MA 532-Midrerm-Spring 24

Problem 1. We consider a random walk X on \mathbb{Z}^{2}. Namely $X_{0}=(0,0)$, and for $n \geq 1$ we have

$$
X_{n}=\sum_{k=1}^{n} Z_{k},
$$

where $\left\{Z_{k} ; k \geq 1\right\}$ is a sequence of independent and identically distributed random varies with

$$
\mathbf{P}\left(Z_{k}=(-1,0)\right)=\mathbf{P}\left(Z_{k}=(1,0)\right)=\mathbf{P}\left(Z_{k}=(0,-1)\right)=\mathbf{P}\left(Z_{k}=(0,1)\right)=\frac{1}{4}
$$

$$
\text { Since both } X_{n} \text { and } Z_{k} \text { take values in } \mathbb{Z}^{2} \text {, we will write }
$$

$X_{n}=\left(X_{n}^{1}, X_{n}^{2}\right), \quad$ and $\quad Z_{k}=\left(Z_{k}^{1}, Z_{k}^{2}\right)$
1.1. For a given $k \geq 1$, prove that Z_{k}^{1} and Z_{k}^{2} are not independent

Definition of independence z_{k}, z_{k}^{k} both take values in $\{-1,1\}$. Hence

$$
\begin{gathered}
z_{k}^{1} \Perp z_{k}^{2} \\
\Leftrightarrow
\end{gathered}
$$

$$
\left.\mathbb{P}\left(z_{k}^{\prime}, z_{k}^{2}\right)=(i, j)\right)=\mathbb{P}\left(z_{k}^{\prime}=i\right) \mathbb{P}\left(z_{k}^{2}=j\right),
$$

for all $i, j \in\{0,1\}$

Marginals of z_{i}, z_{k}^{2} we have

$$
\begin{aligned}
& \mathbb{P}\left(z_{k}^{\prime}=1\right)=\mathbb{P}\left(z_{k}=(1,0)\right)=\frac{1}{4} \\
& \mathbb{P}\left(z_{k}^{\prime}=-1\right)=\mathbb{P}\left(z_{k}=(-1,0)\right)=\frac{1}{4} \\
& \mathbb{P}\left(z_{k}^{\prime}=0\right)=\mathbb{P}\left(z_{k}=(0,-1)\right)+\mathbb{P}\left(z_{k}=(0,1)\right)=\frac{1}{2}
\end{aligned}
$$

we also find

$$
\begin{aligned}
& \mathbb{P}\left(t_{k}^{2}=-1\right)=\mathbb{P}\left(z_{k}^{2}=1\right)=\frac{1}{4} \\
& \mathbb{P}\left(t_{k}^{2}=0\right)=\frac{1}{2}
\end{aligned}
$$

Independence we have fa instance

$$
\begin{aligned}
& \mathbb{P}\left(z_{k}^{\prime}=0, z_{k}^{2}=0\right)=0 \\
& \mathbb{P}\left(z_{k}^{\prime}=0\right) \quad \mathbb{P}\left(z_{k}^{2}=0\right)=\frac{1}{4}
\end{aligned}
$$

Thus

$$
\mathbb{P}\left(z_{k}^{\prime}=0, z_{k}^{2}=0\right) \neq \mathbb{P}\left(z_{k}^{\prime}=0\right) \mathbb{P}\left(z_{k}^{2}=0\right)
$$

and

$$
z_{i}^{\prime} \not \not \not z_{l}^{2}
$$

1.2. For a given $k \geq 1$, we set
$Y_{k}^{1}=Z_{k}^{1}+Z_{k}^{2}, \quad$ and $\quad Y_{k}^{2}=Z_{k}^{1}-Z_{k}^{2}$.
Prove that $\left(Y_{k}^{1}, Y_{k}^{2}\right)$ is a couple of independent random variables such that for $j=1,2$ we

$$
\mathbf{P}\left(Y_{k}^{j}=-1\right)=\mathbf{P}\left(Y_{k}^{j}=1\right)=\frac{1}{2} .
$$

Table The following keble summarizes the arshibution of z_{k}, together with the values of $Y_{k}^{\prime}=z_{k}^{\prime}+z_{k}^{2}$ and $Y_{k}^{2}=z_{k}^{\prime}-z_{k}^{2}$

$\left.z_{k}^{\prime}\right\rangle z_{k}^{2}$	-1	0	1
-1	0	$1 / 4^{-1}$	0
0	$\frac{1}{4}$	-1	0
1	1		
1	0	$1 / 4$	0

Table fa Y_{k} From the previous Table we deduce the table fa y_{k} :

$Y_{k}^{\lambda} Y_{h}^{2}$	-1	1	Mong Y_{k}^{\prime}
-1	$1 / 4$	$\frac{1}{4}$	$\frac{1}{2}$
1	$1 / 4$	$\frac{1}{4}$	$\frac{1}{2}$
Many Y_{k}^{2}	$\frac{1}{2}$	$\frac{1}{2}$	

From the table we see that

$$
\mathbb{P}\left(Y_{k}=(i, j)\right)=\mathbb{P}\left(Y_{k}^{\prime}=i\right) \mathbb{P}\left(Y_{k}^{2}=j\right),
$$

fou all $i, j \in\{-1,1\}$. Hence

$$
Y_{k}^{\prime} \Perp Y_{k}^{2}
$$

1.3. We now set
$U_{n}=X_{n}^{1}+X_{n}^{2}$, and $V_{n}=X_{n}^{1}-X_{n}^{2}$.
Show that $U=\left\{U_{n} ; n \geq 1\right\}$ and $V=\left\{V_{n} ; n \geq 1\right\}$ are two independent symmetric random
walks starting at 0 .
Expestior in terms of y_{k} we have

$$
\begin{aligned}
U_{n} & =x_{n}^{1}+x_{n}^{2} \\
& =\sum_{k=1}^{n} z_{k}^{\prime}+\sum_{k=1}^{n} z_{k}^{2} \\
& =\sum_{n=1}^{n}\left(z_{k}^{\prime}+z_{k}^{2}\right) \\
& =\sum_{n=1}^{n} Y_{k}^{\prime}
\end{aligned}
$$

U is a symmetric row From the previous table, y_{k}^{\prime} is such that

$$
\mathbb{P}\left(Y_{k}^{\prime}=-1\right)=\mathbb{P}\left(Y_{k}^{\prime}=1\right)=\frac{1}{2}
$$

The Y_{k} 's are $\mathbb{1}$. Hence U is a jymmeric random walk.
$\frac{\text { Rexult fu } v}{\text { have }}$ Similarly to U, we

$$
V_{n}=\sum_{k=1}^{n} Y_{k}^{2}
$$

Hence v is a ymmetric Ωw.
Furthermule, shce $y^{\prime} \| y^{2}$ we get

$$
U \Perp V
$$

1.4. Let T_{1} be the random time defined by

$$
T_{1}=\inf \left\{n \geq 1 ; U_{n}=1\right\}
$$

Prove that the probability generating function G_{1} of T_{1} has the expression

$$
G_{1}(s)=\frac{1-\left(1-s^{2}\right)^{1 / 2}}{s}
$$

One cannot use directly the result from class, the above formula has to be carefully proven. However, one can resort to the following identity: if $T_{2}=\inf \left\{n \geq 1 ; U_{n}=2\right\}$, and we set

$$
f_{1}(n)=\mathbf{P}\left(T_{1}=n\right), \quad f_{2}(n)=\mathbf{P}\left(T_{2}=n\right), \quad F_{1}(s)=\sum_{n=1}^{\infty} f_{1}(n) s^{n}, \quad F_{2}(s)=\sum_{n=1}^{\infty} f_{2}(n) s^{n}
$$

then we have

$$
F_{2}(s)=\left(F_{2}(s)\right)^{2}
$$

Solution:
conditioning on X_{1} Fur $n>1$ we have

$$
\begin{aligned}
& f_{1}(n)=\mathbb{P}\left(T_{1}=n\right)=0 \text { if } n>1 \\
& =\frac{1}{2} \mathbb{P}\left(T_{1}=n \mid x_{1}=1\right)+\frac{1}{2} \mathbb{P}\left(T_{1}=n \mid x_{1}=-1\right) \\
& =\frac{1}{2} f_{2}(n-1) \\
& \quad \text { Mueover, } f_{1}(1)=\mathbb{P}\left(x_{1}=1\right)=\frac{1}{2}
\end{aligned}
$$

summing over n Fa $s \in[0,1)$ we have

$$
\begin{aligned}
& F_{1}(s)=\sum_{n=0}^{\infty} f_{1}(n) s^{n}=\frac{1}{2} s+\sum_{n=2}^{\infty} f_{1}(n) s^{n} \\
& \left.=\frac{1}{2}\right)+\sum_{n=2}^{\infty} \frac{1}{2} f_{2}(n-1) s^{n} \\
& =\frac{1}{2} s+\frac{1}{2} S \sum_{m=1}^{\infty} f_{2}(m) s^{m} \\
& =\frac{1}{2} S\left(1+F_{2}(s)\right)
\end{aligned}
$$

Equation for F_{1} we have seen

$$
F_{1}(s)=\frac{1}{2} S\left(1+F_{2}(\nu)\right)
$$

Since we are given the relation $F_{2}(\nu)=F_{1}(\nu)^{2}$, we get

$$
s\left(F_{1}(s)\right)^{2}-2 F_{1}(s)+s=0
$$

Solving for $F_{1}(s)$ $F_{1}(s)$ is orlutior of the quadratic equation

$$
5 x^{2}-2 x+1=0
$$

we get rooks with the quadratic formula:

$$
\begin{aligned}
& \Delta=4-4 s^{2}=4\left(1-j^{2}\right) \\
& x=\frac{2 \mp 2\left(1-s^{2}\right)^{2}}{2 s}
\end{aligned}
$$

we pick the root which converges as $د \rightarrow 0$. We obtain

$$
F_{1}(s)=\frac{1-\left(1-s^{2}\right)^{\frac{1}{2}}}{s}
$$

1.5. Let D_{1} be the line
$D_{1}=\inf \left\{(x, y) \in \mathbb{R}^{2} ; x+y=1\right\}$
We wish to get some information about the random time
$\hat{T}_{1}=\inf \left\{n \geq 1 ; X_{n} \in D_{1}\right\}$.
Prove that $\hat{T}_{1}=T_{1}$, and deduce an expression for the probability generating function \hat{G}_{1}
of the random variable \hat{T}_{1}
of the random variable \hat{T}_{1}
Expression with U_{n} we have

$$
\begin{aligned}
& \hat{T}_{1}=\inf \left\{n \geqslant 1 ; x_{n} \in D_{1}\right\} \\
&= \inf \left\{n \geqslant 1 ; x_{n}^{1}+x_{n}^{2}=1\right\} \\
&=\inf \left\{n \geqslant 1 ; U_{n}=1\right\} \\
&=T_{1}
\end{aligned}
$$

Identity fur \hat{G}_{1} since $T_{1}=\hat{T}_{1}$, in particular we have

$$
T_{1} \stackrel{(d)}{=} \hat{T}_{1},
$$

i.e T \& T_{1} have the same poof. Therefue

$$
\hat{G}_{1}=F_{1}
$$

1.6. Show that \hat{T}_{1} is a finite random variable, namely

$$
\mathbf{P}\left(\hat{T}_{1}=\infty\right)=0
$$

We have

$$
\begin{aligned}
& P\left(\hat{T}_{1}<\infty\right)=\hat{G}_{1}(1) \\
& =F_{1}(1) \\
& =\left.\frac{1-\left(1-s^{2}\right)^{\frac{1}{2}}}{S}\right|_{S=1}
\end{aligned}
$$

$$
=1
$$

Thus

$$
\mathbb{P}\left(\hat{T}_{1}-\infty\right)=0
$$

Problem 2. Let $\left\{U_{n} ; n>1\right\}$ be a sequence representing successive dice rolls. That is the U_{n} 's are independent uniform random variables in $\{1, \ldots, 6\}$. Prove that the following processes are Markov chains and specify their transition matrix.
2.1. $X_{n} \equiv$ largest roll U_{j} shown up to n-th roll.

Dynamics fur x we have

$$
x_{n}=\max \left\{u_{j} ; 1 \leq j \leq n\right\}
$$

Thus

$$
\begin{aligned}
& x_{n+1}=\max \left\{x_{n}, v_{n+1}\right\} \\
& x_{n+1}=\varphi\left(x_{n}, v_{n+1}\right),
\end{aligned}
$$

where $\left\{u_{n} ; n \geqslant 1\right\}$ i.2.d in $\{1, . ., 6\}$ and

$$
\varphi(x, u)=\max \{x, u\}
$$

Thus
x Markov chain
State space: $S=\{1, . ., 6\}$

Transition matrix we have

$$
\begin{aligned}
& P_{i j}=\mathbb{P}\left(\varphi\left(i, U_{1}\right)=j\right) \\
& =\mathbb{P}\left(\max \left(i, U_{1}\right)=j\right)
\end{aligned}
$$

Hence fur $i \in\{1, \ldots, 6\}$ we can only have $j \in\{i, \ldots, 6\}$ reach that $P_{i j}>0$. Next since

$$
U_{1} \sim U(\{1, \ldots, 6\})
$$

we get

$$
\begin{aligned}
& p_{i i}=\mathbb{P}\left(\operatorname{mex} \quad\left(i, U_{1}\right)=i\right) \\
& p_{i i}=\mathbb{P}\left(\quad U_{1} \leq i\right) \\
& p_{i i}=\frac{i}{6} \quad(=1 \quad \text { if } i=6)
\end{aligned}
$$

and for $j \in\{i+1, \ldots, 6\}$, and $i \leq 5$

$$
\begin{gathered}
P_{i j}=\mathbb{P}\left(\operatorname{mox}\left(i, U_{1}\right)=j\right)=\mathbb{P}\left(U_{1}=j\right) \\
P_{i j}=\frac{1}{6}
\end{gathered}
$$

2.2. $Y_{n} \equiv$ Number of sixes in the first n rolls.

Dynamics fo X we have

$$
\begin{aligned}
& Y_{n+1}=Y_{2}+1\left(U_{n}=6\right) \\
& Y_{n+1}=\psi\left(Y_{n}, U_{n+1}\right),
\end{aligned}
$$

where

$$
\psi(x, \mu)=x+\mathbb{1}_{(\mu=6)}
$$

Thus

$$
X \text { Markov chain on } J=\mathbb{N}
$$

Transition matrix we have

$$
\begin{aligned}
P_{i j} & =\mathbb{P}\left(\varphi\left(i, U_{1}\right)=j\right) \\
& =\mathbb{P}\left(i+\mathbb{1}_{(i-6)}=j\right) \\
& =\mathbb{P}\left(\mathbb{1}_{(1,=6)}=j-i\right) \\
P_{i j} & \left.=\frac{1}{6} \mathbb{1}_{(j=i \omega}\right)+\frac{5}{6} \mathbb{1}_{(j=i)}
\end{aligned}
$$

