Equations $p_{i j}^{\prime}=d_{j-1} p_{i, j-1}-d_{j} p_{i j}$
Of the fum
"dict in rime of $p_{i j}=$ ditt operator in space"
This is a partial differential equation
Poison case

$$
\begin{aligned}
& p_{i j}^{\prime}=\lambda p_{i, j-1}-\lambda p_{i j} \\
& p_{i j}^{\prime}=-\lambda\left(p_{i, j}-p_{i, j-1}\right) \\
& \frac{\partial p_{i j}}{\partial t}=-\lambda \nabla p_{i, j}
\end{aligned}
$$

Rmk In ditt equations, an impoutant tool is Laplace rransfums
The same is rue fu pole's
In porticular, weful for ruansion denikies

Laplace transform

Definition: Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$. Then

$$
\mathcal{L} f(s)=\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t .
$$

Possible strategy to solve a differential equation:
(1) Transform diff. equation into algebraic problem in s variable.
(2) Solve algebraic problem and find \hat{f}.
(3) Invert Laplace transform and find f.

Existence of Laplace transform

Theorem 9.

Hypothesis:

- f piecewise continuous on $[0, A]$ for each $A>0$.
- $|f(t)| \leq K e^{a t}$ for $K \geq 0$ and $a \in \mathbb{R}$.

Conclusion: $\mathcal{L} f(s)$ exists for $s>a$.

Vocabulary: f satisfying $|f(t)| \leq K e^{a t}$
\hookrightarrow Called function of exponential order.

Table of Laplace transforms

Function f	Laplace transform \hat{f}	Domain of \hat{f}
$\mathbf{1}$	$\frac{1}{s}$	$s>0$
$e^{a t}$	$\frac{1}{s-a}$	$s>a$
$\mathbf{1}_{[0,1)}(t)+k \mathbf{1}_{(t=1)}$	$\frac{1-e^{-s}}{s}$	$s>0$
$t^{n}, n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	$s>0$
$t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	$\frac{a}{s^{2}+a^{2}}$
$\sin (a t)$	$\frac{s}{s^{2}+a^{2}}$	$s>0$
$\cos (a t)$	$\frac{a}{s^{2}-a^{2}}$	$s>0$
$\sinh (a t)$	$\frac{s}{s^{2}-a^{2}}$	$s>\|a\|$
$\cosh (a t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>\|a\|$
$e^{a t} \sin (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos (b t)$		$s>a$

Table of Laplace transforms (2)

Function f	Laplace transform \hat{f}	Domain of \hat{f}
$t^{n} e^{a t}, n \in \mathbb{N}$	$\frac{n!}{\left(s-a a^{n+1}\right.}$	$s>a$
$u_{c}(t)$	$\frac{e^{-c s}}{s}$	$s>0$
$u_{c}(t) f(t-c)$	$e^{-c s} \hat{f}(s)$	
$e^{c t} f(t)$	$\hat{f}(s-c)$	
$f(c t), c>0$	$\frac{1}{c} \hat{f}\left(\frac{s}{c}\right)$	
$\int_{0}^{t} f(t-\tau) g(\tau)$	$e^{-c s}$	
$\delta(t-c)$	$\hat{f}(s) \hat{g}(s)$	
$f^{(n)}(t)$	$s^{n} \hat{f}(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	
$(-t)^{n} f(s)$	$\hat{f}(n)(s)$	

Linearity of Laplace transform

Example of function f :

$$
f(t)=5 e^{-2 t}-3 \sin (4 t)
$$

Laplace transform by linearity: we find

$$
\begin{aligned}
\mathcal{L} f(s) & =5\left[\mathcal{L}\left(e^{-2 t}\right)\right](s)-3[\mathcal{L}(\sin (4 t)](s) \\
& =\frac{5}{s+2}-\frac{12}{s^{2}+16}
\end{aligned}
$$

Funcrion $\quad f(t)=5 e^{-2 t}-3 \sin (4 t)$
Laplace ransfum

$$
\begin{aligned}
& \hat{f}(s)=\mathscr{L}\left(5 e^{-2 t}-3 \operatorname{cn}(4 t)\right) \\
& =5 \mathscr{L}\left(e^{-2 t}\right)-3 \quad \mathscr{L}(\sin (4 t)) \\
& =5 \times \frac{1}{s+2}-3 \times \frac{4}{s^{2}+4^{2}} \\
& =\frac{5}{s+2}-\frac{12}{s^{2}+16}
\end{aligned}
$$

Relation between $\mathcal{L} f$ and $\mathcal{L} f^{\prime}$

Theorem 10.

Hypothesis:
(1) f continuous, f^{\prime} piecewise continuous on $[0, A]$ \hookrightarrow for each $A>0$.
(2) $|f(t)| \leq K e^{a t}$ for $K, a \geq 0$.

Conclusion: $\mathcal{L} f^{\prime}$ exists and

$$
\mathcal{L} f^{\prime}(s)=s \mathcal{L} f(s)-f(0)
$$

Expresior for $\mathscr{L f}^{\prime} g(t)$

$$
\begin{aligned}
& \underline{L f^{\prime}(s)}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left.f g\right|_{0} ^{\infty}-\int_{0}^{\infty} f g^{\prime-s} d t \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s \mathcal{L} f(s) \\
& =\mathcal{L} f(s)-f(0)
\end{aligned}
$$

Proof of Theorem 10

Integration by parts:

$$
\int_{0}^{A} e^{-s t} f^{\prime}(t) d t=\left[e^{-s t} f(t)\right]_{0}^{A}+s \int_{0}^{A} e^{-s t} f(t) d t
$$

Laplace transform of transitions

Proposition 11.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$
- $p_{i j}$ solution to forward system

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

Then for $i \leq j$ the Laplace transform $\hat{p}_{i j}$ satisfies

$$
\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

Proof - case $i=j$ we have seen

$$
\begin{aligned}
& p_{i i}(t)=e^{-\lambda_{i} t} \\
\Rightarrow \quad & \hat{p}_{i i}(s)=\frac{1}{s+d_{i}}
\end{aligned}
$$

Cave $j>i$ Then

$$
\begin{aligned}
& p_{i j}^{\prime}=\lambda_{j-1} p_{i, j-1}-d_{j} p_{i, j} \\
\Rightarrow & \hat{p}_{i j}=\lambda_{j-1} \hat{p}_{i j-1}-d_{j} \hat{p}_{i j} \\
\Rightarrow & \left.s \hat{p}_{i j}-p_{i j}(0)\right)=0=\lambda_{j-1} \hat{p}_{i, j-1}-\lambda_{j} \hat{p}_{i j} \\
\Rightarrow & \left(s+\lambda_{j}\right) \hat{p}_{i j}=\lambda_{j-1} \hat{p}_{i, j-1} \text { algebraic } \\
\Rightarrow & \hat{p}_{i j}=\frac{\lambda_{j-1}}{s_{-1 j}} \hat{p}_{i, j-1} \rightarrow \text { recension }
\end{aligned}
$$

