Criterion for positivity/nullity

Theorem 36.

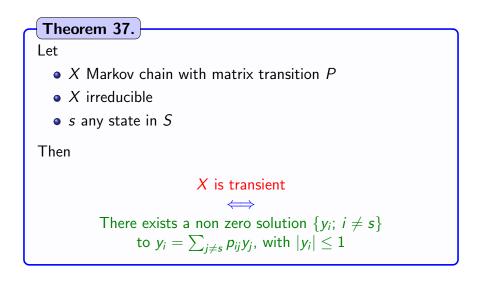
Let

- X Markov chain with matrix transition P
- X irreducible
- X recurrent

Then

- There exists a measure x satisfying x = x P
- \bigcirc x is unique up to multiplicative constant
- A has strictly positive entries
- The chain is positive if $\sum_{i \in S} x_i < \infty$
- **•** The chain is null if $\sum_{i \in S} x_i = \infty$

Criterion for transience



95 / 146

Random walk with retaining barrier (1)

Model: Random walk on \mathbb{N} \hookrightarrow With retaining barrier at 0

Transition probability: We get

 $p_{00} = q, \quad p_{i,i+1} = p, \text{ if } i \ge 0, \quad p_{i,i-1} = q, \text{ if } i \ge 1$

Notation: We set

$$\rho = \frac{p}{q}$$

 $P(X_{b}=i|X_{b}=i)=1 \implies p^{\circ}(i,i)>0 \implies i \ll i$ Graph for X Poo = Q $Po_1 = P$ $F_{i} = q$ Pi,in = P 0 0 2 ... (R-1)(k+1)···· b We have is j for all i, j EN => × irreducible

Random walk with retaining barrier (2) $\Im = \frac{P}{q}$

Let X be the random walk with retaining barrier. Then
If p > ¹/₂, the chain is transient
If p < ¹/₂, the chain is non-null persistent → with stationary distribution given by

$$\pi = \mathsf{Nbin}(1, 1 -
ho)$$

If $p = \frac{1}{2}$, the chain is null persistent

Intuition (i) If $p > \frac{1}{2}$, the SRW 2n is such that $z_n \longrightarrow \infty \quad \alpha \longrightarrow \infty$ Thus for large enough on the "bauncing" at O does not play a role \Rightarrow X_n is also s.t. $\lim_{n\to\infty}$ X_n = ∞ (ii) $\frac{1f p < \frac{1}{2}}{10}$, the SAW the work to go to $-\infty$. The courrier at 0 prevents This we hit I an a number of => Xn is pervisient times

case p>2. We have that $y_i = 1 - \frac{1}{g_i}$ $y_i = \sum_{\substack{i=1\\j\neq i}} P_{ij} y_j$ Theorer $g = \frac{1}{4} \sum_{i=1}^{2} | \Rightarrow |y_i| \leq 1$ Thus we get that X transient

Claim $y_i = 1 - \frac{1}{8}i$ sine $Y_i = \sum_{i \neq i} P_{ij} Y_j$ $\bar{\iota} \ge 1$ = Pi, 1-1 Yi-1 + Pi, in Yi+1 2 Pij yj $= Q \left(1 - \frac{1}{3^{cr}} \right) + P \left(1 - \frac{1}{3^{cr}} \right)$ $= \overline{q+p}^{=1} - \left\{ \begin{array}{c} q \times \frac{1}{p} \\ g \mapsto \end{array} + P \times \frac{1}{p} \\ g \mapsto \end{array} \right\}$ $1 - \frac{1}{pi+1} \left\{ q g^2 + p \right\}$ 1- für {q fr + p} - für < f + 15 9 $\frac{P}{P^{i+1}} \times \frac{1}{q} = 1 - \frac{1}{S^{i}}$ = Y_i

Case $p < \frac{1}{2}$ T = Nbin(1,1-g) is invariant => X non-null persistent Recall that $\pi_{\mathbf{R}} = g^{\mathbf{k}}(1-g) \quad \forall \mathbf{k} \geq 0$ <u>Clain</u>: $\pi P = \pi$ when q > p $If \quad j \ge 1,$ 0. p q 0. p $(TP)_{i} = Z T_{i} P_{ij} =$ 9.0 = Tij-1 P + Tijt q $= g^{\delta'}(1-g) p + g^{\delta'}(1-g) q$ $= g^{i-1}(-g) \downarrow p + p^2 q^{i}$ $= \varphi^{\flat}(1-\varphi) = \pi_{\flat}$

Case $\rho = \frac{1}{2}$ (i) X is pervisitent. Indeed X stays longer at O than' Yn= 12n1 where Z = SRW. Indeed if p^{*}, p^{*}, p^{2} are the corresponding transitions, then for $i \ge 1$ $P_{i,i-1}^{x} = P_{i,i-1}^{y} = P_{i,i-1}^{z} = q$ $P_{i,in}^{x} = P_{i,in}^{y} = P_{i,in}^{z} = P$ and $P_{00}^{\gamma} = 0$, $P_{00}^{\chi} = q$ $P_{01}^{\gamma} = 1$, $P_{01}^{\kappa} = P$

Proof of Proposition 38(1)

Case q < p: One verifies that

$$y_i = 1 - \rho^{-i}$$
 solves $y_i = \sum_{j \neq s} p_{ij} y_j$

Thus X transient

Case q > p: One sees that

$$\pi = \mathsf{Nbin}(1, 1 - \rho)$$
 is such that $\pi P = \pi$

Thus X non-null persistent

Proof of Proposition 38 (2) Computation for q < p: For $i \ge 1$ we have

$$\sum_{\substack{\neq i \\ \neq i}} p_{ij} y_j = p_{i,i-1} y_{i-1} + p_{i,i+1} y_{i+1}$$

$$= q \left(1 - \frac{1}{\rho^{i-1}} \right) + p \left(1 - \frac{1}{\rho^{i+1}} \right)$$

$$= 1 - \frac{1}{\rho^{i+1}} \left(q\rho^2 + p \right)$$

$$= 1 - \frac{1}{\rho^{i+1}} \left(\frac{p^2}{q} + p \right)$$

$$= 1 - \frac{p}{\rho^{i+1}} \left(\frac{p}{q} + 1 \right)$$

$$= 1 - \frac{1}{\rho^{i}}$$

$$= y_i$$

3

Proof of Proposition 38 (3)

Nbin $(1, 1 - \rho)$ distribution: Defined for $k \ge 0$ by

$$\pi_k = \rho^k (1 - \rho)$$

Verifying $\pi P = \pi$ for q > p: For $j \ge 1$ we have

$$\sum_{i \ge 0} \pi_i \rho_{ij} = \pi_{j-1} p + \pi_{j+1} q$$

= $\rho^{j-1} (1-\rho) p + \rho^{j+1} (1-\rho) q$
= $\rho^{j-1} (1-\rho) (p + \rho^2 q)$
= $\rho^j (1-\rho)$
= π_j

Proof of Proposition 38 (4)

Case q = p: We have

- X persistent since
 - $Y \equiv$ random walk is persistent
 - $\bullet X = |Y|$

2 X null-persistent since since x = 1 is such that

$$x = xP$$
, and $\sum_{i \in S} x_i = \infty$