Relation between F and P

Theorem 13.
Let X_{n} be a Markov chain with transition p. Then
(1) $P_{i j}$ and $F_{i i}$ satisfy

$$
P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)
$$

(2) For $i \neq j$, the function $P_{i j}$ verifies

$$
P_{i j}(s)=F_{i j}(s) P_{j j}(s)
$$

Strategy fer proof: Ger a type of convolukier. Compotation start from $P\left(x_{n}=j \mid x_{0}=i\right)$

$$
\begin{aligned}
& P\left(x_{n}=j \mid x_{0}=i\right)=P\left(X_{n}=j, T_{j} \leqslant n \mid x_{0}=i\right) \\
& =\sum_{k=1}^{n} P\left(x_{n}=j, T_{j}=k \quad \mid X_{0}=i\right) \quad\left(\operatorname{dijjaint} \bigcup_{k=1}^{n} T_{j}=k \mid\right) \\
& \left(\frac{\text { Recall }}{n} P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)\right. \\
& =\sum_{k=1}^{n} P\left(X_{n}=j \mid T_{j}=k, x_{0}=i\right) \quad P\left(T_{j}=k \mid X_{0}=i\right) \\
& \stackrel{\text { Markov }}{=} \sum_{k=1}^{n} P\left(x_{n}=j \mid x_{k}=j\right) \quad f_{i j}(k) \\
& =\sum_{k=1}^{n} P_{j j}(n-k) f_{i j}(k) \Longrightarrow \begin{array}{l}
\text { consolation } \\
\text { relation }
\end{array}
\end{aligned}
$$

Proof of Theorem 13 (1)

Events: We set

$$
A_{m}=\left(X_{m}=j\right), \quad B_{k}=\left(T_{j}=k\right)
$$

Decomposition for A_{m} : We have

$$
A_{m}=A_{m} \cap\left(\bigcup_{k=1}^{n} B_{k}\right)=\bigcup_{k=1}^{n}\left(A_{m} \cap B_{k}\right)
$$

Proof of Theorem 13 (2)

Preliminary identity: Recall that

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid B \cap C) \mathbf{P}(B \mid C)
$$

Decomposition for probabilities: We get

$$
\begin{align*}
\mathbf{P}\left(A_{m} \cap B_{k} \mid X_{0}=i\right) & =\mathbf{P}\left(A_{m} \mid B_{k}, X_{0}=i\right) \mathbf{P}\left(B_{k} \mid X_{0}=i\right) \\
& \stackrel{\text { Markov }}{=} \mathbf{P}\left(A_{m} \mid X_{k}=j\right) \mathbf{P}\left(B_{k} \mid X_{0}=i\right)
\end{align*}
$$

Proof of Theorem 13 (3)

Convolution relation: Equation (1) can be read as

$$
\begin{aligned}
p_{i j}(m) & =\mathbf{P}\left(A_{m} \mid X_{0}=i\right) \\
& =\sum_{k=1}^{n} \mathbf{P}\left(A_{m} \cap B_{k} \mid X_{0}=i\right) \\
& =\sum_{k=1}^{n} p_{j j}(m-k) f_{i j}(k), \quad \text { for } \quad m \geq 1, \quad \text { and } \quad p_{i j}(0)=\delta_{i j}
\end{aligned}
$$

Expression with generating functions: We get

$$
P_{i j}(s)-\delta_{i j}=F_{i j}(s) P_{j j}(s)
$$

Criterion for recurrence and transience

Potential of the Markov chain

Proposition 14.

Let X_{n} be a Markov/chain with transition p. Then
(1) If $\widehat{\sum_{n=0}^{\infty} p_{j j}(n)}=\infty$, then

- State j is persistent
- $\sum_{n=0}^{\infty} p_{i j}(n)=\infty$ for all i 's such that $f_{i j}>0$
(3) If $\sum_{n=0}^{\infty} p_{j j}(n)<\infty$, then
- State j is transient
- $\sum_{n=0}^{\infty} p_{i j}(n)<\infty$ for all i

Proof we have sen $P_{j j}(j)=1+F_{j j}(\jmath) P_{j \dot{j}}(\jmath)$
Thus

$$
P_{j j}(J)=\frac{1}{1-F_{j j}(s)} \quad \text { if } \quad|s|<1
$$

Take $s \rightarrow 1$. we get that

$$
\begin{aligned}
& \lim _{\Delta \rightarrow 1} P_{j j}(s)=\infty \quad \text { if } \quad F_{j j}(1)=1 \\
& \text { Now } \lim _{j \rightarrow \infty} P_{j j}(J)=\sum_{n=0}^{\infty} P_{j j}(n)=U_{j} \\
& \cdot F_{j j}(1)=f_{j j}=\sum_{k=1}^{\infty} P\left(T_{j}=k \mid x_{0}=j\right) \\
& \quad f_{j j}=1 \Leftrightarrow j \text { persistent }
\end{aligned}
$$

That $U_{j}=\infty$ ill j persistent

Proof of Proposition 14 (1)

Expression for $P_{j j}(s)$: From Theorem 13 we have

$$
P_{j j}(s)=\frac{1}{1-F_{j j}(s)}, \quad \text { for } \quad|s|<1
$$

Limit as $s \nearrow$ 1: We get

- $P_{j j}(s) \rightarrow \infty$ iff $F_{j j}(1)=1$
- $F_{j j}(1)=f_{j j}$
- j persistent iff $f_{j j}=1$

Thus
j persistent iff $\lim _{s \not{ }_{\text {万1 }}} P_{j j}(s)=\infty$

Proof of Proposition 14 (2)

Recall: We have seen

$$
j \text { persistent iff } \lim _{s \not{ }_{1}} P_{j j}(s)=\infty
$$

Application of Abel:

$$
\lim _{s \not \subset 1} P_{j j}(s)=\sum_{n=0}^{\infty} p_{i j}(n)
$$

Conclusion:

$$
j \text { persistent iff } \sum_{n=0}^{\infty} p_{i j}(n)=\infty
$$

Proof of Proposition 14 (3)

Another relation for $p_{i j}(n)$: We have seen

$$
P_{i j}(s)=F_{i j}(s) P_{j j}(s)
$$

Taking limits $s \nearrow 1$ we get

$$
\sum_{n=0}^{\infty} p_{i j}(n)=f_{i j} \sum_{n=0}^{\infty} p_{j j}(n)
$$

Conclusion: If $\sum_{n=0}^{\infty} p_{j j}(n)=\infty$, then

$$
\sum_{n=0}^{\infty} p_{i j}(n)=\infty \text { for all } i \text { 's such that } f_{i j}>0
$$

Behavior of $p_{i j}(n)$

Proposition 15.

Let

- X Markov chain with transition p
- j transient state

Then

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=0
$$

Simple random walk case

Proposition 16.

Let

- X simple random walk
- Parameters p and $q=1-p$

Then

$$
X \text { is persistent iff } p=\frac{1}{2}
$$

Rok we have already moved that, by computing $F_{00}(s)$

Proof we want to apply the aiterion j persistent it $\sum_{n=0}^{\infty} P_{j j}(n)=\infty$
Transition $\mathrm{Fu} m$ odd $P_{i g}(m)=0$ and

$$
P_{j \delta}(2 n)=\binom{2 n}{n}(p q)^{n}=\frac{(2 n)!}{(n!)^{2}}(p q)^{n}
$$

Next Jeep Find $p_{i j}(2 n) \stackrel{n \rightarrow \infty}{\sim}$?
Sculling fumula: $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$
Thus $\frac{(2 n)!}{(n!)^{2}} \sim \frac{\sqrt{2 \pi} \sqrt{2 n}\left(2 n^{-2 n} e^{-2 n^{-1}}\right.}{2 \pi} n \quad n^{2 n^{-1}} e^{-2 n}-1$.
$\sim \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{n}} 4^{n}$

Equivalent

$$
p_{j j}(2 n)=\binom{2 n}{n} \quad(p q)^{n} \sim \frac{2^{n}}{\sqrt{\pi n}}(p q)^{n}
$$

$\operatorname{Pj\sigma }(2 n) \sim \frac{1}{\sqrt{\pi}} \frac{1}{n^{\frac{1}{2}}}(4 p q)^{n}$
Recall: $\quad 4 p q<1$ for $p \neq \frac{1}{2}$

$$
c_{p} \equiv 4 p q=1 \quad \text { fou } p=\frac{1}{2}
$$

Case $p=\frac{1}{2} \quad P_{j j}(2 n) \sim \frac{1}{\sqrt{\pi}} \frac{1}{n^{2}}$

Case $p \neq \frac{1}{2} \quad P_{j r}(2 n) \sim \frac{1}{\sqrt{\pi}} \frac{\left(G_{P}\right)^{n}}{n^{k}} \Rightarrow \begin{gathered}\lambda_{n} P_{j i}(2 n) \\ \langle\infty\end{gathered}$

Proof of Proposition 16 (1)

Formula for $p_{j j}(m)$: According to (26),

$$
p_{j j}(2 n)=\binom{2 n}{n}(p q)^{n}, \quad p_{j j}(2 n+1)=0
$$

Stirling's formula:

$$
m!\equiv \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Equivalent for $p_{j j}(2 n)$: We get, as $n \rightarrow \infty$,

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Proof of Proposition 16 (2)

Recall: We have seen that

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Case $p=\frac{1}{2}$: We get

$$
p_{j j}(2 n) \sim \frac{1}{(\pi n)^{1 / 2}}
$$

Thus

$$
\sum_{n=0}^{\infty} p_{j j}(2 n)=\infty \quad \Longrightarrow \quad \text { State } j \text { persistent }
$$

Proof of Proposition 16 (3)

Recall: We have seen that

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Case $p \neq \frac{1}{2}$: We get

$$
p_{j j}(2 n) \sim \frac{c_{p}}{(\pi n)^{1 / 2}}, \quad \text { with } \quad c_{p}<1
$$

Thus

$$
\sum_{n=0}^{\infty} p_{j j}(2 n)<\infty \quad \Longrightarrow \quad \text { State } j \text { transient }
$$

