
Branching process example S = IN
Xn

Dynamics : Xnx = Z z
(wi zkA( - xn)-

k =

k = 1

Thus

Xnt = 2) Xn , z
+ ) geneakin

nulwhere z = 4 iK2l) ,
ZEN

Sequence ofsming #k
3)x , z) = zk 12x)
Thesequences are i . 2. . d

= X is a Markov chain





Branching process case (1)

State space:
S = N

Markov property: We have seen

Xn+1 =
PXn

k=1 Z
(n+1)
k = '(Xn,Z(n+1))

Z
(n) = {Z(n)

k ; k � 1} is a sequence

'(x , z) =
Px

k=1 zk
{Z(n); n � 1} i.i.d family

,! with (Z (n)
k )k�1 i.i.d with common pgf G

Thus

X is a Markov chain
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Branching process case (2)

Transition probability: We have

pij = P

 
iX

k=1

Z (1)
k = j

!

=
1

j !
⇥ Coe�cient of s j in (G (s))i

n-step transition: We obtain

pij(n) =
1

j !
⇥ Coe�cient of s j in (Gn(s))

i
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Outline

1 Markov processes

2 Classification of states

3 Classification of chains

4 Stationary distributions and the limit theorem
Stationary distributions
Limit theorems

5 Reversibility

6 Chains with finitely many states

7 Branching processes revisited
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Questions about Markov chains

Main questions
1 Does the MC Xn go to 1 when n ! 1?
2 Does it return to state i after n = 0?
3 How often does it return to i?
4 What is the range of Xn(!)?

Methodologies to answer those questions
1 We have seen: pgf’s for random walks and branching
2 Now: Markov chain methods
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Persistent and transient states

Let

X Markov chain

i state in S

Then
1 i is called persistent or recurrent if

P (Xn = i for some n � 1|X0 = i) = 1

2 i is called transient if

P (Xn = i for some n � 1|X0 = i) < 1

Definition 11.
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First passage time probabilities

Let

X Markov chain and i , j states in S

Then we define
1 Probability that

,! 1st visit to j starting from i takes place at step n:

fij(n) = P (X1 6= j , . . . , Xn�1 6= j , Xn = j |X0 = i)

2 Probability that X ever visits j starting from i :

fij =
1X

n=1

fij(n)

Definition 12.
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Alternative definition for fij(n)

First visit to j : We set Tj = 1 if there is no visit to j , and

Tj = inf {n � 1; Xn = j}

Expression for fij(n): We have

fij(n) = P (X1 6= j , . . . , Xn�1 6= j , Xn = j |X0 = i)

= P (Tj = n|X0 = i)
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Some pgf’s

Pgf’s P and F : We set

Pij(s) =
1X

n=0

pij(n)s
n , Fij(s) =

1X

n=0

fij(n)s
n

Remarks:
1 Conventions above: pij(0) = �ij and fij(0) = 0
2 i persistent i↵ fii = 1
3 For |s| < 1, the series Pij(s) and Fij(s) are convergent
4 Pij(1) and Fij(1) are defined through Abel’s theorem
5 fij = Fij(1)
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Relation between F and P

Let Xn be a Markov chain with transition p. Then

1 Pii and Fii satisfy

Pii(s) = 1 + Fii(s)Pii(s)

2 For i 6= j , the function Pij verifies

Pij(s) = Fij(s)Pjj(s)

Theorem 13.
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