Nature of intercommunicating states

r—[Theorem 27.] ‘

Let
@ X Markov chain with transition p
@ i,j such that j <> j

Then
@ i,/ have the same period
© / transient iff j transient

© / null persistent iff j null persistent
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Proof of Theorem 27 — item 2 (1)
A positive quantity: If i <+ j, then there exists m, n > 1 such that
a = pj(m)p;i(n) >0
Application of Chapman-Kolmogorov: We get
pil(m + r+n) > py(m)py(r)pji(n) = o pj;(r)

Summing over r: We get

Zp,,(r) <oo = Zpﬂ(r) < 00
r=0 r=0
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Proof of Theorem 27 — item 2 (2)

Conclusion:

| transient

=

J transient
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Closed class
Inteprefabin: I 9o« are i C,

you camd” gel out of C
n
Definition 28. ] \
An equivalent class C is closed if: /

Forall i€ C and j & C, we have i /4 j.

Some rules for closedness:
o If there exists a unique class C, it is closed

@ There exists a unique closed class C
& There exists a class C s.t for all i € E, we have | — C.
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Example ctd (1)

Definition of the chain: Take E = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 o0
o 0 0 0 1
0o 0 0 2/31/3
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Example ctd (2)

Recall: The related classes are
Cl = {1,3}, C2 = {2} and C3 = {4,5}
We have C2 — C1

Closed classes: We find

(1, G closed, and G, not closed
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Random walk example

,—[Proposition 29.]
Let

@ X simple random walk

@ Parameters pandg=1—-p

Then
© There is a unique class, C =7
© This class is closed
© If one state is transient, all the states are transient
© If one state is null pers., all the states are null pers.
© All the states have the same period (=2)
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Decomposition theorem

r—[Theorem 30.} w
Let
@ X Markov chain with transition p

@ S state space
Then S can be partitioned uniquely as
S=TuGuGU:---,
where

@ T = Set of transient states
@ C, = irreducible closed class of persistent states

Samy T. (Purdue) Markov chains Stochastic processes 77 /143



Finite state space case

,—[Proposition 31.] \

Let
@ X Markov chain with transition p
@ S finite state space with S=TUGUGU - --

Then

@ At least 1 state in S is persistent E[TL JXO:E] <=0
© All persistent states are positive

© Later we will see: every state in C, is positive persistent
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