Bnanching process example $S=\mathbb{N}$
Dynamic): $\quad x_{n+1}=\sum_{k=1}^{x_{n}} z_{k}^{(n+1)}=\sum_{k=1}^{\infty} z_{k} 1\left(1\left(k \leq x_{k}\right)\right.$
Thas

$$
\begin{aligned}
& x_{n+1}=\varphi\left(x_{n}, z^{(n+1)}\right) \\
& \text { generation } \\
& \text { where } \quad z^{(n+1)}=\left\{z_{k}^{(n+1)} ; k \geqslant 1\right\}, z_{k}^{(k+1)} \in \mathbb{N} \\
& \varphi\left(x, \bar{z}^{\prime}\right)^{\text {xequence }}=\sum_{k=1}^{\infty} z_{k} f_{(k \leqslant x)} \\
& \text { offoring \#k }
\end{aligned}
$$

The requences are i.i.d

$$
\Rightarrow \quad x \text { is a Marko chain }
$$

$$
\varphi(i, z)=\sum_{k=1}^{+} z_{k}=\sum_{k=1}^{\infty} z_{k} \mathbb{1}_{(k \leq i)}
$$

Transition

$$
\begin{aligned}
P_{i j} & =P\left(\varphi\left(i, z^{(1)}\right)=j\right) \\
& =P\left(\sum_{k=1}^{i} Z_{k}^{(1)}=j\right)
\end{aligned}
$$

we have seen that those quantities could be expressed in reams of generating functions If $G \equiv p g f$ for $z_{1}^{(1)}$, then

$$
\operatorname{Pg} f\left(\sum_{k=1}^{i} z_{k}^{(1)}\right)=G^{i}
$$

Thus
$P\left(\sum_{k=1}^{i} z_{k}^{(1)}=j\right)=\frac{1}{j!}$ \{ coefficient of $s^{j} f n$ the function $\left.[G(\rho)]^{i}\right\}$

Branching process case (1)

State space:

$$
S=\mathbb{N}
$$

Markov property: We have seen

- $X_{n+1}=\sum_{k=1}^{X_{n}} Z_{k}^{(n+1)}=\varphi\left(X_{n}, \mathbf{Z}^{(n+1)}\right)$
- $\mathbf{Z}^{(n)}=\left\{\mathbf{Z}_{k}^{(n)} ; k \geq 1\right\}$ is a sequence
- $\varphi(x, \mathbf{z})=\sum_{k=1}^{x} z_{k}$
- $\left\{\mathbf{Z}^{(n)} ; n \geq 1\right\}$ i.i.d family
\hookrightarrow with $\left(Z_{k}^{(n)}\right)_{k \geq 1}$ i.i.d with common pgf G
Thus
X is a Markov chain

Branching process case (2)

Transition probability: We have

$$
\begin{aligned}
p_{i j} & =\mathbf{P}\left(\sum_{k=1}^{i} Z_{k}^{(1)}=j\right) \\
& =\frac{1}{j!} \times \text { Coefficient of } s^{j} \text { in }(G(s))^{i}
\end{aligned}
$$

n-step transition: We obtain

$$
=\left(G^{o n}(s)\right)^{i}
$$

$$
p_{i j}(n)=\frac{1}{j!} \times \text { Coefficient of } s^{j} \text { in }\left(\widetilde{G_{n}(s)}\right)^{i}
$$

Outline

(1) Markov processes

(2) Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Questions about Markov chains

Main questions
(1) Does the MC X_{n} go to ∞ when $n \rightarrow \infty$?
(2) Does it return to state i after $n=0$?
(3) How often does it return to i ?
(9) What is the range of $X_{n}(\omega)$?

Methodologies to answer those questions
(1) We have seen: pgf's for random walks and branching
(2) Now: Markov chain methods

Persistent and transient states

Definition 11.

Let

- X Markov chain
- i state in S

Then
we will always
(1) i is called persistent or recurrent if rerun to i

$$
\mathbf{P}\left(X_{n}=i \text { for some } n \geq 1 \mid X_{0} \stackrel{r}{=} i\right)=1
$$

(2) i is called transient if
we are not sue to

$$
\mathbf{P}\left(X_{n}=i \text { for some } n \geq 1 \mid X_{0}=i\right)<1
$$

First passage time probabilities

Definition 12.

Let

- X Markov chain and i, j states in S

Then we define
(1) Probability that
\hookrightarrow 1st visit to j starting from i takes place at step n :

$$
f_{i j}(n)=\mathbf{P}\left(X_{1} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right)
$$

(2) Probability that X ever visits j starting from i :

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}(n)
$$

Recall that $f_{i j}\left(n \mid=P\left(x_{1} \neq j, \ldots, x_{n-1} \neq j, x_{n}=j \mid x_{0}=i\right)\right.$
ser

$$
T_{j}=\inf \left\{k \geq 1 ; x_{k}=j\right\}
$$

Then (i) $f_{i \dot{\sigma}}(n)=P\left(T_{\dot{\sigma}}=n \quad 1 \quad x_{0}=i\right)$
(ii)

$$
\begin{aligned}
f_{i j} & =\sum_{n=1}^{\infty} f_{i j}(n)= \\
& =\sum_{n=1}^{\infty} P\left(T_{j}=n \mid x_{0}=i\right) \\
& =P\left(T_{j}<\infty \mid x_{0}=i\right)
\end{aligned}
$$

If $f_{i i}=1$, then $P\left(T_{i}<\infty \mid x_{0}=i\right)=1$ $\Rightarrow i$ persistent

Alternative definition for $f_{i j}(n)$

First visit to j : We set $T_{j}=\infty$ if there is no visit to j, and

$$
T_{j}=\inf \left\{n \geq 1 ; X_{n}=j\right\}
$$

Expression for $f_{i j}(n)$: We have

$$
\begin{aligned}
f_{i j}(n) & =\mathbf{P}\left(X_{1} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right) \\
& =\mathbf{P}\left(T_{j}=n \mid X_{0}=i\right)
\end{aligned}
$$

Some pgf's

Pga's P and F : We set

$$
\begin{aligned}
& \text { generating function } \\
& P_{i j}(s)=\sum_{n=0}^{\infty} p_{i j}(n) s^{n},
\end{aligned}
$$

$$
p_{i j}(0)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

(1) Conventions above: $p_{i j}(0)=\delta_{i j}$ and $f_{i j}(0)=0$
(2) i persistent of $f_{i i}=1$
(3) For $|s|<1$, the series $P_{i j}(s)$ and $F_{i j}(s)$ are convergent
(4) $P_{i j}(1)$ and $F_{i j}(1)$ are defined through Abel's theorem
(5) $f_{i j}=F_{i j}(1)$

Relation between F and P

Theorem 13.
Let X_{n} be a Markov chain with transition p. Then
(1) $P_{i j}$ and $F_{i i}$ satisfy

$$
P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)
$$

(2) For $i \neq j$, the function $P_{i j}$ verifies

$$
P_{i j}(s)=F_{i j}(s) P_{j j}(s)
$$

