trials: flipping the coin
@ Stopping rule: either H occurs or n flips made

Random variable:

X = # of times the coin is flipped

State space:
Xed{l,...,n}
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Example: time of first success (2)

Probabilities for j < n:

Probability for j = n:

PX=n)=P{(t,...,t,h);(t,....t,t)})
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Example: time of first success (3)

Checking the sum of probabilities:
P (U {X =j}) = ZP({X—J}
j=1 j=1

- "21— pY (1 p)

=1
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Cumulative distribution function

—~ Definition 1. N

Let
@ P a probability on a sample space S
@ X :S — &£ arandom variable, with £ C R

For x € R we define
F(x) =P (X <x)

Then the function F is called cumulative distribution function
or distribution function
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General definition

— Definition 2. | \

Let

@ P a probability on a sample space S

@ X :S — £ arandom variable

Hypothesis: £ is countable, i.e

E={x;i>1}

Then we say that X is a discrete random variable

\. J
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Probability mass function

— Definition 3.

Let
@ P a probability on a sample space S
e & ={x;i > 1} countable state space
e X : S5 — & discrete random variable

For i > 1 we set
p(xi) =P (X =x)

Then the probability mass function of X is the family

{p(xi); i =1}

SEIAN Random variables Probability Theory
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Remarks

Sum of the pmf: If p is the pmf of X, then

> px)=1

i>1

Graph of a pmf: Bar graphs are often used.
Below an example for X = sum of two dice

bl

)

gl Bl Rle
T T T

Bl By R
T T T
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Example of pmf computation (1)

Definition of the pmf: Let X be a r.v with pmf given by

where ¢ > 0 is a normalizing constant

Question: Compute
Q P(X=0)
Q@ P(X >2)
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Example of pmf computation (2)

Computing ¢: We must have
c —=1
2

Thus
c=¢€e

Computing P(X = 0): We have

0
A

P(X=0)=e T
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Example of pmf computation (3)

Computing P(X > 2): We have
P(X>2)=1-P(X<2)
Thus

2
P(X>2):1—e‘A<1+)\+%>
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Cdf for discrete random variables
,—[Proposition 4.] \
Let
@ P a probability on a sample space S
e & ={x;i > 1} countable state space, with £ C R
e X : S5 — & discrete random variable
@ F cdf of X and p pmf of X

Then

© F can be expressed as

© F is a step function

\.
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Example of discrete cdf (1)

Definition of the random variable:
Consider X : S — {1,2,3,4} given by
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Example of discrete cdf (2)

Graph of F:

F(a)

1L -—

7

8 —
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1 2 3 4
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Expected value for discrete random variables

—~ Definition 5. N

Let
@ P a probability on a sample space S
o & = {x;;i > 1} countable state space, with £ C R
@ X : S — & discrete random variable

e p pmf of X

Then we define

E[X] :ZX,'P(X:X;)

i>1
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Justification of the definition

Experiment:
@ Run independent copies of the random variable X
@ For i-th copy, the measurement is z;

Result (to be proved much later):

1 n
lim — i = E[X
Jm, 2% = ElX]

SEIAN Random variables Probability Theory 22 /109



Example: dice rolling

Definition of the random variable: we consider

X = outcome when we roll a fair dice

Pmf: We have £ ={1,...,6} and

1
p(l) =---=p(6) = 6
Expected value: We get
O A
E[X]=> ip(i)= 62/ =3
i=1 i=1
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Example: indicator of an event

Definition of the random variable:
Let A event with P(A) = p and set

B 1 if A occurs
AT 0 if A€ occurs

Pmf:

Expected value:

SEIAN Random variables Probability Theory 24 / 109
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First attempt of a definition

Problem: Let
@ X discrete random variable
e Y = g(X) for a function g

How can we compute E[g(X)]?
First strategy:
e Y = g(X) is a discrete random variable

@ Determine the pmf py of Y
e Compute E[Y] according to Definition 5

SEIAN Random variables Probability Theory 26 / 109



First attempt: example (1)

Definition of a random variable X:
Let X:S — {—1,0,1} with

PX=-1)=2 PX=0=.5 PX=1)=.23

We wish to compute E[X?]
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First attempt: example (2)

Definition of a random variable Y: Set Y = X2.
Then Y € {0,1} and

P(Y=0) = P(X=0)=5
P(Y=1) = P(X=-1)+P(X=1)=5
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First attempt: example (3)
Recall: For Y = X? we have

P(Y=0)=5  P(Y=1)=25

Expected value:
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Definition of E[g(X)]

,—[Proposition 6.}
Let

@ X discrete random variable
e p pmf of X

@ g real valued function

Then
E[g(X)] =)_g(x) p(x:) (1)
i>1

Probability Theory 30 / 109



Proof

Values of Y: We set Y = g(X) and

{yj; j > 1} = values of g(x;) for i >1

Expression for the rhs of (1): gather according to y;

> oglxi)p(x) =

i>1

> > yipx)

izl i g(xi)=y;

ZYJ Z p(xi)
izl i g(xi)=y;

> viPe(X)=y)
ji>1

Y viP(Y=y)
j>1

E [g(X)]

SEIAN Random variables Probability Theory
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Previous example reloaded
Definition of a random variable X:
Let X: S — {—1,0,1} with
PX=-1)=2, P(X=0)=5 PX=1)=23
We wish to compute E[X?]
Application of (1):

E [Xz] = > i’p(x)=5

i=—1,0,1
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Example: seasonal product (1)

Situation:
@ Product sold seasonally
@ Profit b for each unit sold
@ Loss ¢ for each unit left unsold

@ Product has to be stocked in advance
< s units stocked

Random variable:
@ X = # units of product ordered
@ Pmf p for X

Question:
Find optimal s in order to maximize profits
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Example: seasonal product (2)

Some random variables: We set

X = 7 units ordered, with pmf p
Ys = profit when s units stocked

Expression for Yj:
Ys = (bX — (5 — X) f) l(ng) + Sbl(x>5)

Expression for E[Y]:

s

ElV = Y (bi—(s—10p()+ Y sbp(i)

i=0 i=s+1
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Example: seasonal product (3)

Simplification for E[Y;]: We get

S

E[Y.] =sb+(b+0)3 (i —s)pli)

Growth of s +— E[Y,]: We have

S

E[Yon] ~E[YJ] = b~ (b+0p()
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Example: seasonal product (4)

Growth of s — E[Y;] (Ctd): We obtain

E[Y. 1] —E[Ys] >0 <= Zp)<

2
2 bl (2)

Optimization:
@ The lhs of (2)is
@ The rhs of (2) is constant

@ Thus there exists a s* such that

E[Yo] < - <E[Ys_1] <E[Ye] > E[Yorja] > -
Conclusion: s* leads to maximal expected profit
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Expectation and linear transformations

,—[Proposition 7.]
Let

@ X discrete random variable
e p pmfof X
@ a,b € R constants

Then
E[aX + b] =aE[X]+ b
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Proof

Application of relation (1):

E[aX +b] = > (axi+b) p(x)

i>1

= ay xp()+bY plx)
i>1 i>1

= aE[X]+b
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Definition of variance

—~ Definition 8.

Let

@ X discrete random variable
e p pmf of X
o 1= E[X]

Then we define Var(X) by

Var(X) = E [(X — p)?]
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Interpretation

Expected value: For a r.v X, E[X] represents
the mean value of X.

Variance: For a r.v X, Var(X) represents
the dispersion of X wrt its mean value.

A greater Var(X) means
@ The system represented by X has a lot of randomness

@ This system is unpredictable

Standard deviation: For physical reasons, it is better to introduce

ox =/ Var(X).
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Interpretation (2)

lllustration (from descriptive stats): We wish to compare the
performances of 2 soccer players on their last 5 games

Griezmann ‘ 5 0
1 1

0 0 O
Messi \ 1 1 1
Recall: for a set of data {x;; i < n}, we have
Empirical mean: X, = Y7, x;

i . L2 1 n T )2
Empirical variance: s; = - " (i — Xn)

Standard deviation: s, = /52

On our data set: xg = Xy = 1 goal/game

— Same goal average

However, s¢ = 2 goals/game while sy, = 0 goals/game
< M more reliable (less random) than G

SEIAN Random variables Probability Theory
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Alternative expression for the variance

,—[Proposition 9.]
Let

@ X discrete random variable
e p pmfof X
o 1= E[X]

Then Var(X) can be written as

Var(X) = E[X?] — 12 = E[X?] — (E[X])?
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Example: rolling a dice

Random variable:

@ X = outcome when one rolls 1 dice

Variance computation: We find

EX =1 EXY="

Therefore

91 (/7\* 35
varX) =5 = (3) =12

Standard deviation:

35
=4/ —~1.71
xX=\12
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Variance and linear transformations

,—[Proposition 10.]
Let

@ X discrete random variable
e p pmfof X
@ a,b € R constants

Then

Var (aX + b) = a* Var(X)
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SEIAN Random variables

Bernoulli random variable (1)

Notation:
X ~ B(p) with p € (0,1)
State space:

{0,1}

Pmf:

P(X=0)=1-p, PX=1)=p

Expected value and variance:

E[X]=p,  Var(X)=p(1-p)

Probability Theory
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Bernoulli random variable (2)

Use 1, success in a binary game:

@ Example 1: coin tossing
» X=1ifH, X=0if T
» We get X ~ B(1/2)

@ Example 2: dice rolling

» X =1 if outcome = 3, X = 0 otherwise
» We get X ~ 5(1/6)

Use 2, answer yes/no in a poll
e X =1 if a person feels optimistic about the future
o X = 0 otherwise

o We get X ~ B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:

@ Lifespan: 1654-1705, in Switzerland
@ Discovers constant e

Establishes divergence of Z%
Contributions in diff. eq

First law of large numbers

Bernoulli:
family of 8 prominent mathematicians

@ Fierce math fights between brothers
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Binomial random variable (1)
Notation:

X ~ Bin(n, p), forn>1, p € (0,1)

State space:

Expected value and variance:

E[X]=np,  Var(X)=np(1—p)
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:
@ Example: Roll a dice 9 times.
e X = # of 3 obtained
o We get X ~ Bin(9,1/6)
e P(X=2)=0.28

Use 2: Counting a feature in a repeated trial:
@ Example: stock of 1000 pants with 10% defects
@ Draw 15 times a pant at random
@ X = # of pants with a defect
@ We get X ~ Bin(15,1/10)
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Binomial random variable (3)

0.30:
0.25:
0.20:
0415:
0.105

0.054

Figure: Pmf for Bin(6; 0.5). x-axis: k. y-axis: P(X = k)
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Binomial random variable (4)

0.10

0.054

T .‘.‘.‘
5

" " o 2'5 T 30
Figure: Pmf for Bin(30; 0.5). x-axis: k. y-axis: P(X = k)
o S = T 9ae




Example: wheel of fortune (1)

Game:
@ Player betson 1,...,6 (say 1)
e 3 dice rolled
@ If 1 does not appear, loose $1

o If 1 appear i times, win $i

Question:
Find average win
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Example: wheel of fortune (2)

Binomial random variable:
@ Let X = # times 1 appears
e Then X ~ Bin(3,1)

Expression for the win: Set W = win. Then
o W = ¢(X) with
— ¢(0) = —1and ¢(i) =ifori=1,2,3
@ Other expression:
W =X —1x=o)
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Example: wheel of fortune (3)

Average win:

E[W] = E[X]-P(X =0)

_ 1_@)3
2 6
_17
216

Conclusion: The average win is

E[W] ~ —$0.079
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Pmf variations for a binomial r.v

,—[Proposition 11.]

Let
e X ~ Bin(n, p)
@ g =Pmfof X

o k= [(n+1)p)

Then we have
° k— q(k)is Sif k < k*
o ki q(k)is \ if k > k*
@ Maximum of g attained for k = k*
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Proof

Pmf computation: We have

ak) _ P(X=K _(n—k+1)p

ak—1)  P(X=k-1)  kI-p)

Pmf growth: We get

PX=k)>P(X=k—1) < k<(n+1)p
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Poisson random variable (1)

Notation:
P(A) for A € Ry

State space:

E=NuU{0}
Pmf:
/\k
P(X:k):e*AF, k>0

Expected value and variance:

E[X]=)  Var(X) =2\
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Poisson random variable (2)

Use (examples):
@ # customers getting into a shop from 2pm to 5pm
@ 7+ buses stopping at a bus stop in a period of 3bmn

@ # jobs reaching a server from 12am to 6am

Empirical rule:
If n— oo, p — 0 and np — A, we approximate Bin(n, p) by P()).
This is usually applied for

p<01 and np<5H
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Poisson random variable (3)

Figure: Pmf of P(2). x-axis: k. y-axis: P(X = k)
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Poisson random variable (4)

0.18:
0.16:
0.14:
0.12:
0.10:
0.08:
0.06:
0.04:

0.024

Figure: Pmf of P(5). x-axis: k. y-axis: P(X = k)
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Siméon Poisson

Some facts about Poisson:

@ Lifespan: 1781-1840, in ~ Paris

@ Engineer, Physicist and Mathematician
@ Breakthroughs in electromagnetism

@ Contributions in partial diff. eq
celestial mechanics, Fourier series

@ Marginal contributions in probability

POISSON. %;g(/p«'

A quote by Poisson:
Life is good for only two things: doing mathematics and teaching it!!
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Example: drawing defective items (1)

Experiment:

@ Item produced by a certain machine will be defective
— with probability .1

@ Sample of 10 items drawn

Question:
Probability that the sample contains at most 1 defective item
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Example: drawing defective items (2)

Random variable: Let
X = # of defective items
Then
X ~ Bin(n,p), with n=10,p=.1
Exact probability: We have to compute

P(X<1) = P(X=0)+P(X=1)
(0.9)° + 10 x 0.1 x (0.9)°
= 7361
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Example: drawing defective items (3)

Approximation: We use

Bin(10,.1) ~ P(1)

Approximate probability: We have to compute

P(X<1) = P(X=0)+P(X=1)
~ el (1+1)
.7358
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Poisson paradigm

Situation: Consider
@ nevents Eq,..., E,
o p; =P(E)
o Weak dependence of the E;: P(EE;) < 2

o lim, . 27:1 pi = A

Heuristic limit: Under the conditions above we expect that

X, =3 1g = P(N) (3)

i=1
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Example: matching problem (1)

Situation:
@ n men take off their hats
@ Hats are mixed up
@ Then each man selects his hat at random

@ Match: if a man selects his own hat

Question: Compute
o P(Ey) with E, = "exactly k matches"

SEIAN Random variables Probability Theory 69 / 109



Example: matching problem (2)

Recall: We have found

1 =k (1)
P(E) = P ( jl)
Thus .
Jim P(E) = S
New events: We set
G; = "Person i selects his own hat"
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Example: matching problem (3)

Probabilities for G;: We have

1 1
P(G)=>,  P(GIG)=-—

Random variable of interest:

X:ilci — P(E)=P(X =k

Poisson paradigm: From (3) we have X ~ P(1). Therefore

P(E)=P(X =k ~P(P(1)=k)=
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Geometric random variable

Notation:
X~G(p), forpe(0,1)

State space:
E=N={1,2,3,...}

Pmf:
PX=k)=p(1l-p)<t k>1

Expected value and variance:

E[X] = %, Var(x) = 1 =P
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Geometric random variable (2)

Use:
@ Instant of first success in a binary game

Example: dice rolling
@ Set X = 1st roll for which outcome = 6
@ We have X ~ G(1/6)

Computing some probabilities for the example:

P(X=5) — (5)41 ~ 0.08

6) 6
5 6
P(X>7) = (6) ~ 0.33
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Geometric random variable (3)

Computation of E[X]: Set ¢ =1 — p. Then

o0

EX] = > ig™'p

i=1

o0 . [ee) .
= -1y
i=1 i=1

= gE[X]+1

Conclusion: 1
E[X]=—
p
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Tail of a geometric random variable

,—[Proposition 12.] \
Let

o X ~G(p)
en>1

Then we have
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Negative binomial random variable (1)
Notation:
X ~ Nbin(r, p), for r € N*, p € (0,1)

State space:
{r,r+1,r+2...}

k—1

P(sz)z(r_l

Jora-ptn ke

Expected value and variance:

E[X] = ;_rv’ Var(X) = r(lp; P)
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Negative binomial random variable (2)

Use:
@ Independent trials, with P(success) = p

o X = # trials until r successes

Justification:
(X = k)

(r — 1 successes in (k — 1) 1st trials) N (k-th trial is a success)

Thus P
_ - (1 — k—r
<r B 1) p(1—p)

78 / 109
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Moments of negative binomial random variable

,—[Proposition 13.]

Let

e X ~ Nbin(r,p), for r > 1, p € (0,1)
@ Y ~ Nbin(r+1,p)
e />1

Then
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Proof (1)

Definition of the /-th moment: We have

ex] =3 #(K 7)ot

Relation for combination numbers:

(=)=

E[x'] = rkirk'l (f) pr(l—p)’

Consequence:
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Proof (2)

Recall: .
E |:Xl] — rZ k/—l (f) pr (1 o p)k—r
k=r

From r to r 4 1:

r k
E Xl _ kl—l r+1 1— (k+1)—(r+1)
X2k ((r+1)—1>p =)

Change of variable j = k 4 1:

E {X’} _r i (j— 1) (( Jj—1 ) pr (1 — py D)

P =1 r+1)—1

= ;E[(Y—l)‘l]
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Computation of expectation and variance

Consequence of Proposition 13:

E[X] = -

=] =) = £ 9OHQC
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The Banach match problem (1)

Situation:
@ Pipe smoking mathematician with 2 matchboxes
@ 1 box in left hand pocket, 1 box in right hand pocket
@ Each time a match is needed, selected at random

@ Both boxes contain initially N matches

Question:

@ When one box is empty,
what is the probability that kK matches are left in the other box?
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The Banach match problem (2)

Event: Define E by

(Math. discovers that rh box is empty & k matches in lh box)

Expression in terms of a negative binomial:
Ek=(X=N+1+N—-k)=(X=2N—-k+1),
where

1
XNNbin(r:N+1,p:§>
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The Banach match problem (3)

Probability of E,: We get

P(E)=P(X=2N—k+1)= <2NN— k) G)m_kﬂ

Solution to the problem:
By symmetry between left and right, we get

o= (") ()
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Hypergeometric random variable (1)

Notation:

X ~ HypG(n,N,m), for NeN* mn<N,pe(0,1)

State space:

{0,...,n}
Pmf:

P(X:k):w 0<k<n

)

Expected value and variance: Set p = 7. Then

E[X] = np, Var(X) = np(1 — p) <1_ n—1>

SEIAN Random variables
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Hypergeometric random variable (2)

Use: Consider the experiment
@ Urn containing N balls
e m white balls, N — m black balls
@ Sample of size n is drawn without replacement
@ Set X = # white balls drawn

Then
X ~ HypG(n, N, m)
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Hypergeometric and binomial

,—[Proposition 14.]

Let
o X ~ HypG(n, N, m),
@ Recall that p =

Hypothesis:
n<mN, i< mN

Then

SEIAN Random variables

Probability Theory
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Proof
Expression for P(X = i):

m! (N — m)! (N —n)!n!

(m— )iV (N—m—n+i))l(n—i)! N!

B (n)i_lm—j”_l_[i_lN—m—k
i) o N—=Jj = N—i—k

Approximation: If i, j, k << m, N above, we get

n

P(X=1)~ <> pi(1— p)m

1
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Example: electric components (1)

Situation: We have
@ Lots of electric components of size 10

@ We inspect 3 components per lot
— Acceptance if all 3 components are non defective

@ 30% of lots have 4 defective components

@ 70% of lots have 1 defective component

Question:
What is the proportion of rejected lots?

SEIAN Random variables Probability Theory 90 / 109



Example: electric components (2)

Events: We define
@ A = Acceptance of a lot
@ L; = Lot with 1 defective component drawn

o L, = Lot with 4 defective components drawn

Conditioning: We have
P(A) = P(A| L1) P(L1) + P(A| L) P(Ls)

and
P(L,) = .7, P(L,) = .3,
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Example: electric components (3)

Hypergeometric random variable: We check that

P(A| L) = P(X1 =0), where X;~ HypG(3,10,1)

iy OO

Thus

Conclusion:

Probability Theory
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Outline

© Expected value of sums of random variables
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Another expression for E[X]
,—[Proposition 15.] \

Let
@ P a probability on a sample space S
@ X :S — &£ arandom variable

Hypothesis: S is countable, i.e
Sk {S,'; ] Z 1}

Then setting p(s;) = P({s;}) we have

E[X]=>_ X(si)p(s)

i>1

\.
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Proof (1)

Recall: We have
E[X] = ZX,P(X :X,')

i>1

Level set: We define
Si={s€S; X(s) =xi}

Expression for E[X]:

EIX] = > x> p(s)

i>1 SJ'ES,'

= 2.2 X(g)r(s)

i>1 S_,ES,'
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Proof (2)

Conclusion: Since {S;; i > 1} is a partition of S,

E[X] = 3 X(s)p(s)

i>1

=] & = E DA
SEIAN Random variables



Expectation of sums

,—[Proposition 16.]

Let
@ P a probability on a sample space S
@ Xi,...,X,:S — R nrandom variables

Hypothesis: S is countable, i.e
S={s;i>1}
Then

qiqziﬂm

i=1

\.
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Proof

Notation: Set

Expression for E[Z]: According to Proposition 15,

E[Z] = > Z(s)p(s)

seS

- X (X x00) ot

seS \i=1

- z (z x,-(s)p(s))

- iE[X,-]
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Example: number of successes (1)

Experiment:
@ n trials
@ Success for j-th trial with probability p;

@ X = # of successes

Question:
Expression for E[X] and Var(X)
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Example: number of successes (2)

Expression for X: Let

Xi = l(success for i-th trial)

Then .
X - Z X,'
i=1

Expression for E[X]: Thanks to Proposition 16, we have

EX] =3
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Example: number of successes (3)

Expression for E[X?]: We invoke the two facts

Q X=X
Q If i #j, XiX; = L(x=1,x-1)
Therefore
EXY = Y ED]+ Y ElXX]
i=1 i
yields

E[X2]:ipf+ZP(X;=1,Xj=1)

i=1 ij
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Example: number of successes (4)

Particular case, binomial: In this case we have

@ The X;'s are independent
e pi=p

New expression for E[X?]:

E[X?] = np + n(n — 1)p?

Expression for Var(X):

Var(X) = np(1 — p)
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Example: number of successes (5)
Particular case, hypergeometric: We have

o m
P=
P(Xi=1,X=1) = PX=1P(X=1/X=1)
_ mm-1
- NN-1
New expression for E[X?]:
m-—1
E[X?] — _)p o
[X] = np +n(n—1)p 17—

Expression for Var(X):

vNoo:nm1—m(1—Z:i>
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@ Properties of the cumulative distribution function
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Continuity of the cdf

,—[Proposition 17.]
Let

@ P a probability on a sample space S
@ X :S5 — &£ arandom variable, with £ C R
@ F the cdf of X, i.e F(x) =P(X <x)

Then the function F satisfies
© F is a nondecreasing function
Q lim, . F(b)=1
Q lim,, o F(b)=0
© F is right continuous
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Proof of item 1

Inclusion property: Let a < b. Then

(X < a)C (X <b)

Consequence on probabilities:

P(X <a)<P(X<b)
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Proof of item 2

Definition of an increasing sequence: Let b, ' oo and
En - (X S bn)
Then
lim E, = (X < o0)

n—o0

Consequence on probabilities:
1 = P(X <)

= P (Jm £)
= lim P (E,) (Since n— E, is increasing)

= lim F(b,)

n—o0
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Example of cdf (1)

Definition of the function: We set

X 2 11
F(X) = E 1[071)(X) + g 1[172)(X) + E 1[2,3)(X) + 1[3700)(X)
F(x)
1L —_—
ul —
12
1 2 3 *
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Example of cdf (2)

Information read on the cdf: One can check that
° P(X <3)= 11

P(X=1)= %

P(X > )=

PR2<X<4)=
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