Criterion for positivity /nullity

r—[ Theorem 36.] ‘
Let

@ X Markov chain with matrix transition P

@ X irreducible

@ X recurrent

Then
© There exists a measure x satisfying x = x P
© x is unique up to multiplicative constant
© x has strictly positive entries
@ The chain is positive if ), ¢ x; < 00
@ The chainis null if Y7, o x; = 00
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Criterion for transience

r—[ Theorem 37.] ‘
Let

@ X Markov chain with matrix transition P

@ X irreducible

@ s any statein S

Then
X is transient
=
There exists a non zero solution {y;; i # s}
t0 yi = D jzs Pii¥y, With [y <1
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Random walk with retaining barrier (1)

Model: Random walk on N
— With retaining barrier at 0

Transition probability: We get

poo =q, piiv1=p, if71 >0, pji1=gq,ifi>1

Notation: We set
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Random walk with retaining barrier (2)
= @
=3
,—[Proposition 38.] \

Let X be the random walk with retaining barrier. Then

@ If p > 1, the chain is transient

Qlfp< % the chain is non-null persistent
— with stationary distribution given by

7 = Nbin(1,1 — p)

Q Ifp= % the chain is null persistent
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Proof of Proposition 38 (1)

Case g < p: One verifies that

—i

yi=1—p~" solves y,-:Zp,-jyj

J#s
Thus X transient
Case g > p: One sees that

m = Nbin(1,1 — p) issuch that 7P =7

Thus X non-null persistent
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Proof of Proposition 38 (2)

Computation for g < p: For i > 1 we have

Z PijY;

J#
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Pii—1Yi-1+ Piji+1 Yi+1

Markov chains

Stochastic processes
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Proof of Proposition 38 (3)
Nbin(1,1 — p) distribution: Defined for k > 0 by

T = (1= p)

Verifying 1P = m for ¢ > p: For j > 1 we have

Z'fripij = T-1P+ T g

i>0
= P l-pp+ (1 -p)g
= PN 1-p)(p+rq)

= P(1-p)
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Proof of Proposition 38 (4)

Case g = p: We have
@ X persistent since

» Y = random walk is persistent

@ X null-persistent since since x = 1 is such that

x =xP, and Zx,-:oo

i€S

Samy T. (Purdue) Markov chains Stochastic processes 101 / 146



