Summary we have reen
(i) If $\sum_{n=1}^{\infty} p_{i i}(n)=\infty$
\Rightarrow state i is persitent
(ii) If $\sum_{n=1}^{\infty} p_{i i}(n)<\infty$
\Rightarrow state i is rransient
(iii) $\mathrm{FG} S R W$,

$$
\begin{aligned}
P=\frac{1}{2} & \Rightarrow p_{i i}(n) \sim \frac{c}{n^{k}} \Rightarrow \sum_{n} p_{i i}(n)=\infty \\
& \Rightarrow \forall i \in \mathbb{Z}, \quad i \text { is perastent }
\end{aligned}
$$

$$
p=\frac{1}{2} \Rightarrow p_{i i}(n) \sim c \frac{\left(c_{p}\right)^{n}}{n^{\frac{1}{2}}} \Rightarrow \sum_{i \text { riansient }} p_{i i}(n)<\infty
$$

Number of visits

Recall: We have seen that

State j is either persistent or transient
Number of visits: We set
$N(i)=\#$ times that X visits its starting point i
Fact: We have

$$
\mathbf{P}\left(N(i)=\infty \mid X_{0}=i\right)= \begin{cases}1, & \text { if } i \text { persistent } \\ 0, & \text { if } i \text { transient }\end{cases}
$$

Behavior of T_{j} for a transient state

Recall: We set $T_{j}=\infty$ if there is no visit to j, and

$$
T_{j}=\inf \left\{n \geq 1 ; X_{n}=j\right\}
$$

Mean for T_{j} if j is transient: Whenever j is transient,

$$
\begin{aligned}
\widehat{\mathbf{P}\left(T_{j}=\infty \mid X_{0}=j\right)}> & >0 \\
\mathbf{E}\left[T_{j} \mid X_{0}=j\right] & =\infty
\end{aligned}
$$

Fact If Y is a random variable with values in $\mathbb{N} \cup\{\infty\}$
Then $P(Y=\infty)>0$

$$
\Rightarrow E[Y]=\infty \geq 0
$$

"Proof" $E[y]=\sum_{i=1}^{\infty} i P(Y=i)+" \gamma \times \infty$ "

$$
\geqslant \quad " \gamma \times \infty \text { " }=\infty
$$

Application If j racensient

$$
\begin{aligned}
& \Rightarrow P\left(T_{j}=\infty \mid x_{0}=j\right)>0 \\
& \Rightarrow E\left[T_{j} \mid x_{0}=j\right]=\infty
\end{aligned}
$$

Mean recurrence time

Definition 17.

Let

- X Markov chain
- i state in S

$$
=\sum_{n=1}^{\infty} n P\left(T_{i}=n \mid x_{0}=i\right)
$$

Then we set

$$
\mu_{i}=\mathbf{E}\left[T_{i} \mid X_{0}=i\right]= \begin{cases}\widehat{\sum_{n=1}^{\infty} n f_{i i}(n)}, & \text { if } i \text { is persistent } \\ \infty, & \text { if } i \text { is transient }\end{cases}
$$

Null and positive states

Definition 18.

Let

- X Markov chain
- i persistent state in S, with mean recurrence time μ_{i}

Then
(1) i is said to be null if $\mu_{i}=\infty$
(2) i is said to be positive if $\mu_{i}<\infty$

Criterion for nullity

Theorem 19.
Let

- X Markov chain
- i persistent state in S

Then

$$
i \text { is null iff } \lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

Rok
Stare i is persistent null iff

$$
\sum_{n=1}^{\infty} p_{i i}(n)=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

Typical example of u_{n} ग.r

$$
\begin{array}{rll}
\lim u_{n} & =0, & \sum_{n} u_{n}=\infty \\
u_{n} & =\frac{1}{n^{\alpha}}, & \alpha \leqslant 1
\end{array}
$$

Period

Definition 20.

Let

- X Markov chain, i state in S

Then
(1) The period of i is given by

$$
d(i)=\operatorname{gcd}\left\{n ; p_{i i}(n)>0\right\}
$$

(2) The state i is aperiodic if $d(i)=1$, periodic if $d(i)>1$

Interpretation: The period describes
\hookrightarrow Times at which returns to i are possible

Ergodic states

Definition 21.
Let

- X Markov chain
- i state in S

Then i is said to be ergodic if
i is persistent, positive and aperiodic
Ergodic:

- $P\left(N(i)=\infty \mid x_{0}=i\right)=1$
- $E\left[T_{i} \mid x_{0}=i\right]<\infty$

$$
\text { - } P_{i i}=P\left(x_{1}=i \mid x_{0}=i\right)>0
$$

Simple random walk case

Proposition 22.

Let

- X simple random walk
- Parameters p and $q=1-p$

Then the states are
(1) Periodic with period 2
(2) Transient if $p \neq \frac{1}{2}$
(3) Null persistent if $p=\frac{1}{2}$

Led x SRO
(i) Period $=2$. We have seen that

$$
\begin{aligned}
& p_{i i}(2 n)>0 \\
& P_{i i}(2 n+1)=0
\end{aligned}
$$

Thus $\operatorname{gca}\left\{k ; p_{i i}(k) \geqslant 0\right\}$
$=$ gad \{ even numbers

$$
=2
$$

(ii) x ramient if $\rho \neq \frac{1}{2}$
\rightarrow seen or w
(iii) x persistent if $p=\frac{1}{2} \rightarrow$ en on w
(iv) x null persistent if $p=\frac{1}{2}$
we have seen that i null persistent if

$$
\sum_{n=1} p_{i i}(n)=\infty \quad, \lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

Here fa $p=\frac{1}{2}$ we have

$$
\begin{aligned}
p_{i i}(n) \sim \frac{c}{n^{\frac{1}{2}}} \Rightarrow & \sum_{n} p_{i i}(n)=\infty \\
& \lim _{n \rightarrow-\infty} p_{i i}(n)=0
\end{aligned}
$$

$\Rightarrow \quad i$ null persistent $\forall i \in \mathbb{Z}$

Proof of Proposition 22 (1)

Transience if $p \neq \frac{1}{2}$:
This has been established in Proposition 16
Null recurrence if $p=\frac{1}{2}$:

- This has been established \hookrightarrow in Generating functions - Proposition 12
- We have seen that $\mathrm{E}\left[T_{0}\right]=\infty$

Proof of Proposition 22 (2)

Another way to look at null recurrence: If $p=\frac{1}{2}$ we have seen

$$
p_{i i}(2 n) \sim \frac{1}{(\pi n)^{1 / 2}}, \quad p_{i i}(2 n+1)=0
$$

Hence

$$
\lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

According to Theorem 19, i is recurrent null
Period 2: The fact that $d(i)=2$ stems from

$$
p_{i i}(2 n)>0, \quad p_{i i}(2 n+1)=0
$$

Branching process case
 $$
x_{n+i}=\varphi\left(x_{n}, z_{n+1}\right)
$$

Proposition 23.

Consider a branching process with

- $Z_{1} \sim f, f$ with pg G
- $\mathbf{P}\left(Z_{1}=0\right)=f(0)>0$

Then
(1) 0 is an absorbing state:

$$
\mathbf{P}\left(X_{n}=0 \text { for all } n \mid X_{0}=\text { © }\right)=1
$$

(2) Other states are transient

