Negative binomial random variable (1)

Notation:

$$
X \sim \operatorname{Nbin}(r, p), \text { for } r \in \mathbb{N}^{*}, p \in(0,1)
$$

State space:

$$
\{0,1,2 \ldots\}
$$

Pmf:

$$
\mathbf{P}(X=k)=\binom{k+r-1}{k} p^{r} q^{k}, \quad k \geq 0
$$

Expected value, variance and pgf:

$$
\mathrm{E}[X]=\frac{r q}{p}, \quad \operatorname{Var}(X)=\frac{r q}{p^{2}}, \quad G_{X}(s)=\left(\frac{p}{1-(1-p) s}\right)^{r}
$$

Negative binomial random variable (2)

Use:

- Independent trials, with \mathbf{P} (success) $=p$
- $X=\#$ failures until r successes

Justification:

$$
\begin{gathered}
(X=k) \\
= \\
((r-1) \text { successes in }(k+r-1) 1 \text { st trials }) \\
\cap((k+r) \text {-th trial is a success })
\end{gathered}
$$

Thus

$$
\mathbf{P}(X=k)=\binom{k-1}{r-1} p^{r} q^{k}
$$

Negative binomial random variable (3)

$P(x=k)$

Negative binomial random variable for $r=1$

Notation: Rok: We can unite $X=Y-1$ where $Y \sim g(p)$

$$
X \sim \operatorname{Nbin}(1, p), \text { for } r \not \mathbb{N}^{*}, p \in(0,1)
$$

State space:

$$
\{0,1,2 \ldots\}
$$

Pf:

$$
\mathbf{P}(X=k)=p q^{k}, \quad k \geq 0
$$

Expected value, variance and pgf:

$$
\begin{aligned}
& \mathbf{E}[X]=\frac{q}{p}, \quad \operatorname{Var}(X)=\frac{q}{p^{2}}, \quad G_{X}(s)=\frac{p}{1-(1-p) s} \\
&=\operatorname{Var}(Y)
\end{aligned}
$$

Experion for G_{x}

$$
\begin{aligned}
& G_{x}(s)=\sum_{k=0}^{\infty} P(x=k) s^{k} \\
& =\sum_{k=0}^{\infty} P q^{k} s^{k} \\
& =P \sum_{k=0}^{\infty}(q s)^{k} \quad \text { (geom- series) } \\
& =\frac{P}{1-q s}
\end{aligned}
$$

Particular case $p=\frac{1}{2}$, then

$$
G_{x}(0)=\frac{1 / 2}{1-s / 2}=\frac{1}{2-s}
$$

Branching with negative binomial offspring

Proposition 20.

$$
p=\frac{1}{2} \Rightarrow E\left[z_{1}\right]=1 \quad p>\frac{1}{2} \Rightarrow E\left[z_{1}\right]>1
$$

$$
p<\frac{1}{c} \Rightarrow E\left[z_{i}\right]<1
$$

For the branching process with $Z_{1} \sim \operatorname{Nbin}(1, p)$ we have
(1) The generating function G_{n} is given by

$$
G_{n}(s)= \begin{cases}\frac{n-(n-1) s}{n+1-n s} & \text { if } p=\frac{1}{2} \\ \frac{\left.q+p^{n}-q^{n}\right)-p s\left(p^{n-1}-q^{n-1}\right)}{\rho^{n+1}-q^{n+1}-p s\left(p^{n}-q^{n}\right)} & \text { if } p \neq \frac{1}{2}\end{cases}
$$

(2) The probability of extinction is

$$
\mathbf{P}(\text { Ultimate extinction })= \begin{cases}1 & \text { if } p \leq \frac{1}{2} \\ \frac{q}{p} & \text { if } p>\frac{1}{2}\end{cases}
$$

Rimk we we $z_{1} \sim \operatorname{Nbin}(1, p)$ becsure
(i) $z_{1}=0,1, \ldots \rightarrow$ good far \# offspings
(ii) G_{n} is "eaxily" compated

Ir is not related to Bernaelli riials

Poof far $p=\frac{1}{2}$. claim: $G_{n}(s)=\frac{n-(n-1) s}{n+1-n s}$
Initial step $G_{x_{0}}(s)=\sum_{k=0}^{\infty} s^{k} P\left(x_{0}=k\right)=S$ and $G_{0}(1)=\frac{0+1}{1}=S$
$(P(x=1)=1)$
Induction If claim is rue for n, then

$$
\begin{aligned}
& G_{z_{n+1}(s)=} G_{T}\left(G_{n}(s)\right) \quad\left(G(r)=\frac{1}{2-\frac{n-(n-1) s}{n+1-n s}}\right) \\
& =\frac{n+1-n s}{2 n+2-2 n s-n+(n-1) s}=\frac{n+1-n s}{n+2-(n+1) s} \\
& =
\end{aligned}
$$

Proof far ultimate extinction
Recall: consider a sequence $\left\{A_{n} ; n \geqslant 1\right\}$ which is increasing $\left(A_{n} \subset A_{n+1}\right)$. Then $P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$
(A) An Application consider $A_{n}=\left(z_{n}=0\right)$
Then (i) $z_{n}=0 \Rightarrow z_{n 4}=0$
Thus $\quad A_{n}=\left(z_{n}=0\right) \subset A_{n+1}=\left(z_{n+1}=0\right)$
(ii) $P($ ultimate extinction $)=P\left(\bigcup_{n \rightarrow 0}^{\infty}\left(z_{n}=0\right)\right)$ $=P\left(\bigcup_{n=0}^{\infty} A_{n}\right)$

$$
G_{n}(s)=\frac{n-(n-1) s}{n-1-n s}
$$

Summory we have reen

$$
P(u l \hbar i m a r e ~ e x t u n c h i o n ~)=\lim _{n \rightarrow \infty} P\left(z_{n}=0\right)
$$

In reams of G_{n} $G_{n}(s)=\sum_{k=0}^{\infty} P\left(z_{k} k\right) s^{k}$

$$
\begin{aligned}
P\left(z_{n}=0\right) & =G_{n}(0) \\
& =\frac{n}{n+1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} P\left(t_{n}=0\right)=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

Thus $P\left(\right.$ exhnckion $=1$ if $p=\frac{1}{2}$

Proof of Proposition 20 (1)

Pgf for Z_{1} : Since $Z_{1} \sim \operatorname{Nbin}(1, p)$ we have

$$
G_{Z_{1}}(s)=\frac{p}{1-(1-p) s}
$$

Expression for G_{n} : One can check that

$$
G\left(G_{n}(s)\right)=G_{n+1}(s)
$$

Proof of Proposition 20 (2)

Ultimate extinction: We set

$$
A=\text { (Ultimate extinction occurs })
$$

Then

$$
A=\bigcup_{n \geq 1} A_{n}, \quad \text { with } \quad A_{n}=\left(Z_{n}=0\right)
$$

$\mathbf{P}(A)$ as a limit: We have

$$
A_{n} \subset A_{n+1} \quad \Longrightarrow \quad \mathbf{P}(A)=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)
$$

Proof of Proposition 20 (3)

Expression for $\mathbf{P}\left(A_{n}\right)$: We have

$$
\mathbf{P}\left(A_{n}\right)=G_{n}(0)= \begin{cases}\frac{n}{n+1} & \text { if } p=\frac{1}{2} \\ \frac{q\left(p^{n}-q^{n}\right)}{p^{n+1}-q^{n+1}} & \text { if } p \neq \frac{1}{2}\end{cases}
$$

Expression for $\mathbf{P}(A)$: We obtain

$$
\mathbf{P}(A)=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)= \begin{cases}1 & \text { if } p \leq \frac{1}{2} \\ \frac{q}{p} & \text { if } p>\frac{1}{2}\end{cases}
$$

