Criterion for positivity/nullity

Theorem 36.
Let

- X Markov chain with matrix transition P
- X irreducible
- X recurrent

Then
(1) There exists a measure x satisfying $x=x P$
(2) x is unique up to multiplicative constant
(3) x has strictly positive entries
(9) The chain is positive if $\sum_{i \in S} x_{i}<\infty$
(5) The chain is null if $\sum_{i \in S} x_{i}=\infty$

Criterion for transience

Theorem 37.
Let

- X Markov chain with matrix transition P
- X irreducible
- s any state in S

Then

X is transient

There exists a non zero solution $\left\{y_{i} ; i \neq s\right\}$

$$
\text { to } y_{i}=\sum_{j \neq s} p_{i j} y_{j}, \text { with }\left|y_{i}\right| \leq 1
$$

Random walk with retaining barrier (1)

Model: Random walk on \mathbb{N}
\hookrightarrow With retaining barrier at 0
Transition probability: We get

$$
p_{00}=q, \quad p_{i, i+1}=p, \text { if } i \geq 0, \quad p_{i, i-1}=q, \text { if } i \geq 1
$$

Notation: We set

$$
\rho=\frac{p}{q}
$$

$$
P\left(x_{0}=i \mid x_{0}=i\right)=1 \Rightarrow P^{0}(i, i)>0 \Rightarrow i \leftrightarrow i
$$

Graph for x

$$
P_{00}=q \quad P_{01}=p
$$

Eu $i \geqslant 1$

$$
p_{i, i-1}=q
$$

$$
p_{i, i+1}=P
$$

We have $i \leftrightarrow j$ for all $i, j \in \mathbb{N}$ $\Rightarrow \quad x$ irreducible

Random walk with retaining barrier (2)

$$
\rho=\frac{R}{q}
$$

Proposition 38.

Let X be the random walk with retaining barrier. Then
(1) If $p>\frac{1}{2}$, the chain is transient
(2) If $p<\frac{1}{2}$, the chain is non-null persistent
\hookrightarrow with stationary distribution given by

$$
\pi=\operatorname{Nbin}(1,1-\rho)
$$

(3) If $p=\frac{1}{2}$, the chain is null persistent

Intuition
(i) $\frac{\text { If } p>\frac{1}{2}}{\text { that }}$, the sRO z_{n} is such

$$
z_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Thus fur large enough n, the "bouncing" at O does not play a role $\Rightarrow x_{n}$ is also sir. $\lim _{n \rightarrow \infty} x_{n}=\infty$
(ii) If $p<\frac{1}{2}$, the sow z_{n} wants to go to $-\infty$. The terrier at 0 prevents this
\Rightarrow we hit 0 an ∞ number of rimes $\Rightarrow x_{n}$ is persistent.

Case $p>\frac{1}{2}$. We have that

$$
y_{i}=1-\frac{1}{\rho^{i}} \quad \text { solve } \quad y_{i}=\sum_{j \neq i} p_{i j} y_{j}
$$

Moreover $\rho=\frac{\rho}{q}>^{p>\frac{1}{2}} 1 \Rightarrow\left|y_{i}\right| \leq 1$ Thus we get that x transient

Claim
$y_{i}=1-\frac{1}{\rho^{i}} \quad$ dolve $\quad y_{i}=\sum_{j \neq i} p_{i j} y_{j}$
Fu $i \geqslant 1$,

$$
\begin{aligned}
\sum_{j \neq i} & p_{i j} y_{j}=p_{i, i-1} y_{i-1}+p_{i, i+1} y_{i+1} \\
& =q\left(1-\frac{1}{\rho^{i-1}}\right)+p\left(1-\frac{1}{\rho^{i+1}}\right) \\
& =9+p-\left\{q \times \frac{1}{\rho^{i-1}}+p \times \frac{1}{\rho^{i+1}}\right\} \\
& =1-\frac{1}{\rho^{i+1}}\left\{q \rho^{2}+p\right\} \\
& =1-\frac{1}{\rho^{i+1}}\left\{9 \frac{p^{2}}{q^{2}}+p\right\} \\
& =1-\frac{1}{\rho_{i+1}}\left\{\frac{p}{q}+1\right\} \frac{1}{9} \\
& =1-\frac{p}{\rho^{i+1}} \times \frac{1}{q}=1-\frac{1}{\rho^{i}}=y_{i}
\end{aligned}
$$

Case $p<\frac{1}{2} \quad \pi=\operatorname{Nbch}(1,1-\rho)$ is invariant
$\Rightarrow X$ non-null persistent
Recall that $\pi_{R}=\rho^{k}((-\rho) \quad \forall k \geqslant 0$
Chain: $\pi P=\pi$ when $q>p$

$$
\begin{aligned}
& \frac{\text { If }}{}(\pi P)_{j}=1, \\
& =\pi_{i} \pi_{i} p_{i j}= \\
& =\rho^{j-1}(1-\rho)+\pi_{j+1} q \\
& =\rho^{j-1}(1-\rho)\left\{p+\rho^{j+1}(1-\rho) q\right. \\
& \left.=\rho^{j}(1-\rho)=\right\}^{\rho}
\end{aligned}
$$

Case $p=\frac{1}{2}$
(i) x is persistent. Indeed, x stays longer at 0 than' $Y_{n}='\left|z_{n}\right|$ where $z=$ SAW.
Indeed if p^{x}, p^{y}, p^{z} are the conesponding raonsitions, then far $i \geqslant 1$

$$
\begin{aligned}
& p_{i, i-1}^{x}=p_{i, i-1}^{y}=p_{i, i-1}^{z}=q \\
& p_{i, i+1}^{x}=p_{i, i, i+1}^{y}=p_{i, i, 1}^{z}=p
\end{aligned}
$$

and

$$
\begin{array}{ll}
p_{00}^{y}=0, & p_{00}^{x}=q \\
p_{01}^{x}=1, & p_{01}^{x}=p
\end{array}
$$

Proof of Proposition 38 (1)

Case $q<p$: One verifies that

$$
y_{i}=1-\rho^{-i} \quad \text { solves } \quad y_{i}=\sum_{j \neq s} p_{i j} y_{j}
$$

Thus X transient
Case $q>p$: One sees that

$$
\pi=\operatorname{Nbin}(1,1-\rho) \quad \text { is such that } \quad \pi P=\pi
$$

Thus X non-null persistent

Proof of Proposition 38 (2)

Computation for $q<p$: For $i \geq 1$ we have

$$
\begin{aligned}
\sum_{j \neq i} p_{i j} y_{j} & =p_{i, i-1} y_{i-1}+p_{i, i+1} y_{i+1} \\
& =q\left(1-\frac{1}{\rho^{i-1}}\right)+p\left(1-\frac{1}{\rho^{i+1}}\right) \\
& =1-\frac{1}{\rho^{i+1}}\left(q \rho^{2}+p\right) \\
& =1-\frac{1}{\rho^{i+1}}\left(\frac{p^{2}}{q}+p\right) \\
& =1-\frac{p}{\rho^{i+1}}\left(\frac{p}{q}+1\right) \\
& =1-\frac{1}{\rho^{i}} \\
& =y_{i}
\end{aligned}
$$

Proof of Proposition 38 (3)

$\operatorname{Nbin}(1,1-\rho)$ distribution: Defined for $k \geq 0$ by

$$
\pi_{k}=\rho^{k}(1-\rho)
$$

Verifying $\pi P=\pi$ for $q>p$: For $j \geq 1$ we have

$$
\begin{aligned}
\sum_{i \geq 0} \pi_{i} p_{i j} & =\pi_{j-1} p+\pi_{j+1} q \\
& =\rho^{j-1}(1-\rho) p+\rho^{j+1}(1-\rho) q \\
& =\rho^{j-1}(1-\rho)\left(p+\rho^{2} q\right) \\
& =\rho^{j}(1-\rho) \\
& =\pi_{j}
\end{aligned}
$$

Proof of Proposition 38 (4)

Case $q=p$: We have
(1) X persistent since

- $Y \equiv$ random walk is persistent
- $X=|Y|$
(2) X null-persistent since since $x=\mathbf{1}$ is such that

$$
x=x P, \quad \text { and } \quad \sum_{i \in S} x_{i}=\infty
$$

