
Ultimate extinction in the general case

Consider a branching process with

Z1 ⇠ f , f with pgf G

µ = E[Z1] and �2 = Var(Z1)

Let

⌘ ⌘ smallest non-negative root of s = G (s)

Then
1 P(Ultimate extinction) = ⌘
2 ⌘ = 1 if µ < 1
3 ⌘ < 1 if µ > 1
4 ⌘ = 1 if µ = 1 and �2 > 0

Theorem 21.
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average oftiming = 1 => extinction

(average # offering - extinction

(average # offspring > / => >0 prob
to survive)









Rmk One can move this rype of convergence
if G is

(2) Increasing
(ii) Convex

Here (i) G(s) = El S* J
,
with X = 0

=> St S increasing

=> sn EISX] increasing

Also G'(s) = El X, SY
+ J O

(ii) G "(x) = E[ X , (x, - 1)
-] zo

= G convex



Proof of Theorem 21 (1)

Ultimate extinction: Recall that we have set

A = (Ultimate extinction occurs)

Then
A =

[

n�1

An, with An = (Zn = 0)

P(A) as a limit: We have An ⇢ An+1. Thus

⌘n ⌘ P(An) is % , and P(A) = limn!1 ⌘n
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Proof of Theorem 21 (2)
Claim when µ > 1:

G (0) 2 [0, 1) , G 0(0) 2 [0, 1) , G 0(1) > 1 , G convex on [0, 1]
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Proof of Theorem 21 (3)

Claim G (0) 2 [0, 1): We have

G (0) = P(Z1 = 0) < 1 (otherwise trivial extinction)

Claim G 0(0) 2 [0, 1): Write

G 0(0) = P(Z1 = 1) < 1 (or trivial o↵spring = 1)

Claim G 0(1) > 1: One argues

G 0(1) = µ > 1

Claim G convex on [0, 1]: We compute

G 00(s) = E
⇥
Z1(Z1 � 1)sZ1�2

⇤
� 0
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Proof of Theorem 21 (4)

Conclusion: Follows classical lines for sequences

⌘n+1 = G (⌘n) =) lim
n!1

⌘n = ⌘
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