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Branching process case (1) A

/\
State space: CoL X,
[« -~ foe- . K
S=N AT AN
Markov property: We have seen Z"“:’:z_

o Xpp1 = fl1 Z;EHH) _ SO(Xm Z(n+1))
0 Z(M = {ZE("); k > 1} is a sequence
° SO(Xa Z) = Zi:l Zk
o {Z(M: n>1}iid family
< with (Z{")4>1 i.i.d with common pgf G
Thus

X is a Markov chain
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Branching process case (2)

Transition probability: We have

pj = P(Zzﬁl)zj)
k=1

1 . .
= - x Coefficient of s/ in (G(s))
_].

n-step transition: We obtain - (G."”(;))L'

—

1 ‘ i
pi(n) = i x Coefficient of s/ in (G,(s))'
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Outline

@ Classification of states
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Questions about Markov chains

Main questions
@ Does the MC X, go to oo when n — oc0?
© Does it return to state / after n = 07
© How often does it return to /7
© What is the range of X,(w)?

Methodologies to answer those questions
© We have seen: pgf's for random walks and branching
© Now: Markov chain methods
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Persistent and transient states

~ Definition 11.

Let
@ X Markov chain

@ /statein S

Then we wcll alu
.. ) . Rerun )
© / is called persistent or recurrent if wun fo v
P(X,=1iforsomen>1|Xy=1i)=1
@  is called transient if we ame ok wero
, elun ho
/
P(X,=1iforsomen>1|X,=1i)<1
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First passage time probabilities

~ Definition 12. \
Let
@ X Markov chain and 7, states in S

Then we define

© Probability that
— 1st visit to j starting from / takes place at step n:

f;(n):P(Xl #j,...,Xn_l 7éj/ Xn:J|X0:’)

© Probability that X ever visits j starting from i:

o

fj=_ fi(n)
n=1

\ J
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Recall — that  fo iz VX2, ) Xnikf, Xneg 1X0=C )

T= md {&21 7 X =45
Then () f:;(ny = P>Tp= n | X=c)
() fe :g L) =
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Alternative definition for f;(n)

First visit to j: We set T; = oo if there is no visit to j, and

Ti=inf{n>1; X, =}

Expression for f;(n): We have

f;(n) = P(Xl #_j,---,xn—l #J’ X":-I’XOZI)
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Some pgf's

Pgf's P and F: We set P3f fet Ty andifaned

96@)&&(45 qlééhcv[‘l/l /O.\ot Xo=¢)

File) = Yo pin)s”. Fils) = D fln)s”

e " T n 1%=¢)

Pey(0)= (’D bﬁ;h;&fct

@ Conventions above: p;;(0) = d; and f;(0) =0

© |/ persistent iff f; =1

@ For |s| < 1, the series Pj(s) and Fj(s) are convergent

@ Pj(1) and Fj(1) are defined through Abel’s theorem

Q f;j=F;(1)

Remarks:
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Relation between F and P

r—[Theorem 13.} \

Let X, be a Markov chain with transition p. Then
Q@ Pj; and Fj; satisfy
Pi(s) =1+ Fi(s)Pi(s)
@ For i # j, the function Pj verifies

Pi(s) = Fij(s)Pj(s)
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