MA/STAT 532 Spring 2024

 Stochastic Processes

 Stochastic Processes}

Midterm Exam

- You can use a calculator.
- A 2 pages long handwritten cheat sheet is allowed. It should only contain formulae and theorems (no example, no solved problem).
- You have 50 minutes.
- Show your work.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- GOOD LUCK!

Name:

Problem 1. We consider a random walk X on \mathbb{Z}^{2}. Namely $X_{0}=(0,0)$, and for $n \geq 1$ we have

$$
X_{n}=\sum_{k=1}^{n} Z_{k}
$$

where $\left\{Z_{k} ; k \geq 1\right\}$ is a sequence of independent and identically distributed random variables with

$$
\mathbf{P}\left(Z_{k}=(-1,0)\right)=\mathbf{P}\left(Z_{k}=(1,0)\right)=\mathbf{P}\left(Z_{k}=(0,-1)\right)=\mathbf{P}\left(Z_{k}=(0,1)\right)=\frac{1}{4} .
$$

Since both X_{n} and Z_{k} take values in \mathbb{Z}^{2}, we will write

$$
X_{n}=\left(X_{n}^{1}, X_{n}^{2}\right), \quad \text { and } \quad Z_{k}=\left(Z_{k}^{1}, Z_{k}^{2}\right)
$$

1.1. For a given $k \geq 1$, prove that Z_{k}^{1} and Z_{k}^{2} are not independent.

Solution:

1.2. For a given $k \geq 1$, we set

$$
Y_{k}^{1}=Z_{k}^{1}+Z_{k}^{2}, \quad \text { and } \quad Y_{k}^{2}=Z_{k}^{1}-Z_{k}^{2}
$$

Prove that $\left(Y_{k}^{1}, Y_{k}^{2}\right)$ is a couple of independent random variables such that for $j=1,2$ we have

$$
\mathbf{P}\left(Y_{k}^{j}=-1\right)=\mathbf{P}\left(Y_{k}^{j}=1\right)=\frac{1}{2}
$$

Solution:

1.3. Recall that $X_{n}=\sum_{k=1}^{n} Z_{k}$. We now set

$$
U_{n}=X_{n}^{1}+X_{n}^{2}, \quad \text { and } \quad V_{n}=X_{n}^{1}-X_{n}^{2}
$$

Show that $U=\left\{U_{n} ; n \geq 1\right\}$ and $V=\left\{V_{n} ; n \geq 1\right\}$ are two independent symmetric random walks starting at 0 .

Solution:

1.4. Let T_{1} be the random time defined by

$$
T_{1}=\inf \left\{n \geq 1 ; U_{n}=1\right\}
$$

Prove that the probability generating function G_{1} of T_{1} has the expression

$$
G_{1}(s)=\frac{1-\left(1-s^{2}\right)^{1 / 2}}{s}
$$

Please don't use directly the result from class, it is expected that you prove the above formula carefully. However, you can resort to the following identity: if $T_{2}=\inf \{n \geq$ $\left.1 ; U_{n}=2\right\}$, and if we set

$$
f_{1}(n)=\mathbf{P}\left(T_{1}=n\right), \quad f_{2}(n)=\mathbf{P}\left(T_{2}=n\right), \quad F_{1}(s)=\sum_{n=1}^{\infty} f_{1}(n) s^{n}, \quad F_{2}(s)=\sum_{n=1}^{\infty} f_{2}(n) s^{n}
$$

then we have

$$
F_{2}(s)=\left(F_{1}(s)\right)^{2} .
$$

Solution:

1.5. Let D_{1} be the line

$$
D_{1}=\inf \left\{(x, y) \in \mathbb{R}^{2} ; x+y=1\right\} .
$$

We wish to get some information about the random time

$$
\hat{T}_{1}=\inf \left\{n \geq 1 ; X_{n} \in D_{1}\right\}
$$

Prove that $\hat{T}_{1}=T_{1}$, and deduce an expression for the probability generating function \hat{G}_{1} of the random variable \hat{T}_{1}.

Solution:

1.6. Show that \hat{T}_{1} is a finite random variable, namely

$$
\mathbf{P}\left(\hat{T}_{1}=\infty\right)=0
$$

Solution:

Problem 2. Let $\left\{U_{n} ; n \geq 1\right\}$ be a sequence representing successive dice rolls. That is the U_{n} 's are independent uniform random variables in $\{1, \ldots, 6\}$. Prove that the following processes are Markov chains and specify their transition matrix. Be sure to specify the state space S for each case.
2.1. $X_{n} \equiv$ largest roll U_{j} shown up to n-th roll.

Solution:

2.2. $Y_{n} \equiv$ Number of sixes in the first n rolls.

Solution:

