Outline

(1) Markov processes

- Classification of states

(3) Classification of chains

(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(3) Branching processes revisited

Communication

Recall: For a Markov chain X, we have seen that

$$
\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}(n)=P^{n}(i, j)
$$

Communication:
We say that i communicates with j if

$$
\text { There exists } n \geq 0 \text { such that } \xrightarrow{\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}(n)>0 \text {. }}
$$

Notation: $i \rightarrow j$. My chances to reach j from i in n steps are >0

Intercommunication

Intercommunication:
If $i \rightarrow j$ and $j \rightarrow i$, we say that i and j intercommunicate. Notation: $i \leftrightarrow j$.

Remarks:
Due to the fact that
(1) For all $i \in S$, we have $i \leftrightarrow i$, since $p^{0}(i, i)=1$.
(2) If $i \rightarrow j$ and $j \rightarrow k$, then $i \rightarrow k$.

Graph related to a Markov chain

Definition 24.

Let X be a Markow chain with transition p.
We define a graph $\mathcal{G}(X)$ given by

- $\mathcal{G}(X)$ is an oriented graph
- The vertices of $\mathcal{G}(X)$ are points in S.
- The edges of $\mathcal{G}(X)$ are given by the set

$$
\mathbb{V} \equiv\{(i, j) ; i \neq j, p(i, j)>0\}
$$

Example

Definition of the chain: Take $S=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Related graph: to be done in class

$$
P=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\
1 / 2 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & \frac{1}{3}
\end{array}\right)
$$

(ii) If we stent from 2, we will at tone point jump to la 3 and stay the fever
 ere...

Intuitively: (i) If we trait from 1, we will loop between 1\&3

Recall If $i \neq j, i \rightarrow j$ if $\exists n$ s. γ.

$$
P^{n}(i, j)=P_{i j}(n)>0
$$

Writing the n-th power

$$
\begin{aligned}
& P^{n}(i, j)=\sum_{i_{1}, \cdots, i n-1} \in S \\
& \text { If } P^{n}(i, j)>0, \exists(i,) p\left(i, i_{2}\right) \cdots p\left(i_{n-1}, j\right) \\
& p\left(i, i, \ldots, i_{n-1}\right) \quad \text {, } . \gamma \\
& p\left(i_{n-1}, j\right)>0
\end{aligned}
$$

Thus $p\left(i, i_{1}\right)>0, p\left(i_{1}, i_{2}\right)>0, \ldots, p\left(i_{n-1}, j\right)>0$
$\Rightarrow \quad \operatorname{Parh}\left(i, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{n-1}, j\right)$ in the ret v of $g(x)$

Proof of Proposition 25

Relation with the graph: If $i \neq j$ we have
$(i \rightarrow j) \Leftrightarrow$ There exists $n \geq 1$ such that $p_{i j}(n)>0$
\Leftrightarrow There exists $n \geq 1$ such that

$$
\sum_{i_{1}, \ldots, i_{n-1} \in E} p_{i, i_{1}} \cdots p_{i_{n-1}, j}>0
$$

\Leftrightarrow There exists $n \geq 1$ et $i_{1}, \ldots, i_{n-1} \in E$ such that

$$
p_{i, i_{1}} \cdots p_{i_{n-1}, j}>0
$$

\Leftrightarrow There exists an oriented path from i to j in $\mathcal{G}(X)$

Irreducible classes If $C_{k} i$ ineducable, all stares in C_{k} intercommunicate

Proposition 26.

Let

- X Markov chain with transition p

Then
(1) The relation \leftrightarrow is an equivalence relation.
(2) Denote C_{1}, \ldots, C_{1} the equivalence classes for \leftrightarrow in S. Then \rightarrow is a partial order relation between classes:

$$
C_{1} \rightarrow C_{2} \text { and } C_{2} \rightarrow C_{3} \Longrightarrow C_{1} \rightarrow C_{3}
$$

(3) $C_{1} \rightarrow C_{2}$ iff $\exists i \in C_{1}$ and $j \in C_{2}$ such that $i \rightarrow j$.
(4) [The classes are called irreducible]

Equivalence relation
(i) Reflexive $\quad i \leftrightarrow i$
(ii) Symmetric if $i \longleftrightarrow j$ then $j \leftrightarrow i$
(iii) Transitive if $i \leftrightarrow j$ and $j \leftrightarrow k$
Hen $i \longleftrightarrow k$
Def i, j are in the same class $f n \leftrightarrow$ if $\quad i \longleftrightarrow j$

Example (1)

Definition of the chain: Take $E=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

$$
P^{0}=I d \Rightarrow i \leftrightarrow i
$$

Graph

clases

$$
C_{1}=\{1,3\} \quad C_{2}=\{2\} \quad C_{3}=\{4,5\}
$$

Communicatior $C_{2} \rightarrow C_{1}$, sunce $2 \in C_{2} \rightarrow 3 \in C_{1}$

On w: How to we that in adde to xe if states are rannient / persistent

