Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Reversed chain

Theorem 42.
Let

- X irreducible non-null persistent chain
- Transition for X is P, invariant measure is π
- Hypothesis: $X_{n} \sim \pi$ for all $n \quad\left(~ \Leftarrow X_{0} \sim \pi\right)$
- Set $Y_{n}=X_{N-n}$ for $0 \leq n \leq N$ (X with rime run

Then backwards)
(1) Y is a Markov chain
(2) The transition for Y is

$$
\mathbf{P}\left(Y_{n+1}=j \mid Y_{n}=i\right)=\frac{\pi_{j}}{\pi_{i}} p_{j i}
$$

Recall $Y_{n}=X_{N-n}$ fer $n=0, \ldots, N$
Quankity to evoluate: $\quad Y_{n+1}=X_{N-(n+1)}=X_{N-n-1}$

$$
\begin{aligned}
Q_{n} & =\mathbb{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}, \ldots, Y_{0}=i_{0}\right) \\
& =\frac{\mathbb{P}\left(Y_{n+1}=i_{n+1}, Y_{n}=i_{n}, \ldots, Y_{0}=i_{0}\right)}{\mathbb{P}\left(Y_{n}=i_{n}, ., Y_{0}=i_{0}\right)} \\
& =\frac{\mathbb{P}\left(X_{N-n-1}=i_{n+1}, X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)}{\mathbb{P}\left(X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)}
\end{aligned}
$$

numbor frour.

$$
\begin{aligned}
& =\frac{\pi_{i_{n-1}}}{} P_{i_{n+1}, i_{n}} \rightarrow \cdots p_{i_{1, i}, \overrightarrow{i_{0}}}^{\prod_{i n}} \\
& =\frac{\pi_{i_{n+1}}}{\pi_{i n}} P_{i_{n+1}, i_{n}}
\end{aligned}
$$

Summary we have found

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}, \ldots, Y_{o}=i_{j}\right) \\
& =\frac{\Pi_{i_{n+1}}}{\pi_{i n}} P_{i_{n+1}, i_{n}}
\end{aligned}
$$

Now, with the same type of computation

$$
\mathbb{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}\right)=\frac{\pi_{i_{n-1}}}{\pi_{i n}} P_{i_{n n}, i_{n}}
$$

Thus Y is a markov chain with ransition

$$
\frac{\pi_{j}}{\pi_{i}} P_{j i}
$$

Proof of Theorem 42

Computing conditional probabilities: We have

$$
\begin{aligned}
& \mathbf{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}, \ldots, Y_{0}=i_{0}\right) \\
& =\frac{\mathbf{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{n+1}=i_{n+1}\right)}{\mathbf{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{n}=i_{n}\right)} \\
& =\frac{\mathbf{P}\left(X_{N-n-1}=i_{n+1}, X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)}{\mathbf{P}\left(X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)} \\
& =\frac{\pi_{i_{n+1}} p_{i_{n+1} i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{1} i_{0}}}{\pi_{i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{1} i_{0}}} \\
& =\frac{\pi_{i_{n+1}} p_{i_{n+1} i_{n}}}{\pi_{i_{n}}} \\
& =\mathbf{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}\right)
\end{aligned}
$$

This gives the Markov property and the transition

Reversed chain

Definition 43.

Let

- X irreducible non-null persistent chain
- Transition for X is P, invariant measure is π
- Hypothesis: $X_{n} \sim \pi$ for all n
- Set $Y_{n}=X_{N-n}$ for $0 \leq n \leq N$

Then
$p^{\text {mansion } p_{i j}}$ rendition $\frac{\pi_{j}}{\pi_{i}} \rho_{j i}$
(1) X is said to be reversible if Y has transition P
(2) This is equivalent to

$$
\begin{aligned}
& p_{i j}=\frac{\pi_{j}}{\pi_{i}} p_{j i} \\
& \Leftrightarrow \pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \text { for all } \quad i, j \in S
\end{aligned}
$$

Vocabulary

Detailed balance: Let

- P transition matrix
- λ distribution

Then P, λ are in detailed balance if

$$
\lambda_{i} p_{i j}=\lambda_{j} p_{j i}, \quad \text { for all } \quad i, j \in S
$$

Reversible in equilibrium: If X is such that

- P, π are in detailed balance,
then X is said to be reversible in equilibrium

Invariant measure and reversibility

Theorem 44.

Let

- X irreducible Markov chain with transition P
- Hypothesis: There exists a distribution π such that

$$
\begin{align*}
& \text { much easier ro verify rhan } \pi P=\pi \\
& \pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \text { for all } \quad i, j \in S \tag{2}
\end{align*}
$$

Then
(1) π is a stationary distribution $\Rightarrow X$ non - null peosistent
(2) X is reversible in equilibrium

Claim If $\pi_{i} p_{i j}=\pi_{j} P_{j i}$, then π is an invariant measure

Prof $[\pi P]_{j}=\sum_{i \in S} \pi_{i} P_{i j}$
derailed balance

$$
\begin{aligned}
& =\sum_{i \in s} \pi_{j} P_{j i} \\
& =\pi_{j} \sum_{i \in s} P_{j i}=1 \text { (Pstanchasic matrix) } \\
& =\pi_{j}
\end{aligned}
$$

conclusion $[\pi P]_{j}=\pi_{j}$

$$
\Rightarrow \pi \text { invariant }
$$

Proof of Theorem 44

Computation of πP : We have

$$
\begin{aligned}
(\pi P)_{j} & =\sum_{i \in S} \pi_{i} p_{i j} \\
& =\sum_{i \in S} \pi_{j} p_{j i} \\
& =\pi_{j} \sum_{i \in S} p_{j i} \\
& =\pi_{j}
\end{aligned}
$$

Conclusion:
(1) π is invariant
(2) X is reversible in equilibrium from (2)

Ehrenfest diffusion model (1)

Model: We consider

- Two boxes A and B
- Total of N gas molecules in $A \cup B$
- At time n, one molecule is picked from the N molecules
- This molecule changes box

Process: We set

$$
X_{n} \equiv \# \text { molecules in Box } A \text { at time } n
$$

Ehrenfest diffusion model (2)
Intuikin: mean fur inv. measure $=\frac{N}{2}$ \Rightarrow inv. measure $\simeq \frac{N}{2}+$ "Froussion" fluctuations

Box A
\rightarrow Binomial is acisuere \& close to Greus)ian $\begin{array}{cccccc}0 & 0^{0} & 0^{0} & 0 & 0 & 0 \\ 0 & 0^{n}-n_{t} \\ 0 & 0^{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

Ehrenfest diffusion model (2)

Proposition 45.

For Ehrenfest's model,
(1) X is a Markov chain with

$$
p_{i, i+1}=1-\frac{i}{(n)} \quad \text { and } \quad p_{i, i-1}=\frac{i}{(h)}
$$

(2) X is reversible in equilibrium with

$$
\pi=\operatorname{Bin}\left(N, \frac{1}{2}\right), \quad \text { that is } \quad \pi_{i}=\binom{N}{i}\left(\frac{1}{2}\right)^{m}
$$

