Summary on Poison process. $N(t)$ is PP if
(i) $N(t) \in \mathbb{N}, N(0)=0$
(ii) $t \mapsto N(t)$ is $>$
(iii)

$$
\begin{aligned}
\mathbb{P}(N(t+h)=n+m & \mid N(t)=n) \\
= & \left\{\begin{array}{rl}
1-\lambda h+g_{1}(h) & \text { if } m=0 \\
\lambda h+g_{2}(h) & \text { if } m=1 \\
g_{3}(h) & \text { if }
\end{array} m>1\right.
\end{aligned}
$$

(iv) $N(t)-N(د) \Perp$ "post"
with $\lim _{h \rightarrow 0} \frac{\left|g_{1}(h)\right|+\left|g_{2}(h)\right|+\left|g_{3}(h)\right|}{h} \rightarrow 0$
Notation: we say $g_{1}(h), g_{2}(h), g_{3}(h)=o(h)$

Füst important reset. For all $t \geqslant 0$

$$
N(t) \sim P(\lambda t)
$$

Infection This rems from

$$
\operatorname{Bin}\left(n, \frac{\mu}{n}\right) \xrightarrow{n \rightarrow \infty} P(\mu)
$$

Proof of $\operatorname{Bin}\left(n, \frac{\mu}{n}\right)^{\prime \prime} \rightarrow " P(\mu)^{\text {in distribution }}$
If boils down to prove, fa $k \in \mathbb{N}$, thar

$$
\mathbb{P}\left(x_{n}=k\right) \rightarrow \mathbb{P}(x=k)
$$

where $x_{n} \sim \operatorname{Bin}\left(n, \frac{\mu}{n}\right) \quad, X \sim P(\mu)$
Computatciar

$$
\begin{aligned}
& \mathbb{P}\left(x_{n}=k\right)=\binom{n}{k}\left(\frac{\mu}{n}\right)^{k}\left(1-\frac{\mu}{n}\right)^{n-k} \\
& =\frac{n!}{k!(n-k)!} \frac{\mu^{k}}{n^{k}}\left(1-\frac{\mu}{n}\right)^{n-k} \\
& =\frac{\mu^{k}}{k!} \frac{n!}{(n-k)!n^{k}}\left(1-\frac{\mu}{n}\right)^{k}\left(1-\frac{\mu}{n}\right)^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left(X_{n}=k\right) \quad A(n) \\
= & \frac{\mu^{k}}{k!} \frac{B(n)}{\frac{n!}{(n-k)!n^{k}}} \frac{C(n)}{\left(1-\frac{\mu}{n}\right)^{n}} \widehat{\left(1-\frac{\mu}{n}\right)^{-k}}
\end{aligned}
$$

polynonical deysee
Then

$$
\begin{aligned}
& A(n)=\frac{n(n-1) \cdots(n-k+1)}{n^{k}}=\frac{n^{k}+\widehat{P_{k-1}(n)}}{n^{k}} \\
& B(n)=e^{\frac{n-\mu n}{n \ln \left(1-\mu_{n}\right)}} \xrightarrow{n \rightarrow \infty}{ }^{n \rightarrow-\mu} e^{-\mu}
\end{aligned}
$$

$C(n)=\frac{1}{(1-\mu)^{k}} \xrightarrow{n \rightarrow \infty} 1 \quad$ (cort. funckion) concluxion $\quad \mathbb{P}\left(x_{n}=k\right) \rightarrow \frac{\mu^{k}}{k!} e^{-\mu}=\mathbb{P}(x=k)$

Roof of Thu 2 small rime

$$
\begin{aligned}
& \mathbb{P}(N(t+h)=j) \\
= & \sum_{i=0}^{j} \mathbb{P}(N(t+h)=j \mid N(t)=i) \quad \mathbb{P}(N(t)=i)
\end{aligned}
$$

$$
\stackrel{h}{\text { small }}=\quad \mathbb{P}(N(t+h)=j / N(t)=j) \quad \mathbb{P}(N(t)=j)
$$

$$
+\mathbb{P}\left(N\left(t_{\sigma} h\right)=j \quad \operatorname{N}(t)=j-1\right) \quad \mathbb{P}(N(t)=j-1)+o(h)
$$

$$
=(1-\lambda h+o(h)) \mathbb{P}(N(t)=\delta)
$$

$+(\lambda h+o(h)) \mathbb{P}(N(t)=j-1)+o(h)$
Notation we et $P_{j}(t)=\mathbb{P}(N(t)=j)$. we get

$$
p_{j}(t \sigma h)=(1-\lambda h) p_{j}(t)+\lambda h p_{j-1}(t)+o(h)
$$

$$
P_{j}(t)=\mathbb{P}(N(t)=j)
$$

we have found

$$
\begin{aligned}
& p_{j}(t+h)=(1-\lambda h) p_{j}(t)+\lambda h p_{j-1}(t)+o(h) \\
& \Leftrightarrow p_{j}(t+h)-p_{j}(t)=-\lambda h p_{j}(t)+\lambda h p_{j-1}(t)+o(h) \\
& \Leftrightarrow \frac{1}{h}\left(p_{j}(t+h)-p_{j}(t)\right)=-\lambda p_{j}(t)+\lambda p_{j-1}(t)+o(1)
\end{aligned}
$$

Take $h \rightarrow 0$. we get

$$
P_{j}^{\prime}(t)=-\lambda P_{j}(t)+\lambda P_{j-1}(t)
$$

we get an ∞ (in j) system of linear actherentical equations
2 strategies: Solve by induction Generating functions

$$
=\mathbb{P}(N(0)=0)
$$

$\frac{\text { system }}{P_{j}^{\prime}}(t)=-\lambda P_{j}(t)+\lambda p_{j-1}(t)$
case $j=0$ since $p_{-1}(t)=0$, the eq is

$$
\begin{aligned}
& p_{0}^{\prime}(t)=-\lambda p_{0}(t) \\
\Leftrightarrow & \frac{p_{0}^{\prime}(t)}{p_{0}(t)}=-\lambda \quad p_{0} \\
\Rightarrow & \ln \left(p_{0}(t)\right)=-\lambda t+c_{1} \\
& p_{0}(t)=c_{2} e^{-\lambda t}
\end{aligned}
$$

with $p_{0}(0)=1$ we get $x \sim B(\lambda t)$

$$
p_{0}(t)=e^{-\lambda t}=\mathbb{P}(\bar{X}=0)
$$

$$
P_{j}^{\prime}(t)=-\lambda P_{j}(t)+\lambda P_{j-1}(t)
$$

Dit for $G_{t}(j)=\sum_{j=0}^{\infty} P_{j}(t) s^{j}$ we have

$$
\begin{aligned}
& \partial_{t} G_{t}(s)=p_{0}^{\prime}(t)+\sum_{j=1}^{\infty} p_{j}^{\prime}(t) s^{j} \\
& =-\lambda p_{0}(t)+\sum_{j=1}^{\infty}\left(-\lambda p_{j}(t)+\lambda p_{j-1}(t)\right) J^{j} \\
& =-\lambda p_{0}(t)+\sum_{j=1}^{p^{j}}-\lambda p_{j}(t) s_{j}^{j} \\
& \quad+s \sum_{j=1}^{\infty} \lambda p_{j-1}(t) s^{j-1} \\
& =-\lambda G_{t}(J)+\lambda s G_{t}(J) \\
& \Rightarrow \partial_{t} G_{t}(J)=\lambda(J-1) G_{t}(J), G_{0}(s)=1 \\
& \Rightarrow G^{(J}(J)=e^{\lambda(j) 1 t} \Rightarrow p_{j}(t) \text { is } P(\lambda t)
\end{aligned}
$$

Proof of Theorem 2 (1)

Conditioning on a small interval: We have

$$
\begin{aligned}
& \mathbf{P}(N(t+h)=j) \\
&= \sum_{i \in S} \mathbf{P}(N(t+h)=j \mid N(t)=i) \mathbf{P}(N(t)=i) \\
&= \sum_{i \in S} \mathbf{P}((j-i) \text { arrivals in }(t, t+h]) \mathbf{P}(N(t)=i) \\
&= \mathbf{P}(\text { no arrivals in }(t, t+h]) \mathbf{P}(N(t)=j) \\
&+\mathbf{P} \text { (one arrival in }(t, t+h]) \mathbf{P}(N(t)=j-1)+o(h) \\
&=(1-\lambda h) \mathbf{P}(N(t)=j)+\lambda h \mathbf{P}(N(t)=j-1)+o(h)
\end{aligned}
$$

Proof of Theorem 2 (2)

Probability as a function: We set

$$
p_{j}(t)=\mathbf{P}(N(t)=j)
$$

Equation on small intervals: We have seen

$$
\begin{aligned}
p_{0}(t+h) & =(1-\lambda h) p_{0}(t)+o(h) \\
p_{j}(t+h) & =\lambda h p_{j-1}(t)+(1-\lambda h) p_{j}(t)+o(h)
\end{aligned}
$$

Equivalent form with differences:

$$
\begin{aligned}
p_{0}(t+h)-p_{0}(t) & =-\lambda h p_{0}(t)+o(h) \\
p_{j}(t+h)-p_{j}(t) & =\lambda h\left(p_{j-1}(t)-p_{j}(t)\right)+o(h)
\end{aligned}
$$

Proof of Theorem 2 (3)

Recall:

$$
\begin{aligned}
p_{0}(t+h)-p_{0}(t) & =-\lambda h p_{0}(t)+o(h) \\
p_{j}(t+h)-p_{j}(t) & =\lambda h\left(p_{j-1}(t)-p_{j}(t)\right)+o(h)
\end{aligned}
$$

Differentiating: We end up with a system of ode's

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) \\
p_{j}^{\prime}(t+h) & =\lambda p_{j-1}(t)-\lambda p_{j}(t)
\end{aligned}
$$

Initial condition:

$$
p_{j}(0)=\delta_{j 0} \equiv \mathbf{1}_{(j=0)}
$$

Proof of Theorem 2 (4)

Recall: We have obtained a system of ode's

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) \\
p_{j}^{\prime}(t+h) & =\lambda p_{j-1}(t)-\lambda p_{j}(t)
\end{aligned}
$$

A family of generating functions: We set

$$
G_{t}(s)=\mathbf{E}\left[s^{N(t)}\right]=\sum_{j=0}^{\infty} p_{j}(t) s^{j}
$$

Strategy: From the system of ode's
\hookrightarrow deduce a single ode for $t \mapsto G_{t}(s)$

Proof of Theorem 2 (5)

Differential equation for G : We have

$$
\begin{aligned}
\frac{\partial G_{t}(s)}{\partial t} & =\sum_{j=0}^{\infty} p_{j}^{\prime}(t) s^{j} \\
& =-\lambda p_{0}(t)+\sum_{j=1}^{\infty}\left(\lambda p_{j-1}(t)-\lambda p_{j}(t)\right) s^{j} \\
& =-\lambda G_{t}(s)+\lambda s \sum_{j=1}^{\infty} p_{j-1}(t) s^{j-1} \\
& =-\lambda G_{t}(s)+\lambda s G_{t}(s) \\
& =\lambda(s-1) G_{t}(s)
\end{aligned}
$$

Proof of Theorem 2 (6)

Recall: $u_{t} \equiv G_{t}(s)$ verifies

$$
u^{\prime}=\lambda(s-1) u, \quad u_{0}=1
$$

Expression for $G_{t}(s)$: We find

$$
G_{t}(s)=\exp (\lambda(s-1) t)
$$

Conclusion:

$$
N(t) \sim \mathcal{P}(\lambda t)
$$

Relation with binomial random variables

Another way to prove $N(t) \sim \mathcal{P}(\lambda t)$:
(1) Partition $[0, t]$ in subintervals $[(\ell-1) h, \ell h]$
(2) On each subinterval, set $Z_{\ell}=\mathbf{1}_{\text {(arrival in }[(\ell-1) h, \ell h])}$
(3) We have that $\left\{Z_{\ell} ; \ell \geq 1\right\}$ is i.i.d with common law $\mathcal{B}(\lambda h)$
(4) We have $N(t) \simeq \sum_{\ell=1}^{t / h} Z_{\ell}$, thus

$$
N(t) \simeq \operatorname{Bin}\left(\frac{t}{h} ; \lambda h\right) \xrightarrow{h \rightarrow 0} \mathcal{P}(\lambda t)
$$

