Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Irreducible case

Theorem 46.

Let

- X irreducible Markov chain with transition P
- S finite

Then:

$$
X \text { is non-null persistent }
$$

Perron-Frobenius theorem

Theorem 47.

Let

- X irreducible Markov chain with transition P
- S finite with $|S|=N, X$ has period d

Then:

$$
P \mathbb{1}=\mathbb{1}
$$

(1) $\lambda_{1}=1$ is an eigenvalue of P
(2) Let $\omega=e^{\frac{2 \pi \imath}{d}}$. Then the following are eigenvalues of P :

$$
\lambda_{k}=\omega^{k-1}, \quad \text { for } \quad k=1, \ldots, d
$$

(Remaining eigenvalues:

$$
\lambda_{d+1}, \ldots, \lambda_{N}, \quad \text { with } \quad\left|\lambda_{j}\right|<1
$$

Large time behavior

Theorem 48.
Let

- X irreducible Markov chain with transition P
- S finite with $|S|=N$
- $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ eigenvalue matrix
- Hyp: Eigenvalues λ_{j} all distinct
- $V=\left[v_{1}, \ldots, v_{n}\right]$ eigenvector matrix

Then:

$$
\Lambda^{n}=\operatorname{Diag}\left(\lambda_{1}^{n}, \ldots, \lambda_{N}^{n}\right)
$$

(1) $P^{n}=V \Lambda^{n} V^{-1} \quad n \rightarrow \infty$ due to the fact that $d_{1}^{n}=1^{n}=1$
(2) If X is aperiodic we have

$$
\lim _{n \rightarrow \infty} P^{n}=V \operatorname{Diag}(1,0, \ldots, 0) V^{-1}
$$

Inbreeding model (1)

Model:

- Spinach population
- Genetic information contained in chromosomes
- 6+6 identical pairs of chromosomes
- Sites C_{1}, \ldots, C_{M} for chromosomes
\hookrightarrow We just look at C_{1} for 1 chromosome
- $C_{1} \in\{a, A\}$ for each pair
- Types: given by $S=\{A A, a A, a a\}$
- $X_{n} \equiv$ Value of type at generation n for a typical spinach
- Self reproduction model with meiosis
\hookrightarrow shuffle of C_{i} 's between pairs \rightarrow take 2 pail and shuffle their a A

Mechanism

$$
\begin{aligned}
& A A \times A A \longrightarrow A A \quad \text { always } \\
& a A \times a A \longrightarrow \underbrace{a a}_{p=1 / 4} \underbrace{a A}_{p=\frac{1}{2}} \underbrace{A A}_{p=\frac{1}{4}}
\end{aligned}
$$

$a a \times a a \longrightarrow a a$ with $p=1$

$$
x_{n} \text { is a } \Pi C \text { strategy: } x_{n+1}=\varphi\left(x_{n}, y_{n+1}\right)
$$

Here $=\varphi\left(x_{n}, y_{n+1}\right)$

$$
\begin{aligned}
& X_{n+1}=(A A) \mathbb{1}_{\left(X_{n}=(A A)\right)}+(a a) \mathbb{1}\left(X_{n}=(a a)\right) \\
&+Y_{n+1} \mathbb{1}_{\left(X_{n}=(a A)\right)}\left\{\begin{array}{l}
P\left(Y_{n+1}=A A\right)=\frac{1}{4} \\
P\left(X_{n+1}=a A\right)=\frac{1}{2} \\
P\left(Y_{n+1}=a a\right)=\frac{1}{4}
\end{array}\right. \\
& \text { where }\left\{Y_{n} ; n \geq 1\right\} \text { rd with }
\end{aligned}
$$

Transition $\quad p_{i j}=P(\varphi(i, Y)=j)$
We get, on $S=\{A A, a A, a a\}$

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{array}\right) \quad P\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Graph

Eigenvalues: roots of

$$
\begin{aligned}
& \operatorname{det}(P-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
\frac{1}{4} & \frac{1}{2}-\lambda & \frac{1}{4} \\
0 & 0 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left(\frac{1}{2}-\lambda\right)(1-\lambda)
\end{aligned}
$$

we ger $\lambda_{1}=1, \lambda_{2}=1, \lambda_{3}=\frac{1}{2}$
Eigenvector: solutions to $(P-\lambda I) v=0$. we get

$$
V=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad V^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 \\
-\frac{1}{2} & 1 & -\frac{1}{2}
\end{array}\right)
$$

Inbreeding model (2)

Transition rules: If all shuffles are equally likely we get

- $A A \times A A \longrightarrow A A$, with $p=1$
- $a A \times a A \longrightarrow$ aa with $p=\frac{1}{4}, a A$ with $p=\frac{1}{2}, A A$ with $p=\frac{1}{4}$
- $a \mathrm{aa} \times \mathrm{aa} \longrightarrow a a$, with $p=1$

Transition matrix: We get

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{array}\right)
$$

Inbreeding model (3)

Classification of states: With the graph we find

- aa and AA are persistent
- aA is transient

Eigenvalues: We find

$$
\lambda_{1}=1, \quad \lambda_{2}=1, \quad \lambda_{3}=\frac{1}{2}
$$

Eigenvectors: We get

$$
V=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \text { and } \quad V^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 \\
-\frac{1}{2} & 1 & -\frac{1}{2}
\end{array}\right)
$$

Inbreeding model (4)
Large time behavior: We get

$$
\begin{aligned}
P^{n} & =V \text { 起 }_{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left(\frac{1}{2}\right)^{n}
\end{array}\right)} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2}-\left(\frac{1}{2}\right)^{n+1} & \left(\frac{1}{2}\right)^{n} & \frac{1}{2}-\left(\frac{1}{2}\right)^{n+1} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Limiting behavior: We have
Additural infumakm:

$$
\lim _{n \rightarrow \infty} P^{n}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right)
$$

geometric
convagence

