Chain on $S=\{1,2,3,4\}$
Monday:

$$
P=\left(\begin{array}{cccc}
1 / 4 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

what else can we say with π ?

classes

$$
\begin{aligned}
& C_{1}=\{1\} \text { not closed } \\
& C_{2}=\{2,3,4\} \text { closed }
\end{aligned}
$$

classification of sates
1 is ramient $2,3,4$ are persistent

$$
P=\left(\begin{array}{cccc}
1 / 4 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Queskin: can we duiecrly apply Thm 35?
Hyp fer Thm 35
Transitim P

- x inneducible \rightarrow not sakisfied
- star distioukion π

From decompoition thm: Here we have $T=\{1\}, C_{1}=\{2,3,4\}$ closed

Strategy: Look at the "rabchain" on $\{2,3,4\}$ with racensition

$$
Q=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Study of the xabchain
This chain is un educible.

$$
Q=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Question: do we have an invariant measure

$$
\begin{array}{ll}
\pi=\left[\pi_{2}, \pi_{3}, \pi_{4}\right] & \text { dispruburion } \\
\text { s.t. } \pi Q=\pi, & \text { ie } \\
\pi_{2}=\frac{1}{2} \pi_{3} & \text { solution of the fum } \\
\pi_{3}=\pi_{2}+\pi_{4} & \pi=[a, 2 a, a] \\
\pi_{4}=\frac{1}{2} \pi_{3} & \text { If } \pi \text { is a distibutcen } \\
& \text { we get } \\
4 a=1 \Leftrightarrow a=\frac{1}{4}
\end{array}
$$

Unique invariant probability distribution fa Q

$$
\pi=\left[\begin{array}{lll}
1 / 4 & \frac{1}{2} & \frac{1}{4}
\end{array}\right]
$$

Application of The 35

$$
\begin{aligned}
& E\left[T_{2} \mid x_{0}=2\right]=\frac{1}{\pi_{2}}=4 \\
& E\left[T_{3} \mid x_{0}=3\right]=\frac{1}{\pi_{3}}=2 \\
& E\left[T_{4} \mid x_{0}=4\right]=4
\end{aligned}
$$

Back to Markov chain X
Furs way: we have seen that I i) rnansient

$$
\begin{aligned}
& \Rightarrow E\left[T_{1} \mid x_{0}=1\right]=\infty \\
& \Rightarrow \text { we guess } \pi_{1}=0
\end{aligned}
$$

Second way: Solve the linear system

$$
\pi P=\pi \quad \text { with } \quad \pi=\left[\begin{array}{llll}
\pi_{1} & \pi_{c} & \pi_{3} & \pi_{4}
\end{array}\right]
$$

Extra equation for $\pi_{1}: \quad \pi_{1}=\frac{1}{4} \pi_{1} \Rightarrow \pi_{1}=0$
Other equation now un changed
\Rightarrow inv measure $\pi=\left[0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right]$

Example (2)

Related classes:
$C_{1}=\{1\}, C_{2}=\{2,3,4\}$
$\hookrightarrow C_{1}$ closed C_{2} non closed.
Partial conclusion: C_{1} transient, at least one recurrent state in C_{2}.
Invariant measure:
Solve the system $\pi=\pi P$ and $\langle\pi, \mathbf{1}\rangle=1$. We find

$$
\pi=(0,1 / 4,1 / 2,1 / 4)
$$

Conclusion: All states in C_{2} are non-null persistent

Example (3)

Remark:

- It is almost always easier to solve the system

$$
\pi=\pi p \quad \text { and } \quad\langle\pi, \mathbf{1}\rangle=1
$$

than to compute $\mathbf{E}_{i}\left[T_{i}\right]$

- However, in the current case a direct computation is possible
$T_{3}=\inf \left\{n \geqslant 1 ; x_{n}=3\right\}$
computation an the subchain $Q=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 / 2 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
value of T_{3}

$$
P\left(T_{3}=2 \mid x_{0}=3\right) \Rightarrow E\left[T_{3} \mid x_{0}=3\right]=2
$$

Analysis for T_{2}
(i) T_{2} can only rake even values

$$
\begin{aligned}
\text { (ii) } \quad & P\left(T_{2}>2 k+2 \quad \mid x_{0}=2\right) \quad P(A \cap B \mid C) \\
= & P\left(x_{2 k+2}=4, x_{2 k}=4, \ldots, x_{2}=4 \mid x_{0}=2\right) \\
= & P\left(x_{2 k+2}=4 \mid x_{2 k}=4, \ldots, x_{2}=4, x_{0}=2\right) \\
& P\left(x_{2 k}=4, \ldots, x_{2}=4 \quad \mid x_{0}=2\right) \\
\text { noukov } & P\left(x_{2 k+2}=4 \mid x_{2 k}=4\right) \quad P\left(T_{2}>2 k\left(x_{0}=2\right)\right.
\end{aligned}
$$

Summary we have found

$$
\begin{aligned}
& P\left(T_{2}>2 k+2 \quad \mid x_{0}=2\right) \\
= & P\left(x_{2 k+2}=4 \mid x_{2 k}=4\right) \quad P\left(T_{2}>2 k \mid x_{0}=2\right) \\
= & P_{43} \underbrace{\frac{P}{2}}_{34} \quad P\left(T_{2}>2 k \mid x_{0}=2\right) \\
\Rightarrow & P\left(T_{2}>2 k+2 \quad \mid x_{0}=2\right)=\frac{1}{2} P\left(T_{2}>2 k\left(x_{0}=2\right)\right.
\end{aligned}
$$

(geometric induction)
Conclusion we find $T_{2} \sim 2 \times g\left(\frac{1}{2}\right)$

$$
\Rightarrow E\left[T_{2} \mid x_{0}=i\right]=2 \times 2=4
$$

Example (4)

Direct analysis: We find

- $\mathbf{E}_{1}\left[T_{1}\right]=\infty$ since 1 is transient
- $\mathbf{E}_{3}\left[T_{3}\right]=2$ since $T_{3}=2$ under \mathbf{P}_{3}.
- In order to compute $\mathbf{E}_{2}\left[T_{2}\right]$:

$$
\begin{aligned}
& \mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k+2\right)}\right]=\mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{1}_{\left(T_{2}>2 k+2\right)}\right] \\
& =\mathbf{E}_{2}\left\{\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{E}_{X_{2 k}}\left[\mathbf{1}_{\left(T_{2}\left(A^{2 k}\right)>2\right)}\right]\right\} \\
& =\mathbf{E}_{2}\left\{\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{E}_{4}\left[\mathbf{1}_{\left.\left(T_{2}\left(A^{2 k}\right)>2\right)\right]}\right]\right\} \\
& =\mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)} p_{4,3} p_{3,4}\right]=\frac{1}{2} \mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)}\right]
\end{aligned}
$$

We deduce $\mathbf{P}_{2}\left(T_{2}>2 k\right)=1 / 2^{k}$ and $\mathbf{E}_{2}\left[T_{2}\right]=4=\mathbf{E}_{4}\left[T_{4}\right]$.

